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ABSTRACT
Search-based software testing (SBST) generates tests using search
algorithms guided by measurements gauging how far a test case is
away from exercising a coverage goal. The effectiveness of SBST
largely depends on the continuity and monotonicity of the fitness
landscape decided by these measurements and the search operators.
Unfortunately, the fitness landscape is challenging when the func-
tion under test takes object inputs, as classical measurements hardly
provide guidance for constructing legitimate object inputs. To over-
come this problem, we propose test seeds, i.e., test code skeletons of
legitimate objects which enable the use of classical measurements.
Given a target branch in a function under test, we first statically
analyze the function to build an object construction graph that
captures the relation between the operands of the target method
and the states of their relevant object inputs. Based on the graph,
we synthesize test template code where each “slot” is a mutation
point for the search algorithm. This approach can be seamlessly
integrated with existing SBST algorithms, and we implemented
EvoObj on top of the well-known EvoSuite unit test generation tool.
Our experiments show that EvoObj outperforms EvoSuite with sta-
tistical significance on 2,750 methods taken from 103 open source
Java projects using state-of-the-art SBST algorithms.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Search-based software engineering.
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1 INTRODUCTION
Search-based software testing (SBST) generates test cases guided
by measurements that gauge how far tests are from reaching a
coverage objective. Using the measurement as fitness functions, the
search algorithms can gradually improve the tests to achieve high
coverage. SBST requires only light-weight instrumentation and has
been demonstrated to be practically applicable in many scenarios
in practice [13, 25, 53, 60, 73]. Despite the success of SBST and
random testing tools like EvoSuite [25] and Randoop [50], recent
empirical results suggest that object oriented code challenges the
fitness functions traditionally used in search-based test generation,
resulting in limited coverage performance [62, 63] and ability to
detect real faults [61]. A primary cause appears to be the inability of
search-based test generators to instantiate and configure valid ob-
jects [9, 11]. Unfortunately, object inputs are very common. Figure 1
summarizes the distribution of Java methods with object inputs in
the SF100 benchmark [7], a dataset of 100 open source Java projects:
84.6% of all Java methods take at least one object input.

The effectiveness of SBST relies on the assumption that the
search space is overall continuous and monotonic with respect to
fitness measurements. For example, consider Listing 1, in which
one would use the traditional branch distance [46] measurement
to guide the search towards executing the true-branch (𝑏) in line 3.
This branch is based on two branch variables, i.e., operand 𝑜𝑝1 as
the returned value of the call of getAwardNum(), and operand 𝑜𝑝2
as the constant 3. Given a test 𝑡 and the condition of 𝑏 as 𝑏.𝑐 , the
branch distance of 𝑡 from exercising 𝑏 is defined as:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑏, 𝑡) =
{
𝑜𝑝2 − 𝑜𝑝1 + 𝐾 if 𝑏.𝑐 evaluates to false
0 otherwise

where 𝐾 is a constant as minimum value of the branch distance
when the branch is not covered. Let 𝐾 be 0, assuming a test whose
runtime valuation of 𝑜𝑝1 is 0, and the valuation of 𝑜𝑝2 (a constant)
is always 3, the branch distance is 3 − 0 + 0 = 3; a branch distance
of 0 indicates that the branch is covered. Based on the guidance of
the branch distance, SBST algorithms [13, 26, 60] treat the relation
between the input variables and target branch condition as a black

https://doi.org/10.1145/3468264.3468619
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Figure 1: The distribution of the ratio of Java methods with
object inputs from the projects in SF100 benchmark. Among
the 100 Java projects, 32 projects have over 90% of methods
with object inputs, 26 projects have 80-90% of methods with
object inputs, etc. Overall, the mean ratio is 84.6%, and the
median ratio is 83.3%.

1 public int example(Student s) {

2 if (s.getSupervisor().getCV().getAwardNum()

3 > 3)

4 return 1;

5 }

6 class Student{Supervisor s; ...}

7 class Supervisor{CV cv; ...}

8 class CV{int awardNum; ...}

Listing 1: A Branch Relevant to Object States

1 Student s = new

Student();

2 example(s);

3
4
5
6
7
8
9

(a) Initial Test 𝑡ini

1 Student obj0 = new Student();

2 Supervisor obj1 = new

Supervisor();

3 CV obj2 = new CV();

4 int a0 = 0;

5 obj2.setAwardNum(a0);

6 obj1.setCV(obj2);

7 obj0.setSupervisor(obj1);

8 example(s);

9

(b) Effective Test 𝑡eff for SBST

Figure 2: There is no continuity and monotonicity in the
search space landscape to evolve from the initial test 𝑡ini to
the effective test 𝑡eff for SBST with mutations regarding the
branch distance measurement.

box, randomly mutate the evolving tests (e.g., via statement modifi-
cation, insertion and deletion), and select more promising tests (i.e.,
with the minimum branch distance) in each evolving iteration.

Object inputs, unfortunately, usually lead to search spaces that
are neither continuous nor monotonic. In particular, given a test
with randomly constructed object inputs, it is hard for the branch
distance measurement to guide the evolution. Consider the initial-
ized test 𝑡ini in Figure 2a: Since s.getSupervisor() will return
a null value, a null pointer exception will be thrown at line 2 in
Listing 1. Thus, the branch distance of 𝑡ini for 𝑏 is inaccessible as

branch 
distance

testtini ttarteff

0.25

single mutation

t'ini

search space with branch distance inaccessible

Figure 3: The idea underlying EvoObj: traditional mutation
can hardly help 𝑡ini escape from a search landscape with lo-
cal optima. In this work, we aim to synthesize a seed point
𝑡eff, which has a more continuous and monotonic landscape
than point 𝑡𝑖 towards the global optimum.

the branch operands are not even executed. Even worse, any tests
𝑡 ′ini resulting from a mutation (e.g., inserting, deleting, and modify-
ing statements in 𝑡ini) on 𝑡ini also leads to an inaccessible branch
distance. Consequently, the search has no guidance.

Figure 3 illustrates this problem using the fitness landscape in-
duced by the branch distance: Given 𝑡ini (Figure 2a), the branch
distance exists neither for 𝑡ini nor for any of its “neighbour” tests
resulting from a mutation (e.g., 𝑡 ′ini). As a consequence, there is
no gradient that guides the search to reaching the target test 𝑡tar.
However, consider test case 𝑡eff, as shown in Figure 2b: For this test
case the null pointer exception does not occur, and therefore the
branch distance measurement now exists (i.e., 0.25)1, and neighbour
tests by mutating line 4 in Figure 2b can also have a different branch
distance. In the fitness landscape (Figure 3) there is now a gradient
that guides the search from 𝑡eff to 𝑡tar.

In this paper, we propose a systematic and practical approach to
synthesize object inputs by analyzing static control and data flow
to significantly facilitate SBST. The approach creates seed tests such
as 𝑡eff in Figure 3 from which SBST can start the search with a more
continuous and monotonic fitness landscape. This test seed syn-
thesis approach works as follows: First, for an uncovered branch,
we construct a test template which leaves some slots for an SBST
algorithm to mutate their values. Each slot represents a descendant
attribute (of primitive type) of an object input, representing the
relevant object state to the branch. To this end, we construct an
object construction graph by statically analyzing the interprocedural
data and control flow from the object inputs of the target method
to the operands used in the target branch. The object construction
graph depicts what descendant attributes of the object input are
relevant and how to construct object input accordingly (see Fig-
ure 4). The test templates are then generated through traversing the
graph. Second, the test template code is used in the search through
its statements assigning values for its slots. Here, each slot in the
template represents a state variable of the object input. Finally,
we integrate our approach into existing SBST algorithms at the
minimum cost.

1According to Listing 1, the branch distance will be normalized by some function as
𝑓 (𝑛) = 𝑛

𝑛+1 . Thus, for the example code of Figure 2b, we have the branch distance as
3-0=3, which will be further normalized to 3

3+1 = 0.25.
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1 class BasicRules{

2 // target method

3 boolean checkRules(Action action, GameState state) {

4 Player actor = state.player(action.getActor());

5 Player target = state.player(action.getTarget());

6
7 if (actor == null)

8 return false;

9 if (target == null)

10 return false;

11
12 // target branch

13 if (actor.getAction() == 1)

14 return true;

15 }

16 }

Listing 2: Target Method checkRule()

We have implemented this approach in the EvoObj tool, which
extends EvoSuite for testing Java programs, and conducted experi-
ments on 2,750 methods from 103 open source Java projects (SF100
dataset [7]). Although we implement and evaluate this approach in
the context of Java, the approach is independent of the language
used and generalizes to any programming language where test gen-
eration requires the construction of complex objects via sequences
of calls. Our experiment results show that, compared to EvoSuite,
EvoObj achieved performance improvement on branch coverage
on various SBST algorithms [13, 26, 60] with moderate runtime
overhead.

In detail, our work makes the following contributions:
• We propose a test seed synthesis approach designed for
facilitating SBST on object oriented programs, mitigating the
problem of non-monotonic or non-continuous landscapes in
the search space (Section 3).
• We present an implementation of our approach, EvoObj, the
source code and binaries of which are publicly available [2]
(Section 4).
• We conduct an experiment consisting of 2,750 methods in
103 projects, showing EvoObj outperforms EvoSuite using
various SBST algorithms (Section 5).

2 MOTIVATING EXAMPLE
In this section, we illustrate our approach using an example. List-
ing 2 shows a simplified excerpt of the Gangup project (the 27th
project in SF100 benchmark [7]), which we will use as a running ex-
ample in the remaining sections. In this example, the target method
is the checkRules() method, and the target branch is the true
branch of the if-statement in line 13. The target method takes two
object inputs of type Action and GameState, and the operand in
the target branch has both control and data dependencies on their
attributes and returned value of the method calls (e.g., player()).
Even with a time budget of 30 minutes EvoSuite does not succeed
in generating a test that reaches the target branch.

Listing 3 shows an example test case generated by EvoSuite.
Since action0 is null, the call to checkRules immediately leads
to a null-pointer exception. Even if action were not null, there
are further challenges: The target branch is control dependent on
the return values of the calls of state.player() (line 4 and 5 in
Listing 2), which is influenced by the internal states of action and

1 public void test(){

2 BasicRules basicRules0 = new BasicRules();

3 Action action0 = null;

4 GameState gameState0 = new GameState();

5 BasicRules basicRules1 = new BasicRules();

6 gameState0.notifyObservers();

7 int int0 = 1648;

8 String string0 = gameState0.toString();

9 gameState0.setGameState(int0);

10 byte[] byteArray0 = gameState0.pack();

11 basicRules0.checkRules(action0, gameState0);

12 }

Listing 3: Test Initialized by EvoSuite

1 class GameState extends Observable{

2 private Player[] players;

3 ...

4
5 public Player player(int id) {

6 if (id < 0 || id >= 128) return null;

7 return this.players[id];

8 }

9 }

10
11 class Action{

12 private int actor;

13 private int target;

14 ...

15
16 public Action (int actor, int target) {...}

17 public void setActor(int actor){...}

18 public int getActor(){return actor;}

19 }

20
21 class Player{

22 private int action;

23 ...

24 }

Listing 4: The Class of GameState, Action, and Player

state. However, the branch distance measurement for the target
branch provides no guidance for evolving these states.

Listing 4 shows the relevant dependency code: The return value
of the method player() defined in the GameState class is (1) guard-
ed by the condition on line 6 in Listing 4, and (2) depends on the
players attribute in the state object (line 2 in Listing 4). Without
constructing the players field with at least one element for the
GameState object, the execution of test case will always terminate
with a null pointer exception in line 7 of Listing 4, resulting in an
unavailable branch distance on the target branch. However, random
construction of state and action objects is very likely to result
in null values returned from the player() method, making the
branch distance on the target branch ineffective. As a result, the
target branch is unlikely to be covered.

In this work, we overcome the challenges by synthesizing promis-
ing test templates for SBST to start the search. To this end, for an
uncovered branch, our approach (1) builds its construction graph
from the target method, depicting how to construct the object input
with states relevant to the target branch, (2) generates test template
code based on the graph, and (3) searches appropriate valuation for
instantiating the template.

Object Construction Graph. An object construction graph links
object inputs with their transitively relevant data fields. Figure 4
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action

state

actor

players

index

action

target

BasicRules basicRules0 = new BasicRules();

int int1 = 1298;

int int2 = -980;

Action action0 = new Action(int1, int2);

GameState gameState0 = new GameState();

Player[] players = new Players[901];

int int3 = -32;

Player player0 = new Player(int3);

int int4 = 11;

players[int4] = player0;

gameState0.setPlayers(players);

int int4 = 1131;

Player player1 = gameState0.player(int4);

int int5 = -91;

player1.setAction(int5);

basicRules0.checkRules(action0, gameState0);

BasicRules basicRules0 = new BasicRules();

int int1 = 1;

int int2 = 9;

Action action0 = new Action(int1, int2);

GameState gameState0 = new GameState();

Player[] players = new Players[901];

int int3 = -32;

Player player0 = new Player(int1);

int int4 = 11;

players[int4] = player0;

gameState0.setPlayers(players);

int int4 = 1131;

Player player1 = gameState0.player(int1);

int int5 = -91;

player1.setAction(int5);

basicRules0.checkRules(action0, gameState0);

Search

(a) object construction graph (b) synthesized test template  (c) test covering the branch
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Figure 4: Example of graph-based test template generation. In the object construction graph, the grey rectangles represents
graph inputs; the red rectangles represents fields/get-field operations; the green rectangle represent call/call operations; and
the blue rectangle represent array element/get-array-element operation. Each node in the object construction graph can be
used to generate a statement in the test code. Then, we apply mutations on the slots of the generated test template to evolve
the test.

shows the object construction graph for Listing 2, which starts with
two object inputs action and state (in grey). The rectangles of dif-
ferent colors represent different types of variables (e.g., fields, array
elements, or method return values). Edges between nodes indicate
dataflow relations relevant for guiding test code construction. For
example, there is an ownership relation between the input object
action and the field target; this information allows to construct a
target attribute for the object input action when generating the
test code. Each leaf node in the graph represents a variable which
(1) is a descendant attribute from some object input, and (2) has data
and control dependencies with the operands of the target branch.

Graph-based Template Synthesis and Search Valuation. Based on
the object construction graph, we can construct a test seed template
where each node in the graph corresponds to a statement in the
test template. A test template consists of code preparing the object
inputs with its required descendant attributes, followed by a call of
the target method. The assigning variable values in the statements
test template can be considered as “slots”. Each slot is a value of
primitive type, allowing the search algorithms to more effectively
evolve tests based on the resulting fitness guidance. Thus, generated
test templates serve as shortcuts towards global optima.

In our experiments, EvoObj can cover the target branch in List-
ing 2 in 12 seconds on average, while EvoSuite cannot even cover it
within 30 minutes search budget.

3 APPROACH

In this section, we describe in detail (1) how object construction
graphs are created, (2) how code is synthesized from these graph,
and (3) how to integrate this approach into SBST algorithms.

3.1 Building Object Construction Graphs
3.1.1 Object Construction Graphs. Given a target branch 𝑏 in the
target method𝑚𝑡 , we define its object construction graph𝐺 (𝑏) =
⟨𝐼 , 𝑁 , 𝐸⟩, where 𝐼 denotes the set of graph inputs (i.e., the inputs
for𝑚𝑡 ), 𝑁 denotes the set of variables (e.g., fields, local variables,

etc.), and 𝐸 denotes the set of information flows for constructing
one variable based on other variables, i.e., 𝐸 ← (𝐼 ∪ 𝑁 ) × (𝐼 ∪ 𝑁 ).
More specifically, an object construction graph describes (1) what
descendant object attributes are relevant state-variables for exercis-
ing a branch and (2) how to construct a child node (i.e., variable)
based on its parent nodes (variables).

Figure 4 (a) shows an object construction graph for the target
method in Listing 2. The graph inputs (𝐼 ) are represented as rect-
angles in grey. The variables (𝑁 ) are represented as rectangles in
red, green, and blue colors, representing fields (or, get field oper-
ations), array elements (or, get array index operations), and inter-
mediate local variables (or, invoke call method operation such as
player()). The flow from player() to action means that the re-
turn value of calling the player() method serves as an input for
an action get-field operation. Moreover, the leaf nodes target
(accessed via method getTarget() called on action in method
checkRules), actor (accessed via method getActor()), index (ac-
cessed via method player() called on GameState) and action
(accessed via method getAction() called on the actor object) are
the relevant data/control-dependent attributes for the target branch.
Explicitly setting these attributes in the tests improves the effective-
ness of SBST, as it allows the search to evolve these values towards
values that satisfy the target branch condition.

In addition, given an operand in a branch and its relevant object
input, we need to know how to access (or transform) the operand
from an object input to synthesize test code. To this end, we also
regard each node in an object construction graph as an operation,
serving as a micro-function which takes at least one input and
generates one and only one output. For example, in Figure 4, the
players node, to which the parent state node points, can be con-
sidered either as (1) a variable representing an attribute of state
object or as (2) an operation taking the state object as an input and
generating the players attribute as output. The “operation” view
on the graph nodes allows us to generate code based on the graph.
In this regard, each operation is similar to an instruction in an
intermediate representation form (e.g., Java bytecode), and the flow
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Figure 5: A partial graph of sliced program dependency graph on the target branch represented by the if_icmpeq instruction.
Each node represents an instruction, and each edge represents the producing/consuming relation between the instructions.

between the operations represents how the output of an operation
serves as the input of another operation. Thus, a node in the graph
can represent both an operation and its output variable. Each leaf
node 𝑛𝑙 indicates a variable reachable from a graph input and it is
data/control-dependent on the operands of the target branch 𝑏.

3.1.2 Constructing Object Construction Graphs. Overall, construct-
ing an object construction graph (OCG) takes three steps. First,
given a target branch 𝑏 in the target method 𝑚𝑡 , we take 𝑏 as a
slicing criterion and slice a partial graph from the program depen-
dency graph of 𝑚𝑡 , which captures the interprocedural control-
and data-dependencies. Second, on the partial graph, we identify
relevant state-variables of object inputs of𝑚𝑡 and add information
flow for objects across method calls. Finally, we remove irrelevant
paths to the state-variables in the partial graph, resulting in an OCG
of branch 𝑏 in𝑚𝑡 .

Graph Slicing. The backwards slicing process starts from the
target branch 𝑏, and ends at instructions satisfying either of the
conditions:
• an instruction which reads a method input,
• an instruction which reads a global variable (e.g., static field
in Java), and
• an instruction with no incoming flow.

Here, the method inputs of 𝑚𝑡 include both its parameters and
accessed instance fields. When slicing interprocedural information
flow, we introduce a threshold 𝑡dep to control the depth of the
call graph hierarchy for limiting the performance overhead when
conducting interprocedural analysis. That is, once there is a call
chain from 𝑚𝑡 to 𝑚𝑘 , for example 𝑚𝑡 → 𝑚1 → ...𝑚𝑘 , we let
𝑘 ≤ 𝑡dep.

Figure 5 shows the sliced partial graph based on the target branch
in Listing 2. For simplicity, we use Java bytecode (a stack-based
instruction architecture) as intermediate representation in this ex-
ample. Note that our approach is applicable in more general cases
(e.g., register-based instruction architecture as LLVM) just as well.
In Figure 5, each rectangle represents an instruction and each edge

represents the dataflow between the instructions, specifically, how
a (temporary) variable is produced by one instruction and con-
sumed by another. For example, an invokevirtual instruction
(e.g., getAction()) produces a temporary variable (as its returned
value), which is consumed as an operand of the target branch rep-
resented as an if_icmpeq instruction. We refer to the JVM docu-
mentation [3] for more details on the semantics of Java bytecode
instructions.

