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ABSTRACT
Search-based test generation commonly uses fitness functions based
on branch distances, i.e., estimations of how close conditional state-
ments in a program are to evaluating to true or to false. When
conditional statements depend on Boolean variables or Boolean-
valued methods, the branch distance metric is unable to provide
any guidance to the search, causing challenging plateaus in the
fitness landscape. A commonly proposed solution is to apply testa-
bility transformations, which transform the program in a way that
avoids conditional statements from depending on Boolean values.
In this paper we introduce the concept of Certainty Booleans, which
encode how certain a true or false Boolean value is. Using these
Certainty Booleans, a basic testability transformation allows to re-
store gradients in the fitness landscape for Boolean branches, even
when Boolean values are the result of complex interprocedural
calculations. Evaluation on a set of complex Java classes and the
EvoSuite test generator shows that this testability transformation
substantially alters the fitness landscape for Boolean branches, and
the altered fitness landscape leads to performance improvements.
However, Boolean branches turn out to be much rarer than antici-
pated, such that the overall effects on code coverage are minimal.
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1 INTRODUCTION
The importance of software tests is widely recognized in both
academia and industry. As writing good tests with high cover-
age and high potential to expose faults can be a time consuming
and daunting task, the research field of automatic test generation
is concerned with increasing the quality and applicability of the
generated software tests. Many state of the art test generation tools
such as EvoSuite [10] or Pynguin [18] employ search-based soft-
ware testing (SBST) techniques. SBST uses meta-heuristic search
algorithms to sample a search space in order to find candidate test
suites that optimize a given set of search criteria, which are encoded

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8350-9/21/07.
https://doi.org/10.1145/3449639.3459339

0 1 2 3 4 5 6 7 8 9 10
#Entries in list

0

2

4

6

8

10

Br
an

ch
 d

ist
an

ce

Boolean
Certainty
Regular

(a) Branch distance to the true
branch.

class MyList{
boolean isEmpty() {
return size == 0;

}
}

void testMe(MyList list) {
if (list.isEmpty()) {
// Target

}
}

(b) Code containing problem-
atic branching.

Figure 1: Comparison between regular and Certainty Bool-
eans as return type regarding the branch distance metric.

as fitness functions. These are responsible for ranking candidates
and thus greatly impact the effectiveness of the search algorithm.
In SBST, the fitness functions are often based on the branch dis-
tance [15] metric which estimates how close the constraints that
lead to the execution of a branch in the control flow are to being
satisfied. For example, in Figure 1b the distance to the condition
size == 0 evaluating to true can be calculated as |size−0|.

A challenge for test generation is the possible loss of information
during runtime [8], which negatively affects the effectiveness of
the branch distance metric. Branching conditions are often made
on Boolean variables or returned values, and even though rich
information may be available when calculating the Boolean value,
the only information present at the branching point is whether the
value is true or false. For example, the if-condition in function
testMe in Figure 1b depends on the list parameter being empty.
The call to isEmpty returns a regular Boolean, and the resulting
branch distance can only encode whether the Boolean is true
(branch distance 0) or false (branch distance 1), which results
in a flat fitness landscape (c.f. the crosses in Figure 1a) and thus
no guidance for the test generator. Testability transformation [11],
i.e., the transformation of code to improve the effectiveness of
automated test generation, has been proposed as a remedy, but is
mostly concerned with intra-procedural information loss, and is
not yet commonly integrated in search-based test generation tools.

In this paper we introduce a testability transformation using the
notion of Certainty Booleans, which represent not only a truth value
but also the certainty of that truth value, in order to prevent the loss
of relevant information for the test generation. Certainty Booleans
are encoded as integers, and the testability transformation thus
replaces the booleans in a Java class with ints while corresponding
Boolean predicates are transformed to integer comparisons on the
certainty values. This enables the branch distance metric to capture
estimates even for Boolean branches. For example, the Certainty
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Boolean returned by a transformed version of the function isEmpty
in Figure 1b would encode the branch distance of the comparison
between size and 0, and as a result the branch distance at the target
branch in testMe produces a gradient based on that certainty as
shown by the squares in Figure 1a. This gradient can guide the test
generator to producing a test that passes an empty datastructure
as parameter list, thus covering the target branch.

