
Noname manuscript No.
(will be inserted by the editor)

1600 Faults in 100 Projects: Automatically Finding Faults
While Achieving High Coverage with EvoSuite

Gordon Fraser and Andrea Arcuri

Received: date / Accepted: date

Abstract Automated unit test generation techniques traditionally follow one of two
goals: Either they try to find violations of automated oracles (e.g., assertions, con-
tracts, undeclared exceptions), or they aim to produce representative test suites (e.g.,
satisfying branch coverage) such that a developer can manually add test oracles.
Search-based testing (SBST) has delivered promising results when it comes to achiev-
ing coverage, yet the use in conjunction with automated oracles has hardly been ex-
plored, and is generally hampered as SBST does not scale well when there are too
many testing targets. In this paper we present a search-based approach to handle both
objectives at the same time, implemented in the EVOSUITE tool. An empirical study
applying EVOSUITE on 100 randomly selected open source software projects (the
SF100 corpus) reveals that SBST has the unique advantage of being well suited to
perform both traditional goals at the same time – efficiently triggering faults, while
producing representative test sets for any chosen coverage criterion. In our study,
EVOSUITE detected twice as many failures in terms of undeclared exceptions as a
traditional random testing approach, witnessing thousands of real faults in the 100
open source projects. Two out of every five classes with undeclared exceptions have
actual faults, but these are buried within many failures that are caused by implicit
preconditions. This “noise” can be interpreted as either a call for further research in
improving automated oracles — or to make tools like EVOSUITE an integral part of
software development to enforce clean program interfaces.

Keyword: Search-based testing; automated test generation; test oracles

G. Fraser
Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello
S1 4DP, Sheffield, UK
E-mail: Gordon.Fraser@sheffield.ac.uk

A. Arcuri
Certus Software V&V Center at Simula Research Laboratory,
P.O. Box 134, Lysaker, Norway
E-mail: arcuri@simula.no

2 Gordon Fraser and Andrea Arcuri

1 Introduction

Software testing is an essential but complex task in software development. To support
the developers, automated techniques have been devised that take a program as input
and generate sets of test cases. There are two main usage scenarios of such white-box
test generation techniques: If the developer has provided a partial specification – for
example in terms of assertions in the code, generic descriptions of misbehavior such
as program crashes, or a previous program version – then the aim of test generation
is to find violations of these specifications (e.g., [11, 32, 35]). In this case the specifi-
cations serve as automated oracles during testing. The alternative approach, which is
useful when specifications are not sufficiently available, is to produce a representative
set of test cases that captures the essential behavior of the program. The developer is
then expected to manually add test oracles (e.g., [20, 43]).

Search-based software testing (SBST) has resulted in mature and efficient test
generation tools (e.g., [15, 26, 30]). Most SBST tools take a code coverage criterion
as objective function, and then produce small test sets satisfying the coverage crite-
rion, with the intention that the developer adds test oracles. SBST is often compared
to alternative test generation approaches such as random testing (e.g., [11, 35]) or
dynamic symbolic execution (DSE, e.g., [21, 43]), and the comparison is commonly
based on the achieved code coverage (e.g., [27, 28]). Even though these other tech-
niques can also achieve high coverage, they were designed with the intent to exercise
automated oracles. Yet, the question of how suitable SBST is to exercise automated
oracles remains unanswered.

On one hand SBST executes large numbers of tests and has guidance towards
difficult to reach program states, so one might expect it to be well suited to exercise
automated oracles. On the other hand, traditional SBST simply does not scale up to
the task of optimizing an individual test input for each possible violation of an au-
tomated oracle. However, recent advances in SBST [20] have led to the insight that
optimizing entire test suites towards satisfying a coverage criterion can be advan-
tageous compared to optimizing individual tests. In this paper, we make use of this
insight and optimize test suites towards both goals, i.e., satisfying a coverage criterion
and exercising automated oracles. Experiments with our EVOSUITE prototype on a
representative sample of 100 open source software projects reveal that this approach
is very effective at achieving both goals. Our study shows that two out of every five
classes with failures determined by the most generic automated oracle — program
crashes, or undeclared exceptions in the case of unit testing — actually have real
faults. This implies that there is also a significant amount of false warnings, which
would be very easily avoided if tools like EVOSUITE would be used during software
development from the beginning, forcing developers to properly declare method sig-
natures.

In detail, the contributions of this paper are as follows:

SBST for Automated Oracles: We present an extended fitness function for a Ge-
netic Algorithm in a whole test suite generation setting that optimizes towards
both, code coverage and finding violations of automated oracles, in absence of
specifications.

1600 Faults in 100 Projects 3

class Test {
public int add(ComplexObject c) {
if(c.getValue() == 1024) {
throw new Exception("Bug 1");

}

return c.wrongFunctionCall();
}

}

Fig. 1 Example code: Random testing is unlikely to cover the branch; DSE might struggle to generate a
ComplexObject instance, and when these techniques do not find violations of automated oracles, what does
it mean with respect to functional correctness? SBST, on the other hand, traditionally ignores automated
oracles and only aims to produce representative test sets to which the user can manually add oracles.

Testability Transformation: We present a code transformation that adds program
branches for error conditions, thus providing additional guidance for the test gen-
eration towards violations of automated oracles.

Empirical Study: We present a large empirical study on a representative sample of
open source software, demonstrating the usefulness of SBST in revealing viola-
tions of automated oracles while optimizing towards code coverage.

Failure Analysis: We sample and manually analyze the detected violations, which
allows us to quantify in a statistically representative way how many of the classes
with failures in the case study have real faults, showing that our experiments have
hit thousands of real faults.

This paper is organized as follows: Section 2 gives an overview of the state of
the art in structural unit testing and oracles. Section 3 describes how SBST can be
adapted to address both problems, generating representative test sets for manual ora-
cles, and exercising automated oracles, at the same time. Finally, Section 4 evaluates
the described technique on a large set of classes that together are a representative
sample of open source software.

2 Background

2.1 Unit Test Generation

At a high level, the state of the art in automated structural test generation can be
divided into three main groups: variants of random testing (e.g., Randoop [35]), ap-
proaches based, on constraint solving (e.g., DART [21] and CUTE [39]) and search-
based software testing (e.g., [29]).

2.1.1 Random Testing

Random testing [4,13] is perhaps the simplest form of test generation; it simply con-
sists of randomly calling functions with random inputs. The power of this approach
lies in its simplicity: Because there is virtually no computation effort in choosing suit-
able test inputs, large numbers of test cases can be produced in a short time. A large

4 Gordon Fraser and Andrea Arcuri

number of tests means that the usage scenario assumes the availability of automated
oracles; random testing has been shown to find violations of such automated oracles
(e.g. [32,35]). However, random testing may struggle to cover parts of programs that
are difficult to reach, e.g., because they require specific values.

Consider the example code snippet in Figure 1: Random testing would execute
the code with random input values; if a random test finds a violation of an automated
oracle, then the test case causing this violation can be reported to the user. For ex-
ample, random testing would easily find a NullPointerException by passing null as
parameter to the method add. However, whether the add function is functionally cor-
rect cannot be determined with the automated oracles in the example; asking a user to
determine correctness of hundreds and thousands of random tests is also infeasible.
Furthermore, even the simple branch if(c.getValue() == 1024) would only be covered
with a very low probability during simple random testing.

2.1.2 Dynamic Symbolic Execution

Approaches based on constraint solving use symbolic execution to assign path con-
ditions to program paths, such that solving a path condition results in a test case that
executes the corresponding path. Dynamic symbolic execution (DSE [21]) executes
a program initially with a random value, and the path condition of the path taken by
this input is derived during concrete execution. By negating an individual condition
one can derive a new path condition, such that a solution to this will follow a different
program path than the original path condition. DSE systematically explores all pro-
gram paths by negating individual conditions. Thus, its main objective is to explore
all program paths in order to find violations of automated oracles.

DSE would have no problems in generating integer inputs that satisfy the con-
ditions in the example in Figure 1. Modern DSE tools would also explicitly con-
sider different paths where line 3 results in a NullPointerException and where it does
not. However, DSE might struggle to produce a ComplexObject object in the first
place [44], thus not reaching the throw statement. Furthermore, the number of paths
can quickly become very large, and so the problem of which tests to show the user to
determine functional correctness remains.

DSE tools such as Pex [40] can produce branch coverage test sets as a byproduct
of the exploration, yet other coverage criteria are rarely seen in the literature (e.g.,
modified condition/decision coverage [36]). Consequently, most DSE tools focus on
the task of finding violations of automated oracles, rather than producing efficient test
sets.

2.1.3 Search-based Testing

Search-based approaches [29] require that the objective of the test generation is en-
coded in a fitness function that guides the search. For example, a popular type of
search algorithm is a Genetic Algorithm (GA), where a population of candidate solu-
tions is evolved using operators inspired by natural evolution: Individuals are selected
for reproduction based on their fitness (better individuals have higher probability for

1600 Faults in 100 Projects 5

reproduction), and with a certain probability operators such as crossover and muta-
tion are applied, resulting in new offspring individuals. The algorithm breeds new
generations until a solution is found or a stopping condition (e.g., timeout) is met.

Traditionally, SBST is applied to generate test sets satisfying coverage criteria,
and each coverage goal is represented as a distinct fitness function; test generation is
attempted for one such goal at a time. Yet, SBST traditionally does not make any
use of automated oracles. Indeed, traditional SBST is unlikely to scale up to the
task of deriving a test input for each possible violation of an automated oracle and
for each coverage goal. Thus, in the example in Figure 1, a branch coverage test
set would contain a test case that triggers the exception in line 4 – yet whether a
NullPointerException or other exceptions are included is not prescribed by traditional
coverage criteria like statement or branch coverage.