Relevant State Variables and Interprocedural Analysis. We use
the descendant fields of an object input as its state variables. In
an object-oriented program, a branch can be covered only if an
object is in a specific state (e.g., the array elements in a stack object,
players field in a GameState object, and actor field in a Action
object). We consider the instance fields and their descendant array
elements as the state variable of an object. Therefore, when we
track the instruction reading a field (e.g., a getfield instruction)
or an array element (e.g., an aaload instruction), and keep them
as a node in the graph, representing a relevant state-variable (i.e.,
field or array element) is required in certain object input.

In addition, in order to track all the relevant state-variables across
method calls to the target branch, we extend the object-relevant
flow across method calls to preserve complete information flows.
When a method𝑚𝑐 is invoked by the method𝑚𝑎 , we analyze how
the descendant fields of𝑚𝑐 ’s caller object and method parameters
(defined in𝑚𝑎) are used in𝑚𝑐 . Thus, we can track the relevant state
variables used in𝑚𝑐 back to the caller method𝑚𝑎 .

For example in Figure 5, the player1() method2 is called from
the object state of type GameState. In such a call, the players field
in the state object input will be used to compute the returned value,
which is in turn used to calculate the operand of the target branch.
A lightweight alias analysis allows us to track the object produced
by aload (state) (in grey in the target method) to the object
produced by aload (this) in the player() method. Thus, we

2Note that the method player() is called in line 4 and line 5 in the target method in
Listing 2. Given they are called in different call sites, we use different subscripts to
distinguish them.
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can extend the information flow from aload (state) to getfield
(players) in the player() method. We use a dashed curve line
in Figure 5 for the extended information flow. Similarly, we also
extend the information flow from aload (actor) to getfield
(action) in the getAction() method.

Distilling Relevant Paths. Finally, we further reduce the partial
graph by only keeping the paths starting with a method input
and ending with an instruction reading a field (or array element).
Note that, our interprocedural graph slicing can produce a path
ending at a operand and starting at an instruction reading a con-
stant (e.g., iconst_0). Given that we cannot modify such a constant
when generating a test, such a path is irrelevant to generate a test
template. Moreover, we also remove the aliased caller object and
method parameters during the interprocedural analysis (e.g., the
aload (this) instruction in the player() method) as their flow
information has been duplicated with the extended interprocedural
flow. Figure 4 (a) shows an example.

As a result, each path in the resultant OCG indicates (1) what
state variables of an object input are relevant, and (2) how to con-
struct an object with the state variables. For example, one path in the
resultant OCG is: aload(state)→ invokevirtual(player1())
→ astore (actor)→ aload (actor)→ getfield (action).
The first instruction is the method input, the last instruction is the
relevant state variable, and the whole path indicates the construc-
tion order which we can reverse-engineer into source code in the
test.

3.2 Graph-Based Test Code Synthesis
In this section, we describe how we traverse object construction
graphs in order to synthesize test template.

3.2.1 Code Skeleton Synthesis. We traverse the object construction
graph in a breadth first manner for generating a test template.
Overall, the traversal start from the nodes corresponding to an
object input. Each time we visit a graph node, we can synthesize
its statements in the test code.

Algorithm 1 shows the overall approach, which takes an object
construction graph 𝐺 as input and generates a test 𝑡𝑒𝑠𝑡 as output.
We first initialize the 𝑡𝑒𝑠𝑡 by calling the target method with random
inputs (line 1). Then, we select the nodes in top layer of 𝐺 , i.e.,
the nodes with no parents, and push them into a queue (line 2-
3). Afterwards, we use the queue to generate the statements in
𝑡𝑒𝑠𝑡 in breadth first order (line 5-14). Note that we keep a map
map<node, statement> to track the location of statements in test
of each graph node (line 4 and line 10). Each time a node 𝑛𝑜𝑑𝑒 is
taken from the queue, we first check whether its code has already
been generated. If it has, we find the corresponding code statement,
𝑠 , of 𝑛𝑜𝑑𝑒 in 𝑡𝑒𝑠𝑡 and build the mapping relation between 𝑛𝑜𝑑𝑒 and
𝑠 (line 16-17). Otherwise, we check whether all its parent nodes in
𝐺 have a corresponding statement in 𝑡𝑒𝑠𝑡 . If not, we re-enqueue
𝑛𝑜𝑑𝑒 so that we can generate code for its parent nodes first (line 14).
Otherwise, we generate the statements for 𝑛𝑜𝑑𝑒 (line 9-12). Note
that, the code of 𝑛𝑜𝑑𝑒 (e.g., a method call) cannot be generated if
any of its parents are missing (e.g., the object to start the call or its
required parameters). Once a new statement is generated in 𝑡𝑒𝑠𝑡 ,
we further push its children into the queue (line 11). Readers can

Algorithm 1: Test Code Template Synthesis
Input :An object construction graph,𝐺
Output :A generated test case, 𝑡𝑒𝑠𝑡

1 𝑡𝑒𝑠𝑡 ← call the target method with random initialization;
2 𝑛𝑜𝑑𝑒𝑠 ← top layer nodes in𝐺 ;
3 𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ (𝑛𝑜𝑑𝑒𝑠) ;
4 𝑚𝑎𝑝 ⟨𝑛𝑜𝑑𝑒, 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 ⟩ ← ∅;
5 while 𝑞𝑢𝑒𝑢𝑒 is not empty do
6 𝑛𝑜𝑑𝑒 ← 𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 () ;
7 if 𝑛𝑜𝑑𝑒’s code has not been generated then
8 if all the parent nodes of 𝑛𝑜𝑑𝑒 have a corresponding

statement in 𝑡𝑒𝑠𝑡 then
9 𝑠 ← generate statement for 𝑛𝑜𝑑𝑒 with𝑚𝑎𝑝 ;

10 𝑚𝑎𝑝.𝑝𝑢𝑠ℎ (𝑛𝑜𝑑𝑒, 𝑠) ;
11 𝑡 ← insert 𝑠 into 𝑡𝑒𝑠𝑡 ;
12 𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ (𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) ;
13 else
14 𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ (𝑛𝑜𝑑𝑒) ;

15 else
16 𝑠 ← find the corresponding statement of 𝑛𝑜𝑑𝑒 ;
17 𝑚𝑎𝑝.𝑝𝑢𝑠ℎ (𝑛𝑜𝑑𝑒, 𝑠) ;

18 return 𝑡𝑒𝑠𝑡 ;

refer to the links (in blue) between Figure 4(a) and Figure 4(b) to
go through the BFS algorithm.

3.2.2 Code Element Synthesis. Each time we visit a non-leaf node
𝑛 in the object construction graph 𝐺 , we generate a statement 𝑠
regarding the instruction of 𝑛. Our transformation from a graph
node to a code statement aims to meet the following needs: First,
the generated test code should strictly conform to the dataflow
indicated in the OCG. Second, when a state variable (i.e., a field or
array element) in OCG is private, we need to search for the most
promising setter/getter function in the project to set/use it in the
test code.

Dataflow Preservation. In order to preserve the dataflow in the
generated test, we maintain a node-statement map where the keys
are OCG graph nodes and values are statements (and their defined
variables) in the test. Overall, the generated test consists of the
code to (1) prepare the method inputs and (2) call the target method
at the end. Thus, we do not need to synthesize control-flow code
in the test. Moreover, we track the defined variable of each state-
ment. For example, the statement “BasicRules basicRules0 =
new BasicRules();” has a defined variable of basicRule0. If a
statement does not define a variable (e.g., obj.setAction();), its
defined variable is void. When visiting a graph node 𝑛, we first
check all its parent nodes 𝑁𝑑 = {𝑛1, 𝑛2, ..., 𝑛𝑚} in OCG, and use
the node-statement map to locate their corresponding statements
𝑐𝑜𝑑𝑒 (𝑁𝑑 ) = {𝑐𝑜𝑑𝑒 (𝑛1), 𝑐𝑜𝑑𝑒 (𝑛2), ..., 𝑐𝑜𝑑𝑒 (𝑛𝑚)} in the test. Each de-
fined variable of code𝑖 (𝑖 ∈ [1,𝑚]) plays a role to synthesize the
statement of 𝑛. Given each node is essentially an instruction, based
on the information flow between the instructions, we can know
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what role (e.g., caller object, method parameter, operand of assign-
ment, etc) of each defined variables play in synthesizing a new
statement.

For the example in Figure 4, the graph node player() in green
depends on the node state and the node actor, where the node
state is mapped to “GameState gameState0 = new GameState();”
(line 5) and the node actor is mapped to “int int2 = -980;” (line
3). Moreover, the flow between instructions allows us to know
that state is the caller object and actor is the method parameter.
Thus, we generate the statement for the node player() as “Player
player1 = gameState0.player(actor);” (line 13 in Figure 4 (b)).

Note that some graph nodes such as loading or storing a vari-
able (e.g., aaload and astore) may not derive new statements. It is
because such instructions generate no additional variable semanti-
cally, which allow us to reuse generated variable in the test template.
In this case, we still map those nodes to an existing statement so
that their defined variable can be used in synthesizing the follow-up
statement in the test.

Setting Object States. Weuse fields to represent the state-variables
of the method input objects3. Different from the graph nodes such
as calling a method, synthesizing a statement from a non-static
and non-public field-related node is more complex, and requires
selecting appropriate method calls to get or set the field. Note that
there can be multiple public methods to get or set a field in a direct
or indirectly way. First of all, when we visit a graph node 𝑛 repre-
senting a non-static and non-public field f, we synthesize a getter
method for f if 𝑛 is a non-leaf node and a setter method for f if 𝑛 is
a leaf node. Given the set of methods as𝑀 = {𝑚1,𝑚2, ...,𝑚𝑘 }, we
sample a candidate method m from M based on an estimate of the
likelihood of m’s invocation to get or set f.

A field-accessing node will derive a field-setting statement if
it is a leaf node, and a field-reading statement otherwise. When
visiting a node related to an instance field (e.g., with instruction as
getfield), we must start with an object obj. First, we scan all the
methods accessible by obj in its class (and superclass), and build
their call graph. Given a path in the call graph 𝑝 = ⟨𝑚𝑠 , ...,𝑚𝑒 ⟩
where 𝑚𝑠 is the starting node and 𝑚𝑒 is the ending node, if its
ending node𝑚𝑒 sets the required field, we keep it as an interesting
path.

For each interesting path 𝑝 = ⟨𝑚𝑠 , ...,𝑚𝑒 ⟩, we then estimate its
likelihood to set the field by (1) the number of method inputs in
𝑚𝑠 , 𝑁𝑣 , which are data dependent by the instruction in𝑚𝑒 to set
the required field, and (2) the complexity of 𝑝 (defined as follows).
For each node𝑚𝑖 , we assigning a score 𝑐𝑜𝑚𝑝 (𝑚𝑖 ) by heuristically
estimating how likely𝑚𝑖 can call𝑚𝑖+1 in the call chain 𝑝 . For the
ending node 𝑚𝑒 , the score estimates how likely 𝑚𝑒 can set the
required field. Given a node𝑚𝑖 , we build its control flow graph. Let
the set of branches to access the requiredmethod call or field-setting
instruction be 𝐵′ and the set of total branches 𝐵, 𝑐𝑜𝑚𝑝 (𝑚𝑖 ) = |𝐵

′ |
|𝐵 | .

As a result, we use Equation 1 to assign the score for each path,
where |𝑝 | means the length of 𝑝:

𝑠𝑐𝑜𝑟𝑒 (𝑝) = (𝑁𝑣 + 1) ×
∑ |𝑝 |
1 𝑐𝑜𝑚𝑝 (𝑚𝑖 )
|𝑝 | (1)

3Here, we regard array element as a special form of field of an array object.

public m1(A a, B b){
  if(..){m2(a);}
  m3(b);
}

public m2(A a){
  m3(a.getB());
}

public m3(B b){
  this.f = b.getF();
}

public m4(){
  this.f = 10;
}

Figure 6: An Example of Setter Selection

Given a method 𝑚 serving as the starting node for multiple
interesting paths {𝑝1, ..., 𝑝𝑛}, we evaluate its score 𝑠𝑐𝑜𝑟𝑒 (𝑚) as𝑚𝑎𝑥-
(𝑠𝑐𝑜𝑟𝑒 (𝑝1), ..., 𝑠𝑐𝑜𝑟𝑒 (𝑝𝑛)). Finally, we sample the methods based on
their score, and call the selected method to set the field.

Figure 6 shows an example where all four methods can set the
field 𝑓 directly or indirectly. We build five interesting paths and
their score as follows:

• 𝑝1 = ⟨𝑚1,𝑚2,𝑚3⟩, 𝑠𝑐𝑜𝑟𝑒 (𝑝1) = (1 + 1) × (1/2+1+1)3 = 1.67;
• 𝑝2 = ⟨𝑚2,𝑚3⟩, 𝑠𝑐𝑜𝑟𝑒 (𝑝2) = (1 + 1) × (1+1)2 = 2;
• 𝑝3 = ⟨𝑚1,𝑚3⟩, 𝑠𝑐𝑜𝑟𝑒 (𝑝3) = (1 + 1) × (1+1)2 = 2;
• 𝑝4 = ⟨𝑚3⟩, 𝑠𝑐𝑜𝑟𝑒 (𝑝4) = (1 + 1) × 1

1 = 2;
• 𝑝5 = ⟨𝑚4⟩, 𝑠𝑐𝑜𝑟𝑒 (𝑝5) = (0 + 1) × 1

1 = 1;

As a result, 𝑠𝑐𝑜𝑟𝑒 (𝑚1) = 𝑚𝑎𝑥 (1.67, 2) = 2, 𝑠𝑐𝑜𝑟𝑒 (𝑚2) = 2,
𝑠𝑐𝑜𝑟𝑒 (𝑚3) = 2, 𝑠𝑐𝑜𝑟𝑒 (𝑚4) = 1. Thus, we can normalize their score
to the sampling probability as 𝑝 (𝑚1) = 𝑝 (𝑚2) = 𝑝 (𝑚3) = 2/7 =

28.6% while 𝑝 (𝑚4) = 1/7 = 14.3%.

3.3 Integration to SBST
Note that, static data/control flow analysis and code generation can
incur additional runtime overhead, which can influence the effi-
ciency of test generation. In order minimize the incurred runtime
overhead, we integrate the test code synthesis during the evolution
stage using a user-defined probability. It means that if a branch
relevant for an object input is trivial (i.e., easy to cover by random
test generation in the initialization stage), we do not bother to gen-
erate test code templates. We only pay the runtime computational
resource on “hard” branches.

During test evolution, we collect the set of uncovered program
branches 𝐵 after each iteration, and randomly select one branch
𝑏 from 𝐵. Taking 𝑏 as the target branch, we synthesize tests for 𝑏
with a probability of 𝑝app.

4 IMPLEMENTATION

We implemented the proposed approach in the tool EvoObj on
top of EvoSuite [25], a state-of-the-art Java testing framework. In
EvoObj, we integrate our approach into three search algorithms
(i.e., DynaMOSA, MOSA, and MonotonicGA), and leave extensible
interface to integrate with more search algorithms in the future.
Moreover, we introduce new configurable options in EvoObj to
support the introduced new features. Its source code and binaries
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are available on our website [2]. Note that, although our implemen-
tation of EvoObj depends on the EvoSuite framework, the challenge
of synthesizing object inputs exists in any search-based testing/-
fuzzing solutions such as Randoop [50] and AFL [1]. The idea of
EvoObj to parse the structure of the object inputs and compute
their relevance to uncovered branches, is orthogonal to (and thus
can complement) various search algorithms [51, 52, 58], seeding
techniques [57], testability transformation [32], and test-generation
heuristics under many testing frameworks.

5 EXPERIMENT
We evaluate our approach with the following research questions:

• RQ1: Can EvoObj outperform the state-of-the-art?
• RQ2:How does EvoObj performwith different time budgets?
• RQ3: How does EvoObj perform with different SBST algo-
rithms?

5.1 Experiment Setup
Baseline: We choose EvoSuite [25] as a baseline for compari-

son. EvoSuite supports various object-oriented mutations such as
randomly initializing Java objects and invoking method calls on
these objects. More importantly, it integrates many state-of-the-art
approaches [13, 26, 60] for testing object oriented programs. For
example, it supports useful heuristics such as generating seeds with
static and dynamic constants and constructing objects of diversified
types to cover challenging branches [25, 26].

Experiment Subjects: Our subject dataset consists of two sources,
the SF100 dataset and three popular complementary open source
Java projects. The SF100 dataset [7] is a standard benchmark for
evaluating unit testing, which consists of 100 open-source Java
projects. Since some of the projects contained in SF100 are no longer
actively maintained, we further included the Weka [8], JFeeChart
[5], and JEdit [4] projects in our experiments. These three projects
are still well-maintained, often used in the annual test generation
contest [59], thus enhancing the diversity and representativeness of
our dataset. As targets for our experiments, we randomly selected
2,000 Java methods from the SF100 dataset and 750 Java methods
from the three complementary Java projects. Figure 7 shows the
distribution of the number of branches in the total 2750 methods
(omitting outliers for clarity). Overall, the mean number of branches
of the sampled methods is 23.0, the median number is 22, the max-
imum is 240, and the minimum is 2. More details of our sampled
methods can be found online [2].

Configuration: Both EvoSuite and EvoObj are configured to run
the same three search algorithms, i.e., DynaMOSA [52], MOSA [51],
and a Monotonic Genetic Algorithm [58]. This selection of algo-
rithms covers many/single objective optimization, test cases/test
suites as individuals for evolution, and different heuristics. Note
that, single-objective approaches calculate a single cumulative fit-
ness value by aggregating the fitness values for all individual cover-
age objectives of a method/class, while many-objective approaches
consider each branch to cover as an independent objective. Since
both approaches try to maximize the coverage, their performance
can be directly compared using coverage. DynaMOSA has been

Figure 7: Distribution of the number of branches

empirically demonstrated to be the best performing evolutionary
algorithm in the context of test generation [19, 52].

Performance Evaluation: We set the overall time budget to 200
seconds for each method. While generating tests for each method
and configuration, we record intermediate coverage values every
10 seconds, which allows us to (1) compare their coverage perfor-
mance under various budgets (such as 60s, 70s, ..., 190s, 200s) and
(2) observe how the coverage of each approach grows with the
increase of the time budget. Given that the common range for unit
test generation tools is about 2 minutes, we choose the budget of
200 seconds to evaluate the impact of the additional computational
effort. Both tools stop when either the budget is used up or 100%
branch coverage is achieved. For each method, we run each tool
under a configuration for 10 times, and then compare the average
coverage and time respectively.

We set the bound on call depth 𝑡𝑑𝑒𝑝 to be 5, the maximum length
of generated test case to be 200, and the probability to apply object
construction technique to be 0.3. We run our experiment on 20
nodes on the NCL cloud [6], consisting of nodes with Intel Xeon
E5-2620 CPU of 2.1GHz and 64G DDR4 Memory. Besides, we let
EvoObj and EvoSuite share the default runtime configurations. The
details can be found on our tool website [2].

5.2 RQ1: Performance of EvoObj
Figure 8 and Figure 9 show how EvoObj and EvoSuite are compared
with respects to the three SBST algorithms in terms of coverage and
time distribution within the runtime budget of 200 seconds. More-
over, Table 1 shows a detailed coverage comparison of EvoObj and
EvoSuite for three specific points in time: After 100s we expect to see
negative effects of the overhead produced by EvoObj; after 200s we
expect that both tools had sufficient time for the search to converge;
and 150s is an intermediate point between these two values. In ad-
dition, Table 2 shows the runtime overhead of EvoObj and EvoSuite
given the total 200-second budget. We apply the Mann-Whitney
U test [24] on coverage and calculate the two-tailed significance
value 𝑝 value as well as the Cohen’s d as effect size. We consider
EvoObj to outperform EvoSuite in coverage if EvoObj achieves a
higher average coverage than EvoSuite and the 𝑝 value is smaller
than 0.05; and EvoObj outperforms EvoSuite in runtime overhead
if EvoObj achieves less average overhead than EvoSuite and the 𝑝
value is smaller than 0.05.
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Table 1: Coverage Performance Comparison on Different SBST Algorithms regarding the budget of 100s, 150s, and 200s.

Coverage Performance Budget-100s (%) Budget-150s (%) Budget-200s (%)
DynaMOSA MOSA MonotonicGA DynaMOSA MOSA MonotonicGA DynaMOSA MOSA MonotonicGA

EvoObj 78.82 77.35 67.22 81.70 80.43 70.44 82.40 81.11 71.48
EvoSuite 70.35 69.36 62.15 72.98 72.21 65.41 73.80 73.03 66.56
p-value <10E-10 <10E-10 <10E-10 <10E-10 <10E-10 <10E-10 <10E-10 <10E-10 <10E-10
Effect size 0.33 0.36 0.36 0.34 0.37 0.36 0.21 0.22 0.22

Figure 8: Coverage distribution of different configurations:
the blue color represents DynaMOSA, the red color repre-
sents MOSA, and the green color represents MonotonicGA;
the solid line represents EvoObj and the dashed line repre-
sents EvoSuite.

Figure 9: Time distribution of different configurations, the
representation is the same as Figure 8.

Table 2: Runtime Overhead on Different SBST Algorithms

Approach DynaMOSA (s) MOSA (s) MonotonicGA (s)

EvoObj 41.68 36.36 153.33
EvoSuite 44.92 44.39 152.43
p-value <10E-10 <10E-10 0.13
Effect size 0.09 0.26 -0.02

1 public boolean equals(Object obj){

2 if(this == obj) return true;

3 if(obj instanceof CustPayeeModRsSequence2){

4 CustPayeeModRsSequence2 temp = (CustPayeeModRsSequence2)obj;

5 if(_custPayeeId != null) {

6 if(temp._custPayeeId == null) return false;

7 if(!_custPayeeId.equals(temp._custPayeeId)) return false;

8 else if(temp._custPayeeId != null) return false;

9 if(_custPayeeInfo != null){...}

10 ...

11 if(_SPRefId != null){...}

12 else if(temp._SPRefId != null)

13 return false;

14 ...

15 }

16 }

Listing 5: Complicated containment relationship

Overall, we observe that EvoObj outperforms EvoSuite in terms of
branch coverage with statistical significance for all three algorithms.
This suggests that EvoObj explores the structure of object inputs and
makes the branch distance based searching of SBST algorithmsmore
effective. This is more impressive to consider that there is runtime
overhead in EvoObj for code analysis and synthesis. Moreover,
we also observe that the coverage/runtime improvement on the
MonotonicGA is not so significant as DynaMOSA/MOSA, we will
discuss more in Section 5.3. Next, we discuss the negative impact
incurred by EvoObj.

The most important challenge for EvoObj is that large object
construction graphs can incur large runtime overhead and may
increase the risk for runtime exceptions when constructing the
object inputs. We observe significant runtime overhead when the
required object is complicated, i.e., there are many fields and many
layers of objects. In such as a case, EvoObj constructs a huge object
construction graph, which leads to a long test case. The longer the
test, the more likely it results in unexpected runtime exceptions.
More importantly, a huge graph means that synthesizing the test
templates takes more time at runtime, which reduces the number
of iterations of the evolutionary algorithm as there is a limited time
budget.
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Figure 10: The object containment relation for the equals()
method for the CustPayeeModRsSequence2 class. The parent-
child relationship represents the parent class has an at-
tribute of the child class.
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Figure 11: The coverage of EvoObj and EvoSuite on different
SBST algorithms under the budget from 60s, 70s, ..., to 200s.

For example, Listing 5 shows the code of the equals()method in
the CustPayeeModRsSequence class in project 84 (ifx-framework).
The method compares two objects regarding their attributes layers
by layers. Figure 10 shows a part of its object construction graph
which consists of 128 nodes and the synthesized test consists of over
700 statements. Note that, a node in an object construction graph
may correspond to multiple statements. For example, a method call
requires preparing the code for all its parameters. As executing
tests with such a length will incur unacceptable runtime overhead,
our implementation sets a test case length limit of 200 statements.
In contrast, EvoSuite has a default test length threshold (i.e., 40),
which avoids long tests. We further discuss this in Section 5.3.

In order to cover a deeply nested branch, a test with sufficient
statements to set all the relevant object state is necessary. EvoObj
only conducts static taint analysis to track the branch operand back
to some state variable of an input object, which favors completeness
over soundness. A more optimal solution would be to conduct
dynamic taint analysis [22] to discriminate some state variable over
others, thus we can minimize the test case length while preserving
the precision. We will explore this solution in our future work.

Finally, we observe that EvoObj can sometimes be ineffective
as some instructions in the computation path cannot be reverse-
engineered into source code statements. For example, usually a
getfield instruction can derive a statement in the test to set or get
a field. However, if the field relevant to a branch operand is private
and there are no public getters and setters available in the target
class, our generated test template can be incomplete, and thus less
effective at facilitating the search process.

5.3 RQ2-3: Search Budgets and Algorithms
Figure 11 summarizes the coverage performance of EvoObj and
EvoSuite on different SBST algorithms under the budget from 60s
to 200s. In Figure 11, the SBST algorithms sharing the same color
(e.g., DynaMOSA algorithm is presented by blue lines, MOSA algo-
rithm is presented by brown lines, and Monotonic GA algorithm is
presented by green lines.) Moreover, the EvoObj solutions use solid
lines and the EvoSuite solutions use dashed lines.

Generally, Figure 11 shows that many-objective optimization
solutions can benefit more from our approach. Our experiment
confirms the existing literature [51, 52] in that DynaMOSA/MOSA
has a better performance than the Monotonic GA (see the three
dashed lines in Figure 11). In this experiment, the average coverage
gaps of DynaMOSA and MOSA (across different time budget) are
about 8.5% and 8.1%, while that of Monotonic GA is only 4.9%. The
results also align with Figure 8 and Figure 9 in that the advantage
of EvoObj on a Monotonic GA is smaller than that on DynaMOSA
and MOSA. The Monotonic GA is a single-objective optimization
solution to evolve a test suite on the overall branch coverage, while
DynaMOSA and MOSA are many-objective optimization solutions
to evolve test cases regarding each individual branch. Moreover,
EvoObj synthesizes test templates for each branch. Thus, improving
the branch distance of a single branch may not be well reflected
in the overall branch coverage measurement of the Monotonic GA
algorithm. Hence, EvoObj aligns with Monotonic GA being less
effective compared to DynaMOSA and MOSA.