We have implemented this testability transformation for Cer-
tainty Booleans on Java bytecode, integrated it into the EvoSuite
test generation tool, and use it to study the effects empirically on a
set of complex open-source classes in terms of the resulting cover-
age and effects on the fitness landscape. We observe clear effects on
the fitness landscape of transformed branches, which in turn lead
to increased success rates for these branches. However, in the grand
scheme of things, the overall effects on the coverage achieved by
EvoSuite are surprisingly small, indicating that Boolean branches
are only one puzzle piece in the complex fitness landscape of object
oriented test generation.

2 TESTABILITY TRANSFORMATIONWITH
CERTAINTY BOOLEANS

While a Boolean only contains dichotomous information about its
value (i.e., true or false), a Certainty Boolean additionally encodes
information about the conditions that led to the assignment of
the specific value or could have led to an alternative assignment.
This information can be used in order to observe whether different
executions leading to the same Boolean value differ in terms of the
underlying conditions, which in turn allows us to guide the search
towards changing the value. Since it captures the distance towards
changing the value, we refer to this distance as the certainty of the
variable. As the calculation of certainties is based on the branch
distance metric, the certainty of integer comparisons is easier to
infer than the certainty of complex type comparisons.

2.1 Certainty Booleans
We define Certainty Booleans as a finite set C ⊂ Z of integers that
can be partitioned into two non-empty sets C+ and C−0 containing
all values representing true and false, respectively. A mapping
from a Certainty Boolean to a regular Boolean is given by

fromCertainty : C→ B, fromCertainty(𝑐) = 𝑐 > 0

To use Certainty Booleans instead of Booleans in programs, a
Boolean algebra for Certainty Booleans must be defined. Let ¬c be
the negation, ∧c be the conjunction and ∨c be the disjunction, and
⊤c and ⊥c be the neutral elements, then fromCertainty must be a
homomorphism from Certainty Booleans to regular Booleans. This
ensures that the semantics of the target program are not affected
when replacing Booleans with Certainty Booleans:

fromCertainty(⊥c) = ⊥
fromCertainty(⊤c) = ⊤
fromCertainty(¬c𝑐) = ¬ fromCertainty(𝑐)

fromCertainty(𝑐1 ∧c 𝑐2) = fromCertainty(𝑐1) ∧ fromCertainty(𝑐2)
fromCertainty(𝑐1 ∨c 𝑐2) = fromCertainty(𝑐1) ∨ fromCertainty(𝑐2)

where 𝑐1 and 𝑐2 are Certainty Booleans. Furthermore, we define

¬c𝑐 =

{
1 − 𝑐 if 𝑐 ≤ 0
−(𝑐 − 1) if 𝑐 > 0

𝑐1 ∧c 𝑐2 = min(𝑐1, 𝑐2)
𝑐1 ∨c 𝑐2 = max(𝑐1, 𝑐2)

(1)

The neutral elements of ∧c and ∨c are relevant for the transforma-
tion. Since we take the maximum and minimum in our definition,
the neutral elements are ⊤c = max(C) for ∧c and ⊥c = min(C)
for ∨c. It should be noted that C is not closed under arithmetic
operations. For this reason, we require a case distinction for ¬c in
Equation 1 to ensure that the subtraction is well-defined.

2.2 Calculating Certainty
The value of a regular Boolean variable is only the truth value that
was directly assigned to it. While the same holds for the truth-
value of a Certainty Boolean 𝑐 represented by fromCertainty(𝑐),
the certainty itself may change throughout a program execution.
Two types of events influence the certainty: First, when a value is
assigned to 𝑐 then the certainty represents how certain this assign-
ment was to happen, which encodes how close the execution was
to missing the assignment. Between the assignment and uses of the
variable later in the program the certainty may change depending
on how close the execution was to altering the truth value. Overall,
the certainty of 𝑐 thus represents how close the program execution
was to leading to an alternative Boolean value.

