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Abstract—Many modern automated test generators are based
on either meta-heuristic search techniques or use constraint
solvers. Both approaches have their advantages, but they also
have specific drawbacks: Search-based methods get stuck in
local optima and degrade when the search landscape offers no
guidance; constraint-based approaches, on the other hand, can
only handle certain domains efficiently. In this paper we describe
a method that integrates both techniques and delivers the best of
both worlds. On a high-level view, our method uses a genetic
algorithm to generate tests, but the twist is that during evolution
a constraint solver is used to ensure that mutated offspring
efficiently explores different control flow. Experiments on 20 case
study examples show that on average the combination improves
branch coverage by 28% over search-based techniques and by
13% over constraint-based techniques.

I. INTRODUCTION

Meta-heuristic search and constraint-based techniques have
emerged as two successful approaches to automatically gener-
ate test data that achieve high coverage: Search-based testing
casts the testing problem as a search problem and applies effi-
cient algorithms to find inputs that can serve as suitable tests;
constraint-based techniques use static and dynamic symbolic
execution (DSE) to precisely calculate the needed inputs. Both
approaches have their strengths and weaknesses: Search-based
testing scales well and can handle any code and test criterion,
but only works well if a heuristic provides sufficient guidance.
In the example in Figure 1, search based testing can easily
generate test data to satisfy the first and the third branch
condition, but the second branch is an instance of the flag
problem [1], which gives the search no guidance. Constraint-
based testing exploits the efficiency of modern constraint
solvers which are not dependent on search heuristics, but
there are limits to both scalability and the types of constraints
that can be handled. In the example in Figure 1, the third
branch contains a problematic non-linear constraint, and if the
Math library is not available in source code or bytecode, then
deriving constraints can be difficult in the first place.

There is a growing awareness that these are not competing
techniques but offer great potential for combination. Previous
work in this area uses search-based techniques for particular
cases where constraint solvers are not good [2], or hooks
together search-based tools for method sequence generation
with dynamic symbolic execution tools [3]. In contrast to such
approaches where the two techniques co-exist, we propose a

1 double example(int x, int y, double z) {
2 boolean flag = y > 1000;
3 // ...
4 if (x + y == 1024)
5 if (flag)
6 if (Math.cos(z)−0.95 < Math.exp(z))
7 // target branch
8 // ...
9}

Fig. 1. Constraint-based testing can easily and quickly derive test inputs for
the first two conditions, but not for the third. Search-based testing might take
longer on the first condition, but it can solve the third condition. However, it
has problems with the second condition. A hybrid approach has no problems
with any of the branches in this example.

technique that intrinsically combines search-based testing with
constraint-based testing, thus overcoming the problems of the
original techniques, and making it easy to handle all branches
in Figure 1.

Viewed from a high level, our approach looks like a search-
based testing technique: A genetic algorithm (GA) evolves a
population of candidate solutions, and a fitness function guides
this search towards achieving a given coverage criterion.
However, to avoid that the search gets stuck and to increase the
speed with which the state space is explored, we add a special
mutation operator: Rather than just flipping bits or blindly
manipulating an input value, this new operator considers
the path conditions that represent the execution path of a
candidate solution, and negates one of these path conditions,
just like dynamic symbolic execution does. A constraint solver
then produces the new, mutated input, and this new input is
guaranteed to take a different execution path, boosting the
exploration aspect of the search.

The effects of this combination can be dramatic: Experi-
ments with our Java PathFinder [4] based prototype show that
compared to traditional search-based techniques, the number
of generations necessary to find a solution is reduced by an
order of magnitude. At the same time, the branch coverage
achieved is significantly higher than that of traditional search-
based testing and constraint-based testing.



II. BACKGROUND

As testing is an essential task in software development, a
large number of different techniques has been proposed over
the last decades. In this paper, we focus on white-box testing,
i.e., the task of generating suitable inputs for programs using
the program’s source code. Assuming the common case where
there is no automated oracle available, the objective is to
create a representative test suite satisfying a given coverage
criterion. In this context, two main techniques have emerged
recently as most successful, both allowing one to generate
inputs that achieve a high level of coverage on almost any
program: Constraint-based testing and search-based testing.

A. Constraint-based Testing

Constraint-based testing generates test data by solving con-
straints produced by symbolic execution. For example, if the
aim was to generate test inputs that evaluate the first if-
expression in Figure 1 to true, then the constraint solver
would calculate values for the inputs x and y that make the
expression x+ y = 1024 true. In classic symbolic execution,
the tester has to select a path, and along this target path
symbolic execution collects all such path conditions (e.g., if
clauses) and operations on the symbolic input variables and
state. A constraint solver can then derive inputs that make
the program follow this path. In dynamic symbolic execution
(DSE), exploration is started with a random value for which
the program is executed. Along this execution path branching
conditions are collected whenever they are evaluated, and
a symbolic state is updated whenever values are changed.
One of the collected path constraints is negated to describe
a hitherto unexecuted path, and exploration continues on this
new path. Whenever there are values or constraints that cannot
be handled symbolically, one can revert to concrete values
(therefore DSE is also known as concolic testing)

DSE has been implemented in tools like DART [5] or
Microsoft’s parametrized unit testing tool PEX [6]. Although
efficient, these tools still are limited with respect to their
scalability, and some domains such as non-linear or floating
point arithmetics currently cannot be (efficiently) handled by
constraint solvers. For example, the third if-expression in
Figure 1 is non-linear, and in addition the calls to the library
methods of the Math package might not be available in source
code or bytecode to allow symbolic execution.

B. Search-based Testing

An example of a meta-heuristic search technique as used
in search-based testing [7] is a genetic algorithm, where a
population of candidate solutions (i.e., potential test cases)
is evolved towards satisfying any chosen coverage criterion.
The search is guided by a fitness function that estimates how
close a candidate solution is to satisfying a coverage goal. A
fitness function guides the search in choosing individuals for
reproduction, gradually improving the fitness values with each
generation until a solution is found. For example, to generate
tests for branch coverage a common fitness function [7]
integrates the approach-level (number of unsatisfied control

dependencies) and the branch distance (estimation of how
close the deviating condition is to evaluating as desired).

The success of search-based testing depends on the avail-
ability of appropriate fitness functions that guide towards an
optimal solution. In practice, the search landscapes described
by these fitness functions often contain local optima, i.e.,
candidate solutions that have better fitness than their neigh-
bors but are not globally optimal, thus inhibiting exploration.
Another problem are plateaux in the search landscape, where
individuals have the same fitness as their neighborhood, which
lets the search degrade to random search. For example, the
second if-expression in Figure 1 offers no guidance for the
search – the Boolean flag can only be true or false, which
means the branch distance can only either be 1 or 0.

III. HYBRID SEARCH- AND CONSTRAINT-BASED TESTING

To overcome the drawbacks of both, search-based and
constraint-based testing, we combine the two techniques. This
combined approach to a large extent works like a standard GA.
First, an initial population of candidate solutions is generated
randomly for the program under test. This population is
evolved using both, standard search operators and a new DSE
based operator: After selection, individuals are crossed over
with a certain probability, and mutated using standard mutation
operators such as bit flipping. With a certain probability,
however, the new DSE based mutation operator is used. This
new mutation operator is basically a single step of DSE: The
path conditions for the considered individual are collected
using DSE, and then one condition is selected randomly.
A new constraint system is created, consisting of the path
conditions that lead to the selected branch, conjoined with
the negation of the selected path condition. This constraint
set is passed to a constraint solver, and a solution to the
constraint system represents a mutated individual which fol-
lows a different execution path than the original individual.
If the constraint solver fails to find a satisfying assignment,
then standard mutation is used as fallback. After determining
the fitness values of the new population, the GA continues
iterating until either a solution has been found or some other
stopping condition is met.

This overcomes the individual problems of search-based
testing and constraint-based testing: Values for constraints a
solver cannot handle are derived evolutionary. For example, for
non-linear constraints or constraints on function calls which
cannot be instrumented DSE traditionally uses randomly cho-
sen concrete values — in our approach, these concrete values
are also used in the constraint system, but they are not just
randomly chosen but optimized by the search. On the other
hand, the search can easily escape local optima or plateaux,
as mutation can change execution paths. Important issues in
search-based testing such as the flag problem or the problem
of nested predicates [1] can easily be overcome, and the
exploration of the state space is boosted.

As an example for the new mutation operator, consider a
test case x = 1024, y = 0, z = 0.0 for our example function
(Figure 1). Regular mutation of this test case might add or



subtract small values to x, y, or z, replace them with random
values, or flip bits in a bitwise representation. To reach the
target branch, these mutation steps would need to gradually
get the y value of the test case closer to 1000. In the case of
32-bit Integers, such a process can take a while — in the case
of a Boolean flag as in the example, such a process might only
succeed by chance. The new mutation operator would take
the path condition x + y > 1024 ∧ ¬(y > 1000), select one
constraint to negate, and derive a new condition to solve such
as x+y > 1024∧y > 1000. A solution to the former constraint
might be x = 0, y = 1024, z = 0.0, which is one branch closer
to the target branch than the original test case. On the third
branch condition, this DSE based mutation operator would fail
just like DSE because of the limitations of constraint solvers,
but the normal mutation operators would still optimize the
value of z towards satisfying the condition, finally reaching
the target branch.

IV. EVALUATION

To evaluate the effectiveness of the hybrid approach, we
have implemented a prototype and evaluated it on a set
of standard benchmark examples, comparing random search
(RA), GA, DSE, and our hybrid approach (GA-DSE) in terms
of achieved coverage.

Our prototype is based on Java PathFinder (JPF [4]). Our
GA implementation uses whole test suite generation [8], where
a chromosome is a set of test cases, and each test case
is a bitvector representing the input parameters. The fitness
function aims to maximize the number of covered branches,
while minimizing the branch distances (see Section II-B) of
all branches in the program. In addition, the fitness function
keeps track of whether a predicate in the source code has been
executed often enough such that all branches can be covered;
i.e., each branch predicate needs to be executed twice.

For DSE, we have implemented a technique to collect path
conditions with JPF similar to the technique implemented in
Symbolic JPF [9]. To solve constraints we used the open
source constraint solver Choco [10]. The exploration strategy
follows the state of the art according to the literature (e.g., [6]):
It starts with a single random test case and iteratively adds new
test cases by negating randomly selected path conditions.

The GA used in the experiments is identical to GA-DSE,
except that the probability of choosing the new mutation
operator is 0%. Random search is implemented by randomly
generating new test cases, and if such a new test case improves
the coverage it is added to the output test suite.

For the evaluation, we ran GA-DSE, the GA, DSE, and
random search on each of a set of 20 case study subjects
taken from the literature (see Table I). For GA-DSE, we set
the probability for choosing traditional vs. the new mutation
operator to 50%. The examples consist mainly of linear
constraints; Gammq, Fisher, Bessj, Expint, and ASW have
constraints involving floating point numbers, as well as some
non-linear constraints involving a square root, logarithm, bit-
operations, and a quadratic function. We chose a limit of
50,000 test executions for the random search, the genetic

TABLE I
BRANCHES AND LINES OF CODE IN THE CASE STUDY SUBJECTS, AND

ACHIEVED COVERAGE USING RA, GA, DSE, AND GA-DSE. HIGHEST
COVERAGE VALUES ARE HIGHLIGHTED WITH BOLD TEXT.

Case Study Branches LOC1 Branch Coverage
RA GA DSE GA-DSE

IntAVLTreeMap [11] 128 330 0.63 0.64 0.94 0.93
BinHeap [12] 162 444 0.73 0.76 0.96 0.96
BinTree [12] 94 201 0.85 0.85 1.00 1.00
FibHeap [12] 210 474 0.89 0.90 0.94 0.94
TreeMap [12] 260 638 0.48 0.54 0.71 0.89
WBS [13] 90 170 0.40 0.53 0.69 0.69
FGS [13] 1096 881 0.39 0.47 0.64 0.66
HeapArray [11] 64 167 0.79 0.81 0.95 0.95
IntRedBlackTree [11] 168 356 0.46 0.49 0.88 0.91
Remainder [14] 24 32 0.93 0.92 0.95 0.96
AVLTree [15] 136 533 0.07 0.30 1.00 1.00
NodeCachingLL [15] 126 382 0.83 0.83 0.97 0.97
SinglyLinkedList [15] 108 181 0.81 0.83 0.94 0.94
TreeSet [15] 158 349 0.38 0.49 0.86 0.89
Fisher [16] 22 54 0.56 0.56 0.44 0.56
Gammq [17] 26 70 0.80 0.80 0.30 0.84
Bessj [17] 28 79 0.72 0.86 0.55 0.96
Expint [17] 30 50 0.58 0.75 0.45 0.96
ASW [13] 98 308 0.85 0.85 0.65 0.85
TCAS [18] 74 98 0.57 0.63 0.69 0.69

Σ / � 3158 5917 0.64 0.69 0.79 0.89

algorithm, and GA-DSE, as well as 50,000 constraint solvings
for DSE. We empirically determined a timeout value of 500ms
for the constraint solver as sufficient for most constraints. The
GA and GA-DSE used a population size of 10 test suites of
each three to five test cases initially. As randomized algorithms
can produce different results in different runs, we repeated
each run 25 times with different random seeds.

Table I lists the achieved average branch coverage values.
The superiority of GA-DSE over random search and the GA
is striking, with GA-DSE achieving higher coverage on all
examples but Fisher and ASW, where it achieves the same
coverage (higher coverage is significant at level 0.05 for 18
cases, measured using a Mann-Whitney U test). Compared
to DSE, for nine out of the 20 examples GA-DSE achieves
significantly higher coverage (significant at level 0.05 using a
Mann-Whitney U test). Little surprising, these nine examples
include the five with floating point numbers. For the remaining
11 examples, both DSE and GA-DSE achieve the same cov-
erage, i.e., there is no statistically significant difference. For
AVLTree and BinTree both achieve 100% coverage, and for the
remaining nine examples it seems that both algorithms cover
all feasible branches, i.e., higher coverage is not possible. On
the whole, this confirms our expectation that by combining GA
with DSE in the GA-DSE algorithm one achieves significantly
higher coverage than its constituents GA and DSE as well as
random testing.

GA-DSE achieves significantly higher branch coverage
than random search, a GA, or DSE.

1LOC stands for non-commenting lines of source code, calculated with
JavaNCSS (http://javancss.codehaus.org/)



V. RELATED WORK

Inkumsah and Xie [3] proposed a combination of an existing
evolutionary testing tool with a DSE tool. In contrast to our
approach, neither of the techniques itself is refined, and the
combination is serial and not alternating like GA-DSE, which
means nested predicates containing problematic constraints
for both search and constraint-solving cannot be overcome.
Lakhotia et al. [2] introduced FloPSy, which extended the DSE
tool PEX to use a search-based approach to solve floating point
constraints. In contrast to our approach it is a combination of
two techniques for a specific setting (floating point constraints)
rather than a general approach. Furthermore, FloPSy performs
the search in order to solve constraints; when constraints are
not available because of native code, then such an approach
cannot help. In addition, FloPSy is an improvement to DSE,
whereas GA-DSE can be seen as a contribution to improve
both search-based as well as constraint-based techniques.

Majumdar and Sen [19] interleaved DSE with random
search. DSE is used to provide an exhaustive local search,
while random search is used to address the state problem and
explore more diverse parts of the state space. In contrast to
GA-DSE, in this combination the search is local, and only one
of the two underlying techniques is used at a time.

VI. CONCLUSIONS

Constraint solving and meta-heuristic search techniques are
both successfully applied to generate test cases, but both ap-
proaches have their advantages and disadvantages. In practice,
this means that while one technique might work well on a
particular problem, it might be inferior on another problem,
and it is difficult to predict how a technique will perform
for a given problem. To overcome this issue, in this paper
we presented a novel combination of evolutionary search and
dynamic symbolic execution: Interpreted from the viewpoint
of a search-algorithm, our solution uses DSE to improve
exploration and to overcome problematic areas in the search
landscape. Interpreted from the viewpoint of DSE, a search-
wrapper controls the DSE exploration and handles those cases
where a constraint solver fails.

Our experiments have shown that the combination achieves
higher coverage than pure search requiring less iterations,
and also same or higher coverage than DSE. If one of the
underlying techniques performs particularly bad, then this can
easily be compensated given enough iterations. At the same
time, the use of search techniques allows us to easily change
the search objective: For example, to generate test cases not
for branch coverage but for other coverage criteria or any other
objective, all that is required is to change the fitness function.
Furthermore, it is easy to integrate secondary objectives such
as the test suite size.
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