Consequently, even though the different approaches of random testing, DSE, and
SBST are often compared with each other, they do not target the same usage scenarios
of automated vs. manual test oracles.

Recently, whole test suite generation [20] was introduced as an alternative ap-
proach in SBST, where the optimization objective is to produce a test suite that covers
all coverage goals of a given criterion; individuals of the search are test suites. The
advantage of this is that the feasibility or difficulty of individual coverage goals does
not affect the overall performance. In both cases of SBST, the objective is usually to
produce small sets of tests such that a developer can manually add test oracles.

2.2 Automated Oracles without Specifications

For a given test input, a test oracle describes the correct behaviour as well as the
procedure to compare it to the implemented behaviour. A common solution proposed
by researchers is to use various types of specifications [5] as automated oracles. Yet,
when these are not available, one would face the so called oracle problem in which the
oracles need to be manually added. However, several techniques have been proposed
to find faults in programs even without explicit user input in terms of specifications
or oracles. In the following, we describe these techniques in the context of the Java
programming language. Our discussions will be based on the technical details of this
language, although many concepts apply to other object-oriented languages as well
(e.g., C#).

Some basic assumptions on programs always need to hold, and can always be
used as automated oracles. For example, in general programs should not crash. In the
context of unit testing of classes this means that a class should not throw any unde-
clared exceptions. Random testing has been used to exercise this type of automated
oracle, for example by the JCrasher [11] and Randoop [35] tools.

Like many object-oriented languages, Java uses exceptions to handle errors and
other exceptional conditions. In Java, checked exceptions represent invalid condi-
tions in areas outside the immediate control of the program (e.g., operating system
errors when reading/writing files, network problems), and a method either needs to
handle such exceptions or explicitly declare that such exceptions are passed on (re-
thrown). Unchecked exceptions, on the other hand, are meant to represent defects

6 Gordon Fraser and Andrea Arcuri

in the program, and a method is not expected to handle them; thus, unchecked ex-
ceptions are not declared in the API, unless throwing such exceptions is part of the
expected normal behavior (e.g., checking preconditions). There is dispute on whether
the distinction between checked and unchecked exceptions is useful, but in principle
any observed exception that is not declared represents a failure.

A drawback of using unchecked exceptions as oracles is that this assumes that
the developer explicitly declares all exceptions that a class can throw in normal us-
age (e.g., by using the keyword throws in the method signatures). However, as we will
show in Section 4, developers of open source software fail to provide accurate method
signatures. For example, even though a programmer might not defensively add null
checks on all input parameters, he or she might accept the fact that wrong usage can
lead to NullPointerExceptions. Without declaration, it is difficult to judge automati-
cally whether a concrete NullPointerException represents an error that is of interest,
or just a violation of an implicit precondition. This is a well known problem in soft-
ware testing, and a common solution is to use heuristics to identify “unexpected”
undeclared exceptions (e.g. [11]). Alternatively, we are exploring the possibility to
drive testing through user interfaces to filter out exceptions that violate the implicit
assumptions of the developer [24].

In addition to undeclared exceptions, Randoop [35] can check contracts on the
code, which may be supplied by the user. By default, Randoop implements several
default contracts that are present in the Java language, such as reflexivity of Ob-
ject.equals. All objects in Java extends the type Object, which contains a predefined
set of methods (e.g., equals) with contracts. In the Java language specification, these
contracts are expressed in natural language (i.e., as JavaDoc comments), and classes
that override these methods still need to satisfy their contracts. However, these meth-
ods would represent only a small fraction of the code of the system under test (SUT),
and recent IDEs like Eclipse can generate some of these methods automatically (e.g.,
equals and hashCode).

Some approaches try to infer models of normal behaviour from known execu-
tions, and then assume that deviations from this behaviour are more likely to be
faults [34]. Previous program versions can also serve as automated oracles in re-
gression testing (e.g., [33]): A fault is found if the behavior of a previous version of
the program differs compared to a new version under the same inputs, assuming that
no intentional behavioral change was applied (e.g., a refactoring).

2.3 SBST and Automated Oracles

There has been previous work on applying SBST to a scenario of automated oracles:
By statically selecting possible paths that can lead to memory access violations (Null-
PointerException) [38] it is possible to search for inputs that follow these paths. It is
also possible to represent arithmetic errors such as division by zero faults as branches
in the source code, such that traditional SBST metrics such as the branch distance can
optimize towards these errors [8]. In this paper, we also add new branches to the code
that represent error conditions; however, in real-world software the number of such

1600 Faults in 100 Projects 7

conditions may be so large that it becomes an issue of scalability for the traditional
approach of targeting one branch at a time.

Korel and Al-Yami [25] described an approach that uses search techniques to try
to find violations to assertions in code. Each assertion represents a branch in the byte-
code, and so our approach will automatically try to cover these branches (i.e., try to
make the assertions fail) as well. Tracey et al. [41] presented a search-based approach
to optimize test cases towards raising exceptions in order to exercise exception han-
dling code. The guidance is given through guarding conditions of the statements rais-
ing exceptions. By applying whole test suite optimization, our approach will include
such branches in principle. Our implementation currently only considers branches
directly in the SUT, which means that guarding conditions of exceptions outside the
SUT do not contribute to the search. Including this guidance can be expected to in-
crease the number of exceptions raised in the resulting test suites.

Del Grosso et al. [12] used SBST to exercise statements statically detected as vul-
nerable. By rewarding multiple execution of such vulnerable statements, the search is
led towards filling buffers, likely finding buffer overflows. The testability transforma-
tion for buffer overflows presented in this paper has a similar intention, yet it requires
no static analysis to identify vulnerable statements.

McMinn [31] presented two testability transformations aimed at revealing faults
through automated oracles. Numerical imprecision and roundoff errors are detected
by comparing floating point numbers with higher precision objects that mirror the
same operations. The second transformation consists of adding and removing syn-
chronization statements in order to find race conditions. The fitness function guiding
the search is based on maximising the differences in the output between transformed
and un-transformed version. In contrast, the search used in this paper is only applied
to the SUT, and the search is guided by the program structure (e.g., by using branch
coverage) towards reaching all parts of the program. However, in principle the ora-
cles provided by McMinn’s transformations could also be used in conjunction with
our approach.

Transformations have not only been applied in the context of search: The idea to
check error conditions was first mentioned in 1975 by Lori Clarke [9] in the context
of symbolic execution. Active Property Checking [22] describes the use of explicit
error branches in the path constraints during DSE. By having explicit constraints on
the error conditions, the DSE exploration will try to negate also the error conditions,
such that if there exists an input that leads to the error it will be found. This is also
implemented in other state-of-the-art DSE tools; for example, Pex [40] automatically
adds constraints that check references against null, divisions against zero, etc. Barr
et al. [6] instrument programs with additional branches to find floating point excep-
tions with symbolic execution. These additional constraints are similar to the error
conditions we introduce in the bytecode (see Section 3.2).

8 Gordon Fraser and Andrea Arcuri

Fig. 2 The EVOSUITE Eclipse plugin, where test cases are generated with a click of the mouse.

2.4 The EVOSUITE Tool

As context of our experiment we chose the EVOSUITE [15] tool, which automatically
generates test suites for Java classes, targeting branch coverage and several other
coverage criteria (e.g., weak/strong mutation testing).

The only input EVOSUITE requires is the bytecode of the SUT and its dependen-
cies. EVOSUITE automatically determines class dependencies, and generates a JUnit
test suite for the SUT. For practitioners, a typical usage of EVOSUITE is through its
Eclipse plugin, where they can simply right-click on a class to automatically gen-
erate unit tests (an example can be seen in Figure 2). For experiments, EVOSUITE
can be used through a simple command line interface that just requires a correct
classpath and the name of the target class (SUT). This level of automation was essen-
tial for the large experiment described in this paper, as the effort to manually adapt
tools to case study subjects is often prohibitive. For example, popular tools like Java
PathFinder [42] require manually written drivers for the SUT when used to generate
test cases. Manually writing drivers would not be a viable option for empirical studies
involving thousands of classes (as it is done in this paper).

EVOSUITE is a mature research prototype and has been successfully applied to a
range of different systems [18]. It is well suited for the experiments in this paper as it
has been studied in detail with regard to its parameters (e.g., [3, 16, 17, 20, 23]). For
more details on the tool and its abilities we refer to [15], and for more implementation
details we refer to [19]. The results of a recent competition on unit test generation

1600 Faults in 100 Projects 9

tools [7] won by EVOSUITE1 also demonstrates that it is indeed one of the most
advanced unit test generation tools and is thus well suited for our experiments.

3 Search-based Testing for Coverage and Automated Oracles

Traditionally, SBST derives coverage-based test sets. There is an overlooked oppor-
tunity here: During the exploration of the search-space, the search can come across
violations of automated oracles. In this section we consider how to apply SBST to
exercise automated oracles while generating test suites for coverage.

3.1 Fitness Function for Automated Oracles

The fitness function is at the core of any search-based technique. In SBST, the fitness
function usually encodes an individual coverage goal, a coverage criterion, or an in-
dividual error condition. An alternative if offered by whole test suite generation [20],
where test suites are optimized with respect to entire coverage criteria. Here, we
present an extended fitness function for whole test suite generation that can be used
in conjunction with a regular fitness function that targets code coverage.

As a baseline fitness function to drive exploration, we will use branch coverage in
this paper, although any other coverage criterion could be used instead. The branch
coverage fitness function is based on the branch distance, which estimates how close
a branch was to evaluating to true or to false. For example, if we have the branch
x == 17, and a concrete test case where x has the value 10, then the branch distance
to make this branch true would be 17− 10 = 7, while the branch distance to making
this branch false is 0 (i.e., it already is false).

Let dmin(b,T) be the minimal branch distance of branch b for all executions of b
on test suite T , then we define the distance d(b,T) as follows:

d(b,T) =

0 if the branch was covered,

ν(dmin(b,T)) if the predicate has been
executed at least twice,

1 otherwise.

Each branching statement needs to be executed twice to avoid the search oscillating
between the two values of the branch [20] (i.e., otherwise optimizing a predicate
towards evaluating to true might remove the case where the false branch is covered)
. ν is a normalization function [1] in the range [0,1]. This leads to the following
(minimizing) fitness function for branch coverage:

covf(T) = |M | − |MT |+
∑
b∈B

d(b,T) .

1 The other participating tools were t2 and DSC, as well as Randoop as a baseline. Tools were evaluated
based on achieved code coverage, mutation score and execution time (linearly combined in a single score).

10 Gordon Fraser and Andrea Arcuri

Here, B is the set of all branches in the class under test, M is the set of all methods
in such class, while MT is the subset of methods executed by T . The difference
|M | − |MT | is used to reward the execution of methods in the SUT that have no
conditional expressions.

In addition to this baseline fitness function, we also keep track of the unique
number of exceptions in the SUT that are not caught in the public methods called
within a test suite T . We consider as “unique” the pair of exception type (i.e., its class,
as for example java.lang.NullPointerException) and the SUT public method in which
it was observed (note that the exception could have been thrown in internal private
methods but propagate up to public methods). We only keep track of exceptions that
are not declared in the signature of the SUT methods. For example, if a method’s
signature allows throwing of null pointer exceptions, then such exceptions will not
be counted in the fitness function.

We also make the distinction between implicit and explicit exceptions. We define
an explicit exception any exception that is directly thrown in the code with the key-
word throw; all others are implicit exceptions. For example, consider the following
snippet of code:

public int foo(int x) {
if(x > 100)
throw new InvalidArgumentException();

return 1/x;
}

Here, the InvalidArgumentException is thrown explicitly if the input x is greater than
100, but if x equals 0 then the division 1/x will lead to an implicit DivisionByZe-
roException. Making such a distinction is important for filtering heuristics, as un-
caught explicit exceptions are likely just violated undefined preconditions. A typical
example is the unchecked exception IllegalArgumentException: A software developer
could directly “throw” it in a method if the input is not valid (i.e., violated precondi-
tion), but as long as it is not included in the signature of the method it would not be
considered normal behavior. By making the distinction between implicit and explicit
exceptions, if we find a test case that throws a (possibly uninteresting) explicit excep-
tion of type A, then successive test cases that find implicit exceptions of same type A
in that method (possibly related to real faults) would be kept in the test suite and not
discarded.

Given ne the number of unique thrown explicit exceptions, and ni the number of
implicit ones, the fitness function to minimize is:

fitness(T) =
1

1 + ne + ni
+ covf(T) .

Note that ne + ni does not necessarily represent the number of faults in the SUT.
As long as the execution of the test cases in T share even a single line of SUT code
(e.g., calling the same constructor), it could be that all the ne + ni failures are the
manifestation of a single fault in the SUT. This can only be determined through man-
ual verification. Thus, although the final goal for a software developer is to fix faults
in the SUT, it is still important to have a fitness function that rewards the number of

1600 Faults in 100 Projects 11

failures in the SUT, as long as the failures are different (e.g., different types and/or
thrown in different methods). The reason is that they can provide useful extra in-
formation for debugging. For example, it is not uncommon that different types of
exception thrown in the same SUT might actually be due to different faults (e.g., a
null pointer in a method and an array out of bound in another method).

During evolutionary selection, if two individuals (i.e., test suites) have the same
fitness, then the smaller one gets higher chances to reproduce. This is done to avoid
too large test suites and bloat problems [16].

3.2 Testability Transformation

The fitness function presented in the previous section rewards the number of viola-
tions of automated oracles that are found. However, it does not provide any guidance
towards maximizing them, except by achieving that all branches in the program are
executed (if the underlying coverage criterion is branch coverage). As seen above, a
common type of guidance offered in SBST is through branch distance estimation.

To apply the existing techniques to different target criteria, a common approach
is to transform these other criteria to branch coverage problems. This has for exam-
ple been done for division by zero errors [8] or null pointer exceptions [38]. In the
following, we describe several transformations implemented in the EVOSUITE tool;
some transformations are similar to the additional constraints that are added to DSE
when applying Active Property Checking [22] (division by zero, array bounds, null
pointer dereference). The transformations are implemented at the bytecode level, but
for illustration purposes we show the semantically equivalent source code versions.
Besides those transformation already present in the literature, several novel, addi-
tional test objectives are explicitly included in the program code in terms of new
branch instructions. Note that these transformations can be therefore used by any
testing tool, not just EVOSUITE.

3.2.1 Array access transformation

Managed languages such as Java and C# do not suffer from buffer overruns, but ac-
cessing an array outside of its dimensions will lead to an exception. These exceptions
can be explicitly formulated as follows:

void test(int x) {

if(x < 0)

throw new NegativeArraySizeException();

if(x >= foo.length)

throw new ArrayIndexOutOfBoundsException();

foo[x] = 0;
}

These additional branches explicitly guide the search towards accessing the lower
and upper boundary of an array, ultimately rewarding a violation. Note that the same
transformation on an unmanaged language (e.g., C) would be suitable to detect buffer
overruns, e.g., in strings.

12 Gordon Fraser and Andrea Arcuri

3.2.2 Division by zero transformation

Numerical divisions are not defined for 0-divisors and lead to exceptions or undefined
behavior. Checking the divisor against zero offers appropriate guidance for the search,
and can be represented as an explicit branch as follows:

void test(int x) {

if(x == 0)

throw new ArithmeticException();

int y = z / x;
}

The divisor can of course be an arbitrarily complex expression. However, at the
bytecode level at the point of the division instruction it is resolved to a number, and
the instrumentation simply checks this concrete value. In other words, using testabil-
ity transformations at bytecode level relieves us from handling possible side-effects
in the evaluation of the divisor.

3.2.3 Numerical overflow transformation

Numerical overflows and underflows are easy to miss and can cause unexpected be-
havior. The details of how an over/underflow is reached depends on the arithmetic
operator in use. For simplicity, our instrumentation therefore calls an external helper
function that determines whether there is an over/underflow:

void test(int x) {

if(checkOverflow(z, x, ADD) < 0)

// report overflow

if(checkUnderflow(z, x, ADD) < 0)

// report underflow

int y = z + x;
}

The distance calculation rules for overflows are given in Table 1; the rules for
underflows are defined analogously but omitted here for space reasons. This set of
rules is necessary to avoid overflow errors during the calculation of the overflow
distances2. The checkOverflow function added in the instrumented branches first de-
termines if there was an overflow or an underflow (e.g., an overflow can only be the
case under the conditions in Table 1 that have an entry for distance to non-overflow,
and in that case are determined by checking if the result of the operation is negative).
If there is an over/underflow the value returned by checkOverflow equals the negated
absolute value of the amount of the overrun, such that the search has guidance to-
wards finding a case where there is no overflow. If there is no overflow, then there are
different levels of guidance. The function s scales values in the range [0,P] as fol-
lows: s(x) = P × x

x+1 . The value P is a constant, for example Integer.MAX VALUE

2 An alternative would be to resort to data structures that can cope with larger number ranges (e.g.,
BigDecimal in Java), but this would lead to a significant performance drop.

1600 Faults in 100 Projects 13

Table 1 Overflow checking rules

Operation Condition Distance to Distance to
Non-Overflow Overflow

a + b a ≥ 0 ∧ b ≥ 0 a + b P − s(a + b)
a + b a < 0 ∧ b < 0 - P + s(|a|+ |b|)
a + b a ≥ 0 ∧ b < 0 - P + s(|b|)
a + b a < 0 ∧ b ≥ 0 - P + s(|a|)
a− b a ≥ 0 ∧ b ≤ 0 a− b P − s(a− b)
a− b a < 0 ∧ b > 0 - P + s(|a|+ |b|)
a− b a ≥ 0 ∧ b > 0 - P + s(b)
a− b a < 0 ∧ b ≤ 0 - P + s(|a|)
a× b a > 0 ∧ b > 0 a× b P − s(a× b)
a× b a < 0 ∧ b < 0 a× b P − s(a× b)
a× b a > 0 ∧ b < 0 - P + s(|b|)
a× b a < 0 ∧ b > 0 - P + s(|a|)
a× b a = 0 ∨ b = 0 - P
a / b a = MIN ∧ b = −1 -1 s(| −MIN− a|)

+s(| − 1− b|)

/2, such that the maximum value returned by s(x) is P , and thus the maximum value
returned by the overflow checking rules in Table 1 is P +P = Integer.MAX VALUE.

For example, if the operation is an addition, then both operands need to be larger
than 0 for an overflow to happen. Thus, if one of the operands is smaller than 0, then
the distance guides towards increasing this operand until it is greater than 0. If both
operands are negative, the search guides both operands towards becoming greater
than 0. Finally, if both operands are greater than zero but there is no overflow, the
distance returned is smaller than in the previous cases (achieved through the constant
value P), and the value is smaller the closer the sum is to an overflow. In Java, an
over- or underflow is silently ignored, so one can choose a custom way to report them
(e.g., a custom exception).

3.2.4 Reference access transformation

A NullPointerException happens whenever a method invocation or a field access on
a null reference is attempted. The transformation therefore inserts null-checks before
every single method invocation or field access as follows:

void test(Foo x) {

if(x == null)

throw new NullPointerException();

Foo.bar();
}

This transformation is important to distinguish between different ways in which
a null pointer exception is thrown in the SUT, as every single method invocation
becomes a target that EVOSUITE will try to cover.

14 Gordon Fraser and Andrea Arcuri

Table 2 Contracts used in EVOSUITE

AS Assertion [35] No AssertionError is raised
Es Equals self [35] a.equals(a) = true
EH Equals hash code [35] a.equals(b) → a.hashCode() =

b.hashCode()
EN Equals null [35] a.equals(null) = false
ES Equals symmetric [35] a.equals(b) = b.equals(a)
HN HashCode returns normally [35] a.hashCode() does not throw an excep-

tion
JCE Unexpected exception [11] Method throws no undeclared exception

that is unexpected based on JCrasher’s
heuristic

NPE Null pointer [35] No NullPointerException is raised on a
method that received only non-null argu-
ments

TSN ToString returns normally [35] a.toString() does not throw an exception
UE Undeclared exception Method throws no undeclared exception

3.2.5 Class cast transformation

A class cast leads to an exception at runtime if the concrete type of the object to
be casted does not match the expected cast type. Consequently, the transformation
consists of an explicit branch before each cast as follows:

void test(Foo x) {

if(!(x instanceOf Bar))

throw new ClassCastException();

Bar y = (Bar)x;
}

3.2.6 Overhead

All the transformations describe in this section add an overhead in the execution of
the test cases. Given the same amount of testing budget, then such transformations
could lead to fewer fitness evaluations, and so maybe even decrease the efficacy of the
testing tool. In such a context, when different algorithms and variants are compared,
is hence important to use as stopping condition the same amount of time (e.g., two
minutes per search), and not a fixed number of fitness evaluations.

3.3 Generic API Contracts

The fitness function and testability transformation discussed so far address automated
oracles in terms of undeclared exceptions. However, even in absence of a specification
it is sometimes possible to have programming language specific properties that have
to hold on all programs. For example, the Java language specification describes some
general contracts that have to hold on all Java classes. These API contracts were used,
for example, in the Randoop [35] test generator. In the original Randoop experiments
several failures were identified using these contracts.

1600 Faults in 100 Projects 15

Table 2 lists the standard API contracts that can be checked on Java classes, and
that area implemented in EVOSUITE. In a random testing tool like Randoop [35],
these contracts are checked after each statement for every possible object. In contrast,
EVOSUITE is a unit testing tool, and so the contracts only need to be checked on
instances of the SUT and not all objects in a test. Contracts are checked after every
executed statement.

4 Evaluation

To determine how well SBST performs with respect to automated oracles, we con-
ducted a set of experiments on a representative sample of open source software. In
these experiments we used two types of generic, program independent automated
oracles: Undeclared exceptions, and generic object contracts. We aim to answer the
following research questions:

RQ1: What type and how many undeclared exceptions can be found with SBST
in open source software?

RQ2: Does search-based testing detect more exceptions than random search?
RQ3: How does the testability transformation affect the search in terms of cov-

erage and exceptions found?
RQ4: What type and how many contract violations can be found with SBST in

open source software?
RQ5: What is the overhead of checking contracts during the search?
RQ6: How many real faults does EVOSUITE find in SF100 through violations

of object contracts and assertions?
RQ7: How many real faults does EVOSUITE find in SF100 through undeclared

exceptions?

4.1 Experimental Setup

To answer our research questions, we carried out an extensive empirical analysis us-
ing the EVOSUITE tool on the SF100 corpus as case study [18]. SF100 is a collection
of 100 Java projects randomly selected from SourceForge, which is one of the largest
repositories of open source projects on the web. In total, SF100 consists of 8,844
classes3 with more than 290 thousand bytecode level branches. The use of a large
case study that was selected in an unbiased manner is a pre-requisite for an empirical
study aiming to achieve sound results of practical importance; in contrast, a small
hand-picked case study would only show feasibility of the proposed techniques.

The testability transformation described in Section 3.2 adds an overhead in the
execution of test cases. On average, it adds 141 new branches per class in SF100.
Given a fixed testing budget, this could lead to fewer fitness evaluations, and so maybe
even decrease the overall performance. We therefore used a fixed time as stopping
condition rather than a fixed number of fitness evaluations.

3 Note that we used the 1.01 version of SF100. The original version in [18] had 8,784 classes, but more
classes became available once we fixed some classpath issues (e.g., missing jars) in some of the projects.

16 Gordon Fraser and Andrea Arcuri

EVOSUITE was configured to run for two minutes on each class, using a popu-
lation size of 50, maximum test length of 20 statements, and the default parameters
determined during a study on parameter tuning [3]. Furthermore, EVOSUITE was
run using a custom security manager which was configured to deny most permission
requests. This is necessary to avoid programs to interact with their environment in
undesired ways (e.g., programs might create or delete files randomly).

EVOSUITE was run with six different configurations: We compared the basic ver-
sion of EVOSUITE with and without the testability transformation, and we used ran-
dom search as sanity check. We further considered these configurations with contract
checking activated (more details will be provided in the following sections). Each
configuration was run on each of the 8,844 classes in SF100. Each run was repeated
13 times with different seeds to take the randomness of the algorithm into account. In
total, EVOSUITE was run 6×13×8,844 = 689,832 times. Considering a two minute
timeout, the study took (689,832× 2)/(60× 24) = 958 days of computational time.

All data resulting from this empirical study were analyzed using statistical meth-
ods following the guidelines in [2]. In particular, we used the Vargha-Delaney Â12

effect size and Wilcoxon-Mann-Whitney U-test. This test is used when algorithms
(e.g., result data sets X and Y) are compared on single classes (in R this is done with
wilcox.test(X,Y)). We also used this test to check on the entire case study if effect
sizes are symmetric around 0.5. On some classes, an algorithm can be better than
another one (i.e., Â12 > 0.5), but on other classes it can be worse (i.e., Â12 < 0.5).
A test for symmetry (in R this is done with wilcox.test(Z,mu = 0.5), where for
example Z contains 8844 effect sizes, one per class in SF100) determines if there
are as many classes in which we get better results as there are classes in which we get
worse results. Note that this test makes sense if and only if the case study is a valid
statistical sample (as it is the case for the SF100 corpus). Otherwise, on hand-picked
case studies, the bias in their selection (e.g., proportion of different application types)
would make this type of analysis hard to interpret.

All the experiments were run on a cluster which has 80 nodes, each with eight
computing cores and eight gigabytes of memory running a Linux operating system.
The use of a cluster was necessary due to the large number of experiments. For ex-
ample, repeating each experiment several times is necessary to take into account the
randomness of the algorithm. However, this is different from a normal usage scenario
of EVOSUITE, in which for example a software engineer using EVOSUITE, on the
software he is developing, would just need to run it once per class.

4.2 Undeclared Exceptions

To answer RQ1, we checked what kind of failures were found in all 689,832 runs of
EVOSUITE. In particular, we checked all exceptions thrown in the SUT that propa-
gated to the test case (i.e., they were not caught in the SUT). We found 187 different
types of exceptions in 6,376 different classes out of the 8,844 in SF100. In total,
32,594 distinct exceptions were found in different methods. For reasons of space,
Table 3 only shows the 10 most frequent ones.

1600 Faults in 100 Projects 17

Table 3 Top 10 exceptions out of 187, ordered by how many classes they appeared as failures in. We also
counted the number of distinct SUT public methods in which those exceptions were not caught.

Name Classes Methods

java.lang.NullPointerException 4,250 14,891
java.lang.IllegalArgumentException 2,241 4,468
java.lang.NoClassDefFoundError 1,047 2,015
java.lang.ClassCastException 800 1,749
java.lang.ArrayIndexOutOfBoundsException 574 1,794
java.lang.ArithmeticException 567 1,175
java.lang.ExceptionInInitializerError 480 562
java.awt.HeadlessException 312 500
java.lang.StackOverflowError 230 491
java.lang.NegativeArraySizeException 220 558

RQ1: In our experiments, EVOSUITE found 187 types of exceptions in 6,376
different classes of SF100, for a total of 32,594 distinct pairs of exception and

method.

There are several interesting things to point out here: During our experiments,
EVOSUITE was configured to run tests using a custom security manager to ensure
that tests do not interact with their environment in undesired ways. Without this,
tests created by EVOSUITE might for example create random files, or change and
delete existing files. However, often file access is already attempted in the static con-
structor of a class (e.g., to set up a logger, to load font files, etc.) When using the
custom security manager, this class initialization will thus fail, leading to NoClassD-
efFoundErrors or ExceptionInInitializerErrors. We mainly observed this behavior for
GUI components, which additionally also often failed because EVOSUITE runs test
using Java’s “Headless Mode”, which can potentially lead to HeadlessExceptions.
Tuning the security manager and simulating the environment are planned for future
work and will remove these types of exceptions. For the time being, however, it is nec-
essary to run tests with the security manager as is, because running code randomly
downloaded from SourceForge could otherwise have unforeseen consequences.

The most common exceptions are NullPointerException and IllegalArgumentEx-
ception. As discussed previously, these exception types likely include failures that are
of less interest to the developer as they are based on implicit preconditions. ClassCas-
tExceptions may be caused directly by inputs or by faults: Java type erasure removes
type information when using Java Generics, such that to EVOSUITE the signature
looks like it takes objects of type Object; improved type support is planned as fu-
ture work for EVOSUITE. If these parameters are cast to concrete classes, this may
be a source of ClassCastExceptions. Instances of ArrayIndexOutOfBoundsException
and of NegativeArraySizeException may represent actual faults, or they may again be
violations of implicit preconditions, if the array index is directly determined by the
test input. Finally, instances of ArithmeticException and StackOverflowError usually
represent faults (e.g., division by zero or infinite loops).

18 Gordon Fraser and Andrea Arcuri

Table 4 Branch coverage and number of distinct implicit exception types/classes that resulted in distinct
failures (e.g., in different methods). For example, if there are two null pointer exceptions for the same
method and two array out of bound exceptions in two distinct methods, then it would result in two types/-
classes and and three exceptions (the two null pointers would count just as a single exception, as they are
thrown in the same method), i.e. “# Types” equal to two, and “# Exc.” equal to three. The number of times
in which the same exception type was thrown by different methods in the SUT (i.e., the “# Exc.” column)
is used to calculate Â12 effect sizes compared to the base version GA. All values are averaged per class.
We counted how often the other two configurations led to worse (Â12 < 0.5), equivalent (Â12 = 0.5)
and better (Â12 > 0.5) results compared to GA. Values in brackets are for the comparisons that are
statistically significant at α = 0.05 level; p-values are of the test for Â12 symmetry around 0.5.

Name Cov. # Types # Exc. Worse Eq. Better Â12 p-value

GA 0.59 0.72 1.60 - - - - -
Random 0.53 0.56 0.82 3,013 (2,144) 5,435 396 (50) 0.40 <0.001
TT 0.60 0.77 1.64 1,341 (180) 5,986 1,517 (399) 0.51 <0.001

4.3 SBST vs. Random Testing

As sanity check to see what the effect of the guided search is, we compared the
results produced by the GA with random search. The employed random search is
closely related to state-of-the-art tools (e.g., [11,35]), but also aims to optimize a test
suite with respect to the fitness function as follows: Randomly generate one test case
at a time. If the test case improves fitness (i.e., code coverage or thrown exceptions)
of the current test suite (which is initially empty), then store it in the test suite. Keep
generating test cases while there is still enough testing budget (i.e., until timeout).

Table 4 shows the results of the analyses. This data includes all undeclared ex-
ceptions, but only the implicit ones (recall the definition and motivation given in Sec-
tion 3.1). Comparing GA to Random, the guidance increases not only coverage but
also the number of found exceptions with strong statistical significance, from which
we can conclude that the use of SBST to exercise automated oracles makes sense.

RQ2: EVOSUITE outperforms random search significantly in terms of coverage
and at finding failures.

4.4 Testability Transformation

To evaluate the effects of the testability transformation, we compare the performance
of the default version of EVOSUITE (which we call GA in this paper) with a variant
using testability transformation (TT). Comparisons are based on the ability to trigger
failures in the SUT.

Table 4 shows that on average TT finds 1.64/0.82 = 2 times more failures than
Random search. On the other hand, the testability transformation does not adversely
affect the achieved branch coverage; in fact it is even slightly higher than that pro-
duced by GA. This demonstrates that whole test suite optimization is not affected by
the number of coverage goals or whether they are infeasible [20] (the transformation
may add new infeasible branches, for example by adding a division by zero check for

1600 Faults in 100 Projects 19

a value that cannot become 0). We can offer several conjectures regarding the slight
increase: EVOSUITE by default uses null with only a low probability, while explicit
error branches will reward the use of null, and the increased use of null might in turn
lead to higher coverage. The additional error branches may also create gradients in
plateaus such that random walks are avoided, and the transformation might also lead
to larger test suites.

Considering the detected failures, Table 4 shows that TT achieves, on average,
a very small increase, albeit statistically significant. Although there are 180 cases
in which it provides statistically worse results, there are more than twice (i.e., 399)
the number of cases in which it provides better results. Consequently, we can safely
conclude that the testability transformation can be beneficial and should be used by
default.

There are several reasons why the effect size is not larger: First of all, the ability
to reveal additional failures depends on the existence of faults in the SUT in the first
place. Second, the search budget of two minutes we used in our experiments may in
many cases not be enough to guide the search towards exceptions related to arithmetic
operations or array accesses. Finally, the effect size is shadowed by the sheer number
and typology of classes (e.g., GUI components, TCP/UDP connectors) contained in
the SF100 corpus that current automated unit testing technologies do not efficiently
handle yet.

RQ3: The testability transformation reveals additional failures but does not
negatively affect coverage.

4.5 Checking API Contracts

So far we have evaluated the performance in terms of all undeclared exceptions. Pre-
vious work on testing automated oracles further attempted to filter these exceptions
using heuristics [11] or contracts [35]. As the Java programs in SF100 do not include
well defined contracts (e.g., like the Eiffel programs used for the AutoTest experi-
ments [32]) we were not able to evaluate how SBST performs with such contracts.
However, there are default-API contracts as discussed in Section 3.3.

To reduce the number of contract violations that need to be inspected we report
the numbers of unique contract violations, based on the heuristic described in the
Randoop paper [35]: Two violations of the same contract are considered to be in the
same equivalence partition if they followed after the same method call (or call to a
constructor or assignment to a field).

We ran all three configurations (Random, GA, TT) on all classes again 13 times
with contract checking enabled. Table 5 lists statistics on the violated contracts, av-
eraged per class. Table 6 lists the numbers of unique violations observed. The largest
share of contract violations is related to undeclared exceptions. Compared to the to-
tal number of undeclared exceptions (UE) the JCrasher heuristic (JCE) reduces the
number of reported violations significantly, but the number is still very high. Almost
half of the undeclared exceptions are NullPointerExceptions, even after filtering using
Randoop’s heuristic (NPE).

20 Gordon Fraser and Andrea Arcuri

Table 5 Average contract violations per class. Effect size Â12 is calculated on number of violations
compared to GA; p-values are of the test for Â12 symmetry around 0.5.

Name Types Violations Â12 p-value

GA 7.20 15,656 - -
Random 6.69 8,974 0.35 0.000
TT 7.28 17,698 0.54 0.000

Table 6 Number of classes that exhibited a contract violation.

Name AS Es EH EN ES HN JCE NPE TSN UE

GA 69 14 156 0 8 0 5,068 2,662 236 6,352
Random 64 16 159 0 9 0 4,938 2,575 214 6,336
TT 71 15 149 0 9 0 5,192 2,654 233 6,440

There were no violations of the equals-null (EN) and hashcode-returns-normally
(HN) contracts, but all other contracts found violations. ToString lead to exceptions
in a number of cases (TSN), and in most cases these are NullPointerExceptions. The
violations of Es, EH, ES all point to actual faults.

Comparing the results between the different techniques, we see that the GA leads
to more contract violations than random testing with a high statistical significance.
The testability transformation does increase the number of detected violations with
statistical significance, although interpreted over the large number of classes in SF100
the effect size is of course only small.

RQ4: In our experiments, the majority of contract
violations are related to exceptions. We found

violations of all contracts but EN and HN.

Checking oracles incurs a computational overhead, which may reduce the number
of test cases that can be evaluated given a fixed amount of time. To study whether
such an overhead is negligible or not, we compared the GA configuration with and
without contract checking. We calculate how many statements the two configurations
could execute during each run (recall, each run was stopped after two minutes). On
average on the entire case study, GA executed 34,489 statements per class when not
checking contracts, whereas checking contracts decreased this to 30,518, i.e., 13%
difference. To take into account the randomness of EVOSUITE (different runs will
lead to different number of executed statements), for each class we also calculated
the Â12 effect sizes on the executed statements. On average, we obtained a “small”
effect size Â12 = 0.47, where a test on symmetry around 0.5 gave a p-value close to
zero.

RQ5: On average, checking contracts
results in a 13% execution overhead.

1600 Faults in 100 Projects 21

4.6 Real Faults due to Assertions and Object Contracts

The majority of failures found by EVOSUITE are due to undeclared exceptions. As
described in Section 2.2, an undeclared exception is not necessarily an indication
of an important bug — it may simply be a violation of a precondition that was not
specified. Note that the problem of implicit preconditions is not specific to SBST,
as it is independent of the test generation technique. For example, in a recent study
we observed the same problem in Randoop’s output [24]: Not a single of the 112
failures on a simple address book application was due to a real fault, but all were
caused because Randoop violated the implicit precondition that there can only be one
instance of an address book in that application.

There are, however, some cases in which it is possible to be completely sure
if a failing test case is due to a real fault: Those are when contracts on the Object
methods are violated and when assert statements in the code are evaluated as false
(and therefore throw an error that propagates to the test case).

The use of assertions in the code does not seem to be very common in Java, at
least as far as open source software is concerned. For example, in the 8,844 classes
of SF100, only 38 have at least one assert statement, for a total of 89 assertions.
However, EVOSUITE was able to generate test cases for which 71 of these assertions
were violated, thus pointing to real faults in those SUTs.

It could be argued that, in some cases, a violated assertion is not necessarily repre-
senting a real fault. This could happen if the are implicit pre-conditions and those are
violated. Although it is a common practice to do not specify method pre-conditions, it
is also true that, once you spend effort to define either a post-condition or an invariant
with an assert statement, it could sound strange to leave the pre-conditions unde-
fined/implicit. In such cases, the fact that the pre-conditions are left implicit could be
considered as real faults that need to be fixed.

Besides assertion violations, the generic object contracts that are guaranteed to
represent faults are equals self, equals hash code, equals null, and equals symmetric.
Furthermore, as neither the method Object.hashCode nor Object.toString declares
to throw any exceptions, we can also consider violations of the hashCode returns
normally, and toString returns normally contracts as real faults. Considering Table 6,
EVOSUITE thus found a total of 477 real faults in SF100.

RQ6: EVOSUITE found at least 477 real faults
in SF100, not considering undeclared exceptions.

4.7 Qualitative Analysis of Undeclared Exceptions

We observed that the majority of violations found are related to undeclared excep-
tions, even if considering heuristics to reduce the number of undeclared exceptions
counted (see Table 6, columns JCE and NPE). To see how many of the undeclared ex-
ceptions found by EVOSUITE are due to actual bugs, we randomly selected 20 classes
that resulted in uncaught exceptions. We manually analyzed these classes to see if the
failures were indeed symptoms of real faults. As expected considering Table 3, the

22 Gordon Fraser and Andrea Arcuri

majority of exceptions were instances of NullPointerExceptions and of IllegalArgu-
mentExceptions.

All cases of IllegalArgumentException were due to a missing throws declara-
tion, i.e., they were violations of implicit preconditions, not actual faults in the SUT.
However, one cannot simply discard these exceptions, as they might be symptoms
of actual faults. For example, if method A in the SUT calls another method B with
wrong input due to a fault in A, then that second method B might correctly throw
an exception (e.g., in the signature of B we have throws IllegalArgumentException),
which might propagate to the caller of A. Among the 20 analyzed classes, there was
also a case of a user defined exception that was used exactly like a customized Ille-
galArgumentException.

The NullPointerExceptions were raised due to several different conditions. The
simplest case is when, given an object obj as input parameter, the SUT calls a method
on it resulting in an exception if the input is null. This is why Randoop, for exam-
ple, ignores NullPointerExceptions if a method parameter was null. A more complex
example is when a method is called on obj that returns another object, which might
be null and so the SUT throws a NullPointerException if calling any method on it.
Another case we found in our manual evaluation is when a SUT constructor is called
that leaves some of the internal fields equal to null. Successive calls on the instanti-
ated SUT could so result in exceptions even if they do not take anything as input. The
last case we encountered is when the SUT directly accesses a static object in another
class which is not initialized yet (i.e., default value null). In general, all these Null-
PointerExceptions seem violations of implicit preconditions, and not really critical
faults.

Among the manually evaluated test cases, there was an interesting case of a Stack-
OverflowError. A tree-like data structure had a method traversing all of its children.
However, it was possible to insert in that tree a reference of itself, leading to an in-
finite recursion when that method was called (and so a StackOverflowError after a
while).

In another case, a method required an Object as input, which was cast to a par-
ticular class. Calling such method with a different type of class instance as input
led to a ClassCastException. Another case of ClassCastException is due to a cur-
rent limitation of EVOSUITE related to type erasure: On a method taking as input
ArrayList<String>, EVOSUITE can give as input an ArrayList with undefined type,
containing instances that are not of type String. Note, the test case still compiles.

The last type of exception we encountered were two cases of ArrayIndexOutOf-
BoundsException. In one, an internal array was accessed directly with set/get methods
that had no checks on input indexes. The other case was more complex: A method
took two different objects (A, B) as input. Inside the method, a function on A was
called that returned an index that was used as input to a method called on B, which
accessed an internal array in B.

1600 Faults in 100 Projects 23

4.8 Statistical Analysis of Undeclared Exceptions

Out of the 20 classes with failures manually analyzed in the previous section, eight
have actual faults (at least one), i.e., 8/20 = 40% of them. Because those 20 classes
were randomly selected among the 6,376 with failures, we can estimate how many of
these 6,376 classes have at least one actual fault.

It would be incorrect to state that for sure 40% of those classes (i.e., 2,550) have
real faults, as that 40% value is only an estimate based on 20 observations. There
could be two extreme cases: there are only eight classes with faults out of the 6,376,
or all but 20− 8 = 12 classes have faults. Those cases, although extremely unlikely,
are still a possibility (the reader interested in the exact probability of these events is
referred to [14], as this problem is an instance of the classical urn problem). There-
fore, when estimating how many faults there are in total based on a smaller sample,
it is important to quantify the reliability of the estimate.

4.8.1 Determining confidence intervals

If we call ρ the probability that a class chosen uniformly at random (with replace-
ment) from these 6,376 has at least one real fault, then ρ could be anything between
8/6,376 = 0.00125 and (6,376 − 12)/6,376 = 0.998 (considering that the eight
classes with faults were all different, e.g., none counted twice), where ρ = 0.4 is the
most likely estimate based on the 20 observations. Because whether a class has at
least one fault or not is a binary decision, such process follows a binomial distribu-
tion [14], where ρ is the probability parameter.

For the binomial distribution, given an observed number x of “successes” (e.g.,
sampling a class with faults) out of n samples (e.g., n = 20), the probability of
success is estimated with ρ = x/n. For this parameter ρ, it is possible to provide
confidence intervals at any level 1−α. A confidence interval CI = [a,b] for ρ means
that there is a 1 − α probability that the real ρ∗ is within that interval. Many statis-
tical toolkits provide functions for calculating confidence intervals for the parame-
ters of the binomial distribution. For example, in R [37], one can use the function
binom.confint(x,n,1− α,methods=’exact’).

If we want to create a 95% confidence interval (i.e., α = 0.05) for the estimate
ρ = 0.4, we obtain CI = [0.191, 0.639]. In other words, there is a 95% chance that
the actual ρ value is between 19% and 64%, where 40% is the most likely estimate. In
this scenario, it is important to stress out that the total number of elementsN = 6,376
from which we sample the n = 20 classes to manually evaluate is simply irrelevant
to the accuracy of the estimate ρ, only of course as long as n < N (if n ≥ N then
there would be no point to sample at random).

How many n classes should be sampled and manually evaluated? It all depends
on which research questions we are trying to answer. The higher the value n, the
better the estimate ρ will be, i.e., the interval [a,b] will be smaller. Conversely, as-
suming the same sample size as discussed above (i.e., keep n as a constant), if one
wants higher confidence (e.g., 99%), then the confidence interval will be larger (i.e.,
[0.145, 0.700]). On the other hand, if one does not need such a high confidence, and
for example is already satisfied with a 50% level, then the confidence interval would

24 Gordon Fraser and Andrea Arcuri

be [0.307, 0.500]. What is the confidence level 1− α one should aim at? The higher
the better, but that goes in contrast to the fact that such analysis of the n samples is
manual, and so there are practical constraints.

To make the discussion regarding n and α accessible also for readers less familiar
with statistics, let us make a (simplified) example in which binomial distributions are
widely used: electoral polls. Assume a small village in which N = 6,376 citizens
have the right to vote, and we are interested if candidate A is going to win the race to
mayor of the village against a second candidate B. Out of N citizens, it is possible to
select n = 20 at random from them, and ask them if they are going to vote for A (re-
call, this is a simplified example, as we do not want to deal with details such as people
lying, not wanting to answer, etc.). Out of these n = 20 citizens, eight are going to
support candidate A, i.e., the 40% of them. Based on this poll, can we state that can-
didate A is going to lose or win the election with “high confidence”? If we translate
“high confidence” into α = 0.05 (which is a somehow arbitrary decision widely used
in the literature based on properties of the normal distribution [10]), then there would
be no conclusive answer considering the confidence interval [0.191, 0.639]. This is
because, on one hand, the lower bound 0.19 is lower than 50% (and so cannot be sure
of his victory) and, on the other hand, the upper bound is above 50% (and so cannot
be sure of his defeat). If one wants to answer those questions without lowering the
confidence level 1 − α, there is no other choice than increasing n till either a > 0.5
or b < 0.5. However, if rather than a candidate we consider a political party, and we
want to know if it will receive at least 10% of the votes (e.g., if 10% is the minimum
to obtain a seat in the council), then n = 20 is already enough to answer “yes” even
at higher confidence level 99%, as 0.145 > 0.1.

4.8.2 Results

In our context, we are mainly interested to find out if the techniques described in this
paper are of practical value for practitioners releasing open source software. Consid-
ering a 95% confidence interval, it means that ρ∗ ≥ 0.19, and so there are at least
1,217 real faults automatically discovered through undeclared exceptions by EVO-
SUITE in SF100 by a simple click of the mouse (EVOSUITE only needs the bytecode
of the SUT as input, and nothing more than that). The value 1,217 is a lower bound,
as ρ∗ could be as high as 0.63 (and so 4,074 faults) and each class may contain more
than one fault (note, we do not consider this latter case, as it is not necessary to
calculate lower bounds and would increase the complexity of the math involved).

The gap between 0.19 and 0.63 is quite large (i.e., a 0.44 difference). If one
wanted to have a more precise estimate for ρ∗, and not just a good enough lower
bound, how many more n classes would we have to manually evaluate? If, for the
sake of discussion, ρ∗ was indeed 0.4, then for example a n = 30 sample size would
lead to a confidence interval [0.226, 0.593] (so a 0.37 difference). Using a sample
size as big as n = 100 would get a closer confidence interval [0.303, 0.502], but
still not particularly tight (i.e., a 0.2 difference). One would need a sample size as
large as n = 400 to get a confidence interval where the difference between upper and
lower bound is lower than 10%, i.e., [0.351, 0.449]. Considering the large sample size
needed to get tight bounds, and considering the high cost of manually evaluating each

1600 Faults in 100 Projects 25

single failure, to answer the research questions in this paper there was no compelling
reason to consider more than a n = 20 sample size.

RQ7: In our experiments, considering a 95% confidence level, EVOSUITE found
between 1,217 and 4,074 classes with real faults leading to undeclared exceptions.

4.9 Libraries vs. Applications

In our experiments, EVOSUITE found at least 477 + 1,217 = 1,694 faults in SF100
using simple automated oracles. This is a surprisingly high number, considering that
SF100 includes publicly available and released software. One important observation
is that in the literature unit testing is often evaluated on open source libraries (e.g.,
[20]), but the projects sampled for SF100 are mainly applications.

In an application, there is usually a single entry point, and all classes are somehow
directly or indirectly called from this entry point. For example, if entry class A calls
public methods in class B, then only a subset of possible valid inputs will be ever
called on B. For example, it could be possible that A will never call B with a null
value. In contrast, in unit testing it is possible to call all public methods in class B,
which could lead to finding unit level failures that would be impossible to have at
system level (cf. [24]).

For a library, these failures are critical faults, but for an application they would be
less important. They would still be important for maintainability reasons — even if
an application works fine in the current version, if it has failures at unit level, it will
be more difficult for developers to modify those classes in the future (e.g., to fix bugs
or add new features), especially when there is no documentation but the code itself.

4.10 Threats to Validity

Threats to internal validity might come from how the empirical study was carried
out. To reduce the probability of having faults in our testing framework, it has been
carefully tested (e.g., more than 2,000 unit and system tests). But it is well known
that testing alone cannot prove the absence of defects. Furthermore, randomized al-
gorithms are affected by chance. To cope with this problem, we ran each experiment
13 times, and we followed rigorous statistical procedures to evaluate their results.

To cope with possible threats to external validity, the SF100 corpus was em-
ployed as case study, which is a collection of 100 Java projects randomly selected
from SourceForge [18]. In contrast to hand-picked case studies, the use of the SF100
corpus provides high confidence in the possibility to generalize our results to other
open source software as well.

At this point, we need to point out that the fault triggering results ρ on SF100
(recall Section 4.8.2) do not directly extend to all the (roughly) 50 thousand Java
projects hosted on SourceForge, even though SF100 is a statically valid sample of
100 projects sampled at random. The reason is that, although these 100 projects are a
valid sample of projects on SourceForge, their classes are NOT a valid sample of all

26 Gordon Fraser and Andrea Arcuri

the classes contained in all the projects hosted on SourceForge. On one hand, when
sampling projects at random, a project containing only one class would have the same
chances of being selected as a project composed of thousands of classes. On the other
hand, if one does sample 8,844 classes at random from all the available ones, it would
be very unlikely that any of those 8,844 classes belong to a small project. As the size
of a project might (or might not) be strongly correlated to the probability of its classes
having faults that EVOSUITE can find, such a generalization of the results is currently
not justified.

Why is SF100 composed of the classes of 100 projects selected at random instead
of for example sampling 10,000 classes directly from all the projects? The reason is
of practical nature. Downloading and compiling projects from SourceForge requires
a significant amount of manual labor, as different projects use different technologies
(if any) for building the jar files (e.g., Ant and Maven) and set up scripts with the
correct classpath of the required third-party libraries. And, even if it was possible to
collect and prepare all the (possibly millions of) classes in SourceForge, it likely will
be several gigabytes (if not terabytes) of data, which would be difficult (if possible
at all) to handle for research purposes in academic contexts (i.e., limited computa-
tional resources). Note that, even if one samples a small subset of classes as SUTs
for experimentation, still all the dependent classes would need to be available on the
classpath.

In this paper, we evaluated testing algorithms based on their ability of triggering
failures. This, however, all depends on whether there are faults in the case study in
the first place. On one hand, on poorly written software full of faults even random
testing can be very effective, and in those cases more sophisticated tools would not
achieve better results. On the other hand, if a project follows an appropriate verifica-
tion and validation process (e.g., if the developers use test driven development and
commit their changes only when all tests pass), then we would not expect many faults
in any particular revision version, especially the trivial faults. The faults in the SF100
corpus represent faults that slipped in real-world open source projects, after the de-
velopers made a commit (all projects were using a software versioning and revision
control system, and for each project we only used a single revision version). How-
ever, a tool like EVOSUITE can also be used while engineers develop software, i.e.,
between code commits. But the type of faults that are introduced and fixed in those
cases will not end up in any code repository. To study this important kind of faults,
controlled empirical studies in industry would be necessary.

The faults found by EVOSUITE are related to triggered exceptions and violations
of assertions/oracles. This does not include all possible kinds of faults, like for exam-
ple resource leaks and deadlocks. However, during software development, automated
unit testing can be used together with other techniques, like for example static analy-
sis (e.g., a popular static analysis tool for Java is FindBugs4).

In this paper, we only used EVOSUITE and did not compare to other tools. This
has several reasons: First, fair tool comparisons always pose challenges. EVOSUITE
aims at being of practical use for software engineers, which means it has to be fully
automated and applicable on real-world software, like for example the SF100 cor-

4 http://findbugs.sourceforge.net, accessed July 2013.

1600 Faults in 100 Projects 27

pus (including GUI elements, multi-threading, read/delete of files, opening of TCP
sockets, etc). Comparing with tools that require the user to write test drivers manu-
ally would not only be difficult, but would be comparing tools with different usage
scenarios. Second, we are aware of no other Java tool that can be automatically and
safely applied to SF100. Extending existing tools to apply to SF100 is not just a mat-
ter of adding a security manager, as there are many details to consider (see [19] for
more discussions on some of the technical challenges involved). Finally, comparing
to tools for other programming languages is not possible for the chosen case study.
However, the SF100 corpus is freely available, and it will allow tool comparisons in
the future when other Java tools are mature enough to handle SF100. However, as
discussed in Section 2.4 and demonstrated by past comparisons (e.g., the SBST 2013
tool competition), EVOSUITE is representative of the state of the art.

5 Conclusions

Search-based Software Testing (SBST) is a test generation approach that boasts many
advantages — it supports many different coverage criteria, can optimize tests towards
non-functional criteria (e.g., execution time), and it can be applied to many different
test representations (test data, sequences of method calls, GUI event sequences, etc.).
However, to date it was not clear how well SBST would perform at the task of exer-
cising automated oracles, and how best to apply it in this context. In this paper, we
have presented an extension of SBST and a large empirical study that demonstrates
that SBST is able to exercise automated oracles and to produce high coverage test
suites at the same time. In our experiments, EVOSUITE found 32,594 distinct failures
in 8,844 classes, which can be attributed to at least 1,694 real faults. At the same
time, EVOSUITE produced minimized test suites achieving an average bytecode level
branch coverage of 60% (which is a good number considering the difficulties such as
environmental dependencies contained in SF100 [18]).

To improve the approach further, we have described a testability transformation.
This transformation can be used by any SBST tool, not just EVOSUITE, and in many
cases the testability transformation helped to trigger more failures. However, several
of the branches introduced in this transformation offer only coarse guidance, e.g., a
reference either is null or it is not null, but our fitness function does not yet offer
guidance towards making the reference null. Future work will consider turning this
into more fine grained guidance, which will help detecting more faults.

A large share of failures reported are due to undeclared exceptions, but many of
these are simply violations of missing preconditions. For example, developers tend to
ignore declaring exceptions such as NullPointerExceptions in the method signatures
when method preconditions are violated. Technically speaking, these are still faults,
but this kind of unit level fault may not directly manifest to the users of the devel-
oped application. As such, they might be of less interest for the software engineers
(especially when software is developed in tight time/budget constraints).

There are two directions to address this issue in the future. First, there is a need
for better techniques to filter out such “false warnings”, e.g., using heuristics [11,
35]) or by driving test generation through user interfaces [24]. Once reliable false

28 Gordon Fraser and Andrea Arcuri

warning detectors are available, prioritization techniques could be used to sort the
generated test suites, such that test cases that are failing due to actual critical faults
are shown first. Second, to improve usability, it is conceivable that the output of a
tool like EVOSUITE should not be just a set of test cases, but also annotations in
an editor (e.g., markers in the Eclipse editor as used for compiler warnings). For
example, methods for which EVOSUITE finds test cases throwing exceptions could
be highlighted, and refactoring tools (e.g., developed as Eclipse plug-ins) could give
the option to automatically add the needed throws declaration if the failures were
deemed to be just violations of implicit pre-conditions. The programs used in our
experiments were developed without such tools. Having such tools at hand would
lead to software where false warnings are never a problem.

For more information about EVOSUITE and the SF100 corpus of classes, please
visit our website at:

http://www.evosuite.org/

Acknowledgements

This project has been funded by a Google Focused Research Award on “Test Ampli-
fication” and the Norwegian Research Council.