We also observe that the coverage gap between EvoObj and
EvoSuite on each algorithm slightly increases during the initial
stage of test generation. For example, after 60s, the coverage gap
is 8.3%, 8.0%, and 4.1% for DynaMOSA, MOSA, and Monotonic
GA respectively. In contrast, the gap increases to 8.5%, 8.0%, and
5.1% after 100s, and finalizes to 8.6%, 8.1%, and 4.9% after 200s.
We observe that the coverage increase is larger up to around 150
seconds for EvoObj and EvoSuite, after which the coverage grows
more slowly. This indicates that the total budget of 200 seconds is
sufficient to evaluate method-wise unit testing.

5.4 Threats to Validity
Threats to external validity arise from the use of the SF100 dataset,
as some projects can be obsolete and we observe that some project
are not maintained. To mitigate the risk, we include three popular
Java projects to enhance the diversity and representativeness of the
dataset, resulting in a dataset of 103 open source Java projects.

Threats to internal validity may arise from the randomness pf
the search algorithms. To mitigate this threat we evaluated EvoObj
and EvoSuite with 10 repetitions on each method. In the future, we
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will run experiments on more Java projects and larger number of
iterations for more generalizable results.

6 RELATEDWORK
6.1 Search-Based Software Testing
Search based Software Testing (SBST) is an established approach
for automating software testing [30, 33, 46]. The first SBST tech-
nique can be traced to Miller et al.’s work [47] for generating test
cases for functions with parameters of primitive type. Following
their work, researchers have proposed novel SBST techniques for
automating functional testing [18], test case prioritization [39, 68],
mutation testing [36, 64], as well as regression testing [37, 40].
These approaches leverage meta-heuristic algorithms [15] to cover
various test goals (e.g., branch coverage, path coverage, use-def cov-
erage, etc.) with different search strategies (hill-climbing algorithm,
genetic algorithm, etc) [10, 20, 27, 48, 65], fitting test representa-
tions [14, 20, 31, 74], and the fitness metrics [14, 31, 41, 56, 74, 78].
Readers can refer to survey papers [33, 46] for more details.

6.2 SBST for Object Oriented Programs
Search-based software testing on object oriented programs is a
long standing problem [67] with many different proposed solu-
tions [13, 17, 23, 25, 60, 73]. Wappler et al. [73] used a tree-based
representation of method call sequence to ensure that the gener-
ated tests are compilation-feasible. Arcuri et al. [13] proposed an
approach to address the flag problem via testability transforma-
tion caused by container objects such as List and Collections.
Sakti et al. [60] proposed to construct object instances with more
diversity to improve upon SBST algorithms. The state-of-the-art
SBST tool EvoSuite [25] incorporates all of the above techniques.
Nevertheless, constructing appropriate objects with appropriate
attributes remains challenging. Braione et al. [17] proposed an ap-
proach to use object constraints generated by symbolic execution
as the search objective, but this work is limited by the symbolic
execution engine and has only been evaluated on a limited num-
ber of Java classes. EvoObj uses static analysis to construct object
construction graph and generate a test template where mutation
brings evolving gradients, facilitating the performance of SBST.

Aleti et al. [11] and Albunian et al. [9] investigated the fitness
landscape for the SBST application in unit test generation, and
showed that the most problematic landscape feature is the presence
of many plateaus. The object input problem is a major contributor
for these challenging fitness landscapes, as traditional fitness mea-
surements are not sensitive to the mutations of changing the object
state. In this work, we leverage static analysis to create a “short-
cut” in that landscape so that the measurements such as branch
distances can take effect.

6.3 Seed Generation Technique for SBST
Seeding refers to the inclusion of external information and solutions
into the population of a search algorithm. Rojas et al. [57] discussed
a variety of seeding strategies, including the use of static and dy-
namic constants as seeds for evolution, which achieves significant
performance improvements. Following their idea, Anjum et al. [12]
harvest the runtime constants to improve SBST for grammatical
evolution. Moreover, Liu et al. [44] adopted domain knowledge to

construct structural data for fuzzing Android native system services.
The idea of OCAT [35] is to capture objects at runtime and reuse
then during test generation; however, these objects are deserialized
rather than constructed in the generated tests, and thus limit pos-
sibilities for mutation and maintenance. An alternative appraoch
consists of mining sequences of method calls and information about
common usage from existing executions [29, 66].

In contrast, our approach is a general approach for object con-
struction by exploring data and control flow with interprocedural
analysis. Moreover, our approach is also complementary with ex-
isting state-of-the-art seed generation approaches.

6.4 Object Construction
Constructing legitimate complex structural and object inputs to
achieve higher coverage is one of the central problems in test gen-
eration, which applies to many programming languages. Existing
solutions include SBST heuristics [13, 25, 53, 60, 73], symbolic exe-
cution [16, 34], and separation logics [54, 55, 79]. SBST heuristics
define rules to explore more subclasses and diversify the object
construction means [13, 25, 53, 60, 73]. Nevertheless, constructing
more diversified types of objects can hardly address the issue of
constructing legitimate complicated input and answer the questions
like (1) “which attributes of the object input should be considered?”
and (2) “how many layers of object attributes should be constructed?”.
Symbolic execution and separation logic extract object constraints
and solve them by SMT solvers, but a challenge lies in reconstruct-
ing sequences of calls that configure objects according to these
constraints. The SUSHI approach [16, 17] aims to transform object
constraints extracted via symbolic execution into SBST fitness func-
tions, and uses search to synthesize test cases. However, so far this
approach has only been studied on 8 Java classes [16].

7 CONCLUSIONS AND FUTUREWORK
Although search-based unit test generation has resulted in ma-
ture tools, the limited ability of the resulting tests to capture real
faults [61] implies a need to further improve SBST techniques. In
order to address this problem, we considered the issue of gener-
ating complex object instances, which is considered an essential
factor that affects the challenging fitness landscape in search-based
unit test generation [9, 11]. Our approach synthesizes seeds by
constructing an object construction graph for every branch and
then synthesizing a test template based on the graph, such that
resulting objects are more likely to represent valid objects. This
enables traditional fitness metrics to better guide search algorithms,
as our experiments confirm.

In future work, we will extend our work in the following aspects.
First, we will improve the efficiency of the graph-based test code
synthesis for EvoObj by minimizing the generated test cases of
large object construction graph, integrate our solution into more
algorithms (e.g., memetic algorithms [28] and hybrid algorithm
[72]), and further generalize our experiment. Second, wewill further
investigate EvoObj’s capability to discover more software faults and
integrate it with a set of debugging techniques [42, 43, 69, 71, 76, 77].
Third, we will apply our idea of synthesizing structural input in
fuzzing scenarios to discover more binary software vulnerabilities
[21, 38, 45, 49, 70, 75, 80].
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