
EvoSuite at the Second
Unit Testing Tool Competition

Gordon Fraser1 and Andrea Arcuri2

1 University of Sheffield
Dep. of Computer Science, Sheffield, UK

gordon.fraser@sheffield.ac.uk,
2 Simula Research Laboratory

P.O. Box 134, 1325 Lysaker, Norway
arcuri@simula.no

Abstract. EvoSuite is a mature research prototype implementing a
search-based approach to unit test generation for Java classes. It has been
successfully run on a variety of different Java projects in the past, and
after winning the first instance of the unit testing tool competition at
SBST’13, it has also taken part in the second run. This paper reports on
the obstacles and challenges encountered during the latter competition.

Keywords: automated unit testing, search-based testing, competition

1 Introduction

The EvoSuite test generation tool is a mature research prototype that auto-
matically generates unit test suites for given Java classes. The first experiments
with EvoSuite were reported in [3], and it has since been applied to a range
of different projects and domains [4, 9], leading to various improvements over
time. In the first unit test competition organised at the SBST’13 workshop [2],
EvoSuite obtained the highest score among the participating tools [8].

Besides the obvious research challenge of achieving high coverage, the chal-
lenges in building a tool like EvoSuite often lie in practical issues imposed by
the Java language, and the nature of real code. For example, often the structure
of code is trivial in terms of the complexity of the branching conditions, yet
difficult for a testing tool as the code has complex environmental dependencies,
such as files and databases [5]. These findings are once more confirmed by the
results of the second unit testing tool competition. In this paper, we analyze the
major obstacles EvoSuite encountered in this second competition by focusing
on classes where the coverage is particularly low.

2 About EvoSuite

EvoSuite is a tool that automatically produces unit test suites for Java classes
with the aim to maximize code coverage. As input it requires only the bytecode

2 Gordon Fraser and Andrea Arcuri

Prerequisites

Static or dynamic Dynamic testing at the Java class
level

Software Type Java classes

Lifecycle phase Unit testing for Java programs

Environment All Java development environments

Knowledge required JUnit unit testing for Java

Experience required Basic unit testing knowledge

Input and Output of the tool

Input Bytecode of the target class and de-
pendencies

Output JUnit test cases (version 3 or 4)

Operation

Interaction Through the command line

User guidance manual verification of assertions for
functional faults

Source of information http://www.evosuite.org

Maturity Mature research prototype, under
development

Technology behind the tool Search-based testing / whole test
suite generation

Obtaining the tool and information

License GNU General Public License V3

Cost Open source

Support None

Empirical evidence about the tool

Effectiveness and Scalability See [4, 9].

Table 1. Description of EvoSuite

of the class under test as well as its dependencies. This is provided automatically
when using the Eclipse-frontend to interact with EvoSuite, and on the command-
line it amounts to setting a classpath and specifying the target class name as a
command-line parameter.

EvoSuite applies a search-based approach, where a genetic algorithm opti-
mizes whole test suites towards a chosen target criterion (e.g., branch coverage by
default). The advantage of this approach is that it is not negatively affected by
infeasible goals and its performance does not depend on the order in which testing
goals are considered, as has been demonstrated in the past [9]. To increase the
performance further, EvoSuite integrates dynamic symbolic execution (DSE)
in a hybrid approach [11], where primitive values (e.g., numbers or strings) are

EvoSuite at the Second Unit Testing Tool Competition 3

optimized using a constraint solver. However, due to the experimental nature of
this feature it was not activated during the competition.

The search-based optimization in EvoSuite results in a set of sequences of
method calls that maximizes coverage, yet these sequences are not yet usable as
unit test cases — at least not for human consumption. In order to make it easier
to understand and use the test cases produced, EvoSuite applies a range of post-
processing steps to produce sets of small and concise unit tests. The final step of
this post-processing consists of adding test assertions, i.e., statements that check
the outcome of the test. As EvoSuite only requires the bytecode as input and
such bytecode often does not include formal specifications, the assertions produced
will reflect observed behavior, rather than the intended behavior. Consequently,
the test cases are intended either as regression tests, or serve as starting point
for a human tester, who can manually revise the assertions in order to determine
failures [10]. However, EvoSuite is also able to automatically detect certain
classes of bugs which are independent of a specification; for example, undeclared
exceptions or violations of assertions in the code [6].

Table 1 describes EvoSuite in terms of the template used in the unit testing
tool competition.

3 Configuration for the Competition Entry

Even though several new features have been developed for EvoSuite (e.g.,
DSE integration [11]) since the last competition, we did not include any for the
competition entry, as the risk of reducing the score due to immature code would
be too high. One notable new feature we did include because it is now enabled by
default is support for Java Generics [7]. Besides this, the version of EvoSuite
used in the competition is largely the same as in the first round in terms of
features, yet has seen many revisions to fix individual problems or bugs.

We used the same configuration as for the first unit testing competition
without any changes. This means that EvoSuite was configured to optimize
for weak mutation testing, with three minutes time for the search per class.
Minimization was deactivated to reduce the test generation time, and EvoSuite
was configured to include all possible assertions in the tests (rather than the
default of minimizing the assertions using mutation analysis [10]). For all other
parameters, EvoSuite was configured to its default parameter settings [1].

4 Results and Problems

Coverage results achieved by EvoSuite are listed in Table 2. On the 63 classes
of the benchmark used in the competition, EvoSuite produced an average
instruction coverage of 59.9%, average branch coverage of 48.63%, and average
mutation score of 43.8%. These results are in line with our expectations based
on recent experimentation [4].

For each class it produced on average 12.3 test cases. For the entire benchmark
of 63 classes, EvoSuite took on average 4 hours for test generation, which means

4 Gordon Fraser and Andrea Arcuri

No. Class Project LOC NBD Time (min) Coverage
Gen Exec Instr. Branch Mutation

1 SearchException Hibernate 15 1 3.23 0.00 0.00 0.00 0.00
2 Version Hibernate 12 1 3.74 0.01 60.00 0.00 0.00
3 BackendFactory Hibernate 72 2 4.53 0.02 27.71 6.25 40.95
4 FlushLuceneWork Hibernate 26 2 3.22 0.03 89.74 100.00 75.00
5 OptimizeLuceneWork Hibernate 26 2 3.22 0.03 89.74 100.00 75.00
6 LoggerFactory Hibernate 14 1 7.75 0.01 17.41 0.00 0.00
7 LoggerHelper Hibernate 17 1 3.73 0.01 87.50 0.00 33.33
8 OAuthConfig Scribe 63 3 3.21 0.05 91.14 100.00 100.00
9 OAuthRequest Scribe 36 2 3.15 0.03 100.00 100.00 80.00
10 ParameterList Scribe 95 3 3.19 0.06 99.60 96.83 81.99
11 Request Scribe 213 2 3.19 0.11 64.45 40.91 37.21
12 Response Scribe 72 2 3.14 0.01 1.77 0.00 0.00
13 Token Scribe 64 2 3.17 0.08 100.00 94.64 90.91
14 Verifier Scribe 15 1 3.13 0.01 100.00 0.00 50.00
15 ExceptionDiagnosis Twitter4j 73 4 3.27 0.07 98.30 91.27 60.00
16 GeoQuery Twitter4j 126 2 3.30 0.18 100.00 95.83 81.86
17 OEmbedRequest Twitter4j 147 2 3.30 0.17 95.47 88.36 57.14
18 Paging Twitter4j 171 3 3.24 0.14 93.91 91.27 68.76
19 TwitterBaseImpl Twitter4j 328 5 6.73 0.04 9.16 6.16 3.54
20 TwitterException Twitter4j 237 4 3.40 0.24 78.15 70.12 17.56
21 TwitterImpl Twitter4j 1187 3 2.75 0.06 1.11 3.90 0.36
22 AsyncHttpClient Async Http Client 296 5 9.02 0.00 0.00 0.00 0.00
23 AsyncHttpClientConfig Async Http Client 621 2 8.71 0.11 39.76 27.62 32.34
24 FluentCaseInsensitiveStringsMap Async Http Client 292 4 3.35 0.24 74.62 67.25 68.69
25 FluentStringsMap Async Http Client 240 4 3.31 0.24 72.77 67.11 65.95
26 Realm Async Http Client 481 3 3.43 0.28 92.98 64.65 70.09
27 RequestBuilderBase Async Http Client 544 6 8.59 0.09 23.76 21.31 16.83
28 SimpleAsyncHttpClient Async Http Client 610 3 2.70 0.00 0.00 0.00 0.00
29 AttributeHelper GData Java Client 344 4 3.45 0.22 85.90 80.49 59.07
30 DateTime GData Java Client 264 5 3.30 0.19 78.97 67.55 56.59
31 Kind GData Java Client 189 5 3.36 0.06 53.31 43.83 46.27
32 Link GData Java Client 190 4 3.79 0.17 62.98 59.46 36.43
33 OtherContent GData Java Client 179 4 4.37 0.09 46.85 37.01 36.07
34 OutOfLineContent GData Java Client 102 4 4.13 0.15 83.55 81.12 67.26
35 Source GData Java Client 324 4 3.47 0.23 42.59 30.84 33.04
36 CharMatcher Guava 824 4 6.96 0.07 70.86 65.00 47.73
37 Joiner Guava 222 3 3.30 0.09 84.40 90.06 77.20
38 Objects Guava 130 4 3.24 0.12 96.20 79.37 96.14
39 Predicates Guava 379 3 3.31 0.13 36.99 19.35 22.63
40 SmallCharMatcher Guava 92 4 3.22 0.02 55.77 30.77 26.79
41 Splitter Guava 266 4 3.24 0.11 93.74 87.91 82.89
42 Suppliers Guava 172 4 3.18 0.04 30.03 21.43 27.60
43 CategoryDescendantsIterator JWPL 103 4 3.18 0.01 8.24 0.00 0.00
44 CycleHandler JWPL 71 4 3.09 0.01 21.41 20.71 27.73
45 Page JWPL 351 4 2.81 0.01 0.64 2.00 1.90
46 PageIterator JWPL 182 7 3.14 0.05 46.55 40.82 34.23
47 PageQueryIterable JWPL 131 3 2.62 0.03 14.93 7.31 0.00
48 Title JWPL 79 2 3.16 0.03 76.01 76.79 92.86
49 WikipediaInfo JWPL 222 6 3.19 0.07 10.78 10.29 12.58
50 AbstractLoader eclipse-cs 77 3 3.30 0.01 77.00 50.00 18.57
51 AnnotationUtility eclipse-cs 78 4 3.24 0.10 58.11 54.29 46.75
52 AutomaticBean eclipse-cs 178 4 4.45 0.02 49.45 29.59 13.29
53 FileContents eclipse-cs 161 4 3.35 0.10 59.57 53.30 50.29
54 FileText eclipse-cs 184 4 3.43 0.09 48.53 45.60 55.93
55 ScopeUtils eclipse-cs 189 4 6.15 0.04 48.73 33.29 10.07
56 Utils eclipse-cs 160 4 3.49 0.13 55.75 78.02 65.31
57 AbstractInstance JMLL 136 2 3.69 0.08 87.06 67.86 68.08
58 Complex JMLL 53 1 3.18 0.08 100.00 0.00 47.93
59 DefaultDataset JMLL 152 3 3.30 0.10 95.04 97.14 60.60
60 DenseInstance JMLL 155 3 4.07 0.15 98.84 98.66 76.73
61 Fold JMLL 201 2 3.26 0.16 87.56 82.86 80.36
62 SparseInstance JMLL 191 3 3.32 0.16 98.17 87.50 72.90
63 ARFFHandler JMLL 51 6 3.15 0.01 0.00 0.00 0.00

Table 2. EvoSuite results on the benchmark classes

that EvoSuite spent an additional 51 seconds per class on the up-front analysis
of the classpath as well as the post-processing after the search.

In the following discussion, we focus on some interesting cases where EvoSuite
achieved no or very little (< 2%) coverage or mutation score.

Trivial classes: Class 1 (SearchException) is a trivial class with only 15
lines of code, and it seems surprising that EvoSuite achieved 0% coverage here.
The reason for this bad result is that the class consists of four constructors
that do nothing but calling the constructor of the superclass, and as a result
there are no statements for which EvoSuite produced any mutants, and there

EvoSuite at the Second Unit Testing Tool Competition 5

are no branching instructions. While the standard branch coverage criterion in
EvoSuite also enforces that each method is executed at least once, the weak
mutation testing criterion we used in the competition did not do so at the time
of the competition, and so EvoSuite produced no tests.

Classpath dependent behavior: Class 2 (Version) is another trivial class,
yet the reason for the bad result do not lie in EvoSuite, but rather the frontend of
EvoSuite we built to interface with the competition infrastructure. When setting
up the classpath for EvoSuite, our competition frontend unnecessarily included
the source directory of the unit under test in the classpath. In the competition
setup there are compiled versions of the classes in the source directory as well
as a dedicated target path; unfortunately, they differ: Method getVersionString
returns “[WORKING]” in the class in the source directory, whereas the deployed
version of the class is changed to return “[0.4.4-SNAPSHOT]”. As EvoSuite’s
assertions were expecting “[WORKING]”, resulting tests failed and were not
considered for mutation analysis.

Nondeterministic code: Class 30 (DateTime) makes use of the current
system time, such that automatically generated assertions may refer to the time of
test execution. If this happens, then the tests will fail, and will not be considered
for mutation analysis. This is a known issue, and EvoSuite overcomes it by
using bytecode instrumentation that replaces nondeterministic calls. However, as
the PIT mutation testing tool used in the competition is not able to handle JUnit
tests with this kind of instrumentation, we had to deactivate it. EvoSuite does
compile and execute tests as a last step to comment out any failing assertions;
yet in this case there were assertions dependent on the seconds of the current
time, and so this verification step was too quick to notice the failing assertions.

Environmental dependencies: One of the largest problems in unit testing
remains the handling of environmental dependencies. For example, most classes
in the JWPL project (43–49) depend on a valid instance of a Wikipedia class,
which in turn depends on a valid DatabaseConfiguration. As another example,
class 63 (ARFFHandler) consists of only one method (and one wrapper for that
method) that receives a file as parameter, and then tries to parse this file.

Complex classes: The benchmark included large classes, most notably class
21 (TwitterImpl): This class has 1,187 lines of code, and EvoSuite produced
2,453 mutants for it. That on its own would not be a challenge for EvoSuite;
however, test execution on this class turns out to be very slow, and can lead
to excessive memory consumption. To prevent out of memory exceptions from
occurring and crashing EvoSuite, EvoSuite cancels test generation when the
Java garbage collector fails to free sufficient memory. This happened not only in
this class, but also several others (19, 23, 43, 44, 45, 47, 49). Running EvoSuite
with more memory would have likely resulted in higher coverage on these classes.

5 Conclusions

With an overall score of 205.26, EvoSuite achieved the highest score of all tools in
the competition. The score calculated for manual testing is 210.45 — a very close

6 Gordon Fraser and Andrea Arcuri

call. This means that EvoSuite is achieving almost human-competitive results
in terms of the effectiveness of the resulting test suites. Potentially, just by fixing
some of the errors in EvoSuite or its competition frontend the resulting score
could be higher than 210, even without adding new features. We are confident
that some of the experimental features will further increase this once the required
level of robustness has been achieved.

Acknowledgements

This project has been funded by a Google Focused Research Award on “Test
Amplification” and the Norwegian Research Council.

References

1. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investiga-
tion in search-based software engineering. Empirical Software Engineering (EMSE)
pp. 1–30 (2013)

2. Bauersfeld, S., Vos, T., Lakhotia, K., Poulding, S., Condori, N.: Unit testing tool
competition. In: International Workshop on Search-Based Software Testing (SBST).
pp. 414–420 (2013)

3. Fraser, G., Arcuri, A.: Evolutionary generation of whole test suites. In: International
Conference On Quality Software (QSIC). pp. 31–40. IEEE Computer Society (2011)

4. Fraser, G., Arcuri, A.: Sound empirical evidence in software testing. In: ACM/IEEE
International Conference on Software Engineering (ICSE). pp. 178–188 (2012)

5. Fraser, G., Arcuri, A.: EvoSuite: On the challenges of test case generation in the
real world (tool paper). In: IEEE International Conference on Software Testing,
Verification and Validation (ICST) (2013)

6. Fraser, G., Arcuri, A.: 1600 faults in 100 projects: Automatically finding faults
while achieving high coverage with evosuite. Empirical Software Engineering (2013),
to appear

7. Fraser, G., Arcuri., A.: Automated test generation for java generics. In: Software
Quality Days (SWQD) (2013)

8. Fraser, G., Arcuri, A.: Evosuite at the SBST 2013 tool competition. In: International
Workshop on Search-Based Software Testing (SBST). pp. 406–409 (2013)

9. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software
Engineering 39(2), 276–291 (2013)

10. Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and oracles. IEEE
Transactions on Software Engineering (TSE) 28(2), 278–292 (2012)

11. Galeotti, J.P., Fraser, G., Arcuri, A.: Improving search-based test suite generation
with dynamic symbolic execution. In: IEEE International Symposium on Software
Reliability Engineering (ISSRE) (2013)

	EvoSuite at the Second Unit Testing Tool Competition
	Introduction
	About EvoSuite
	Configuration for the Competition Entry
	Results and Problems
	Conclusions