References

1. Arcuri, A.: It really does matter how you normalize the branch distance in search-based software
testing. Software Testing, Verification and Reliability (STVR) 23(2), 119–147 (2013)

2. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing randomized algorithms
in software engineering. Software Testing, Verification and Reliability (STVR) (2012). DOI:
10.1002/stvr.1486

3. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investigation in search-
based software engineering. Empirical Software Engineering (EMSE) pp. 1–30 (2013). DOI:
10.1007/s10664-013-9249-9

4. Arcuri, A., Iqbal, M.Z., Briand, L.: Random testing: Theoretical results and practical implications.
IEEE Transactions on Software Engineering (TSE) 38(2), 258–277 (2012)

5. Baresi, L., Young, M.: Test oracles. Technical Report CIS-TR-01-02, University of Oregon, Dept. of
Computer and Information Science, Eugene, Oregon, USA (2001). http://www.cs.uoregon.
edu/˜michal/pubs/oracles.html

6. Barr, E., Vo, T., le, V., Su, Z.: Automatic detection of floating-point exceptions. In: Proceedings of
the International Conference on Principles of Programming Languages (POPL’13). ACM (2013)

7. Bauersfeld, S., Vos, T., Lakhotiay, K., Poulding, S., Condori, N.: Unit testing tool competition. In:
International Workshop on Search-Based Software Testing (SBST) (2013)

8. Bhattacharya, N., Sakti, A., Antoniol, G., Guéhéneuc, Y.G., Pesant, G.: Divide-by-zero exception
raising via branch coverage. In: Proceedings of the Third international conference on Search based
software engineering, SSBSE’11, pp. 204–218. Springer-Verlag, Berlin, Heidelberg (2011)

9. Clarke, L.A.: A system to generate test data and symbolically execute programs. IEEE Transactions
on Software Engineering (TSE) 2(3), 215–222 (1976)

10. Cowles, M., Davis, C.: On the origins of the .05 level of statistical significance. American Psycholo-
gist 37(5), 553–558 (1982)

11. Csallner, C., Smaragdakis, Y.: JCrasher: an automatic robustness tester for Java. Softw. Pract. Exper.
34, 1025–1050 (2004). DOI 10.1002/spe.602

12. Del Grosso, C., Antoniol, G., Merlo, E., Galinier, P.: Detecting buffer overflow via automatic test
input data generation. Comput. Oper. Res. 35(10), 3125–3143 (2008)

http://www.cs.uoregon.edu/~michal/pubs/oracles.html
http://www.cs.uoregon.edu/~michal/pubs/oracles.html

1600 Faults in 100 Projects 29

13. Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEE Transactions on Software Engi-
neering (TSE) 10(4), 438–444 (1984)

14. Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. 1, 3 edn. Wiley (1968)
15. Fraser, G., Arcuri, A.: EvoSuite: Automatic test suite generation for object-oriented software. In:

ACM Symposium on the Foundations of Software Engineering (FSE), pp. 416–419 (2011)
16. Fraser, G., Arcuri, A.: It is not the length that matters, it is how you control it. In: IEEE International

Conference on Software Testing, Verification and Validation (ICST), pp. 150 – 159 (2011)
17. Fraser, G., Arcuri, A.: The seed is strong: Seeding strategies in search-based software testing. In:

IEEE International Conference on Software Testing, Verification and Validation (ICST), pp. 121–130
(2012)

18. Fraser, G., Arcuri, A.: Sound empirical evidence in software testing. In: ACM/IEEE International
Conference on Software Engineering (ICSE), pp. 178–188 (2012)

19. Fraser, G., Arcuri, A.: EvoSuite: On the challenges of test case generation in the real world (tool
paper). In: IEEE International Conference on Software Testing, Verification and Validation (ICST)
(2013)

20. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software Engineering 39(2),
276–291 (2013)

21. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In: ACM Conference
on Programming language design and implementation (PLDI), pp. 213–223 (2005)

22. Godefroid, P., Levin, M.Y., Molnar, D.A.: Active property checking. In: Proceedings of the 8th ACM
international conference on Embedded software, EMSOFT ’08, pp. 207–216. ACM, New York, NY,
USA (2008)

23. Gordon Fraser, A.A., McMinn., P.: Test suite generation with memetic algorithms. In: Genetic and
Evolutionary Computation Conference (GECCO) (2013)

24. Gross, F., Fraser, G., Zeller, A.: Search-based system testing: High coverage, no false alarms. In:
ACM Int. Symposium on Software Testing and Analysis (ISSTA) (2012)

25. Korel, B., Al-Yami, A.M.: Assertion-oriented automated test data generation. In: Proceedings of the
18th international conference on Software engineering, ICSE ’96, pp. 71–80. IEEE Computer Society,
Washington, DC, USA (1996)

26. Lakhotia, K., Harman, M., Gross, H.: AUSTIN: A tool for Search Based Software Testing for the
C Language and its Evaluation on Deployed Automotive Systems. In: International Symposium on
Search Based Software Engineering (SSBSE), pp. 101–110 (2010)

27. Lakhotia, K., McMinn, P., Harman, M.: An empirical investigation into branch coverage for c pro-
grams using cute and austin. J. Syst. Softw. 83(12) (2010)

28. Malburg, J., Fraser., G.: Combining search-based and constraint-based testing. In: IEEE/ACM Int.
Conference on Automated Software Engineering (ASE) (2011)

29. McMinn, P.: Search-based software test data generation: A survey. Software Testing, Verification and
Reliability 14(2), 105–156 (2004)

30. McMinn, P.: Iguana: Input generation using automated novel algorithms. a plug and play research
tool. Tech. rep., The University of Sheffield (2007)

31. McMinn, P.: Search-based failure discovery using testability transformations to generate pseudo-
oracles. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation,
Genetic and Evolutionary Computation Conference (GECCO), pp. 1689–1696. ACM, New York,
NY, USA (2009)

32. Meyer, B., Ciupa, I., Leitner, A., Liu, L.L.: Automatic testing of object-oriented software. In: Pro-
ceedings of the 33rd conference on Current Trends in Theory and Practice of Computer Science,
SOFSEM ’07, pp. 114–129. Springer-Verlag, Berlin, Heidelberg (2007)

33. Orso, A., Xie, T.: Bert: Behavioral regression testing. In: Proceedings of the 2008 international work-
shop on dynamic analysis: held in conjunction with the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2008), WODA ’08, pp. 36–42. ACM, New York, NY, USA
(2008). DOI 10.1145/1401827.1401835

34. Pacheco, C., Ernst, M.D.: Eclat: Automatic generation and classification of test inputs. In: ECOOP
2005 — Object-Oriented Programming, 19th European Conference, pp. 504–527 (2005)

35. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test generation. In:
ACM/IEEE International Conference on Software Engineering (ICSE), pp. 75–84 (2007)

36. Pandita, R., Xie, T., Tillmann, N., de Halleux, J.: Guided test generation for coverage criteria. In:
IEEE International Conference on Software Maintenance (ICSM), pp. 1–10 (2010)

30 Gordon Fraser and Andrea Arcuri

37. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria (2008). URL http://www.R-project.org. ISBN
3-900051-07-0

38. Romano, D., Di Penta, M., Antoniol, G.: An approach for search based testing of null pointer ex-
ceptions. In: Proceedings of the 2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation, ICST ’11, pp. 160–169. IEEE Computer Society, Washington, DC, USA
(2011)

39. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: ESEC/FSE-13:
Proc. of the 10th European Software Engineering Conf. held jointly with 13th ACM SIGSOFT Int.
Symposium on Foundations of Software Engineering, pp. 263–272. ACM (2005)

40. Tillmann, N., de Halleux, N.J.: Pex — white box test generation for .NET. In: International Confer-
ence on Tests And Proofs (TAP), pp. 134–253 (2008)

41. Tracey, N., Clark, J., Mander, K., McDermid, J.: Automated test-data generation for exception condi-
tions. Softw. Pract. Exper. 30(1), 61–79 (2000)

42. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with Java PathFinder. ACM SIGSOFT
Software Engineering Notes 29(4), 97–107 (2004)

43. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation of path tests by
combining static and dynamic analysis. In: EDCC’05: Proceedings ot the 5th European Dependable
Computing Conference, LNCS, vol. 3463, pp. 281–292. Springer (2005)

44. Xiao, X., Xie, T., Tillmann, N., de Halleux, J.: Precise identification of problems for structural test
generation. In: Proceeding of the 33rd International Conference on Software Engineering, ICSE ’11,
pp. 611–620. ACM, New York, NY, USA (2011)

http://www.R-project.org

	Introduction
	Background
	Unit Test Generation
	Random Testing
	Dynamic Symbolic Execution
	Search-based Testing

	Automated Oracles without Specifications
	SBST and Automated Oracles
	The EvoSuite Tool

	Search-based Testing for Coverage and Automated Oracles
	Fitness Function for Automated Oracles
	Testability Transformation
	Array access transformation
	Division by zero transformation
	Numerical overflow transformation
	Reference access transformation
	Class cast transformation
	Overhead

	Generic API Contracts

	Evaluation
	Experimental Setup
	Undeclared Exceptions
	SBST vs. Random Testing
	Testability Transformation
	Checking API Contracts
	Real Faults due to Assertions and Object Contracts
	Qualitative Analysis of Undeclared Exceptions
	Statistical Analysis of Undeclared Exceptions
	Determining confidence intervals
	Results

	Libraries vs. Applications
	Threats to Validity

	Conclusions