The certainty of a particular execution path to an instruction
𝑎 being taken is captured by the branch distances of the control
dependent branching statements of 𝑎 along that path; if one of
the control dependent branches changes its outcome, then 𝑎 is not
executed. We therefore consider all (acyclic) execution paths on the
control dependence graph (CDG [13]), and define the certainty of
an execution path 𝑝 as the conjunction of its underlying conditions:

certaintypath (𝑝) =
∧

c
cond𝑖 ∈𝑝

certaintycond (cond𝑖 ) (2)

Here, cond1, . . . , cond𝑚 are the control-dependent branching con-
ditions present on path 𝑝 , such that an execution in which these
are satisfied will follow 𝑝 (e.g., if the path follows the else-branch
of an if-condition, then cond𝑖 will be the negation of the condi-
tional expression). The function certaintycond (cond𝑖 ) returns the
certainty for the condition cond𝑖 evaluating to the desired outcome
that follows the execution path, which is the branch distance [15]
for that condition evaluating to true.

Given a statement 𝑎 that assigns a constant value to 𝑐 , the cer-
tainty of this assignment depends on 𝑎 being reached. A point in
the program can be reached by multiple paths. Let paths(𝑎) denote
the set of paths reaching 𝑎, then the certainty of reaching 𝑎 is the
disjunction of the certainties that any of these paths is executed:

reachc (𝑎) =
∨

c
path𝑖 ∈paths(𝑎)
certaintypath (path𝑖 ) (3)

Between the assignment 𝑎 of the value 𝑣 to the variable 𝑐 and
some other point 𝑝 in the program where the value 𝑐 is read, the
certainty is influenced by how close the variable was to being
overwritten. In order to estimate this certainty, we determine the
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1 boolean allPositive(int[] integers) {
2 boolean b = true;
3 int i = 0;
4 while (i < integers.length) {
5 int integer = integers[j];
6 if (integer <= 0) {
7 b = false; // Overwrite b
8 break;
9 } else i++; // b is not overwritten
10 }
11 return b;
12 }
13
14 void setMemberVariable(int[] array) {
15 if (allPositive(array)) {
16 this.member = array;
17 } else {
18 throw new IllegalArgumentException("Negative Value");
19 }
20 }

Listing 1: The method allPositive checks whether all
integers in the parameter integers are positive and
setMemberVariable branches depending on the return value
of allPositive.

set 𝐴(𝑐, 𝑎, 𝑝) of assignments of 𝑐 between 𝑎 and the current point
𝑝 of the execution, with 𝑎, 𝑝 ∉ 𝐴(𝑐, 𝑎, 𝑝). We conservatively only
consider the subsets 𝐴⊤ (𝑐, 𝑎, 𝑝) and 𝐴⊥ (𝑐, 𝑎, 𝑝), which contain all
instructions assigning a value in C+ or C−0 to 𝑐 , respectively.

The certainty overwritec (𝑐, 𝑣, 𝑎, 𝑝) that 𝑐 is overwritten between
𝑎 and 𝑝 is then the certainty of any condition that would lead to
assigning ¬𝑣 to 𝑐 being fulfilled. It is thus defined as:

overwritec (𝑐, 𝑣, 𝑎, 𝑝) =



∨
c
𝑥 ∈𝐴(𝑐,𝑎,𝑝)\𝐴⊤ (𝑐,𝑎,𝑝)
reachc (𝑥) if 𝑣 = true∨

c
𝑥 ∈𝐴(𝑐,𝑎,𝑝)\𝐴⊥ (𝑐,𝑎,𝑝)
reachc (𝑥) otherwise

(4)

The certainty of 𝑐 being 𝑣 after assigning it at 𝑎 and not over-
writing it until 𝑝 is then the conjunction of the certainty that 𝑎
is reached and the certainty that no alternative assignments is
executed between 𝑎 and 𝑝:

certainty(𝑐, 𝑣, 𝑎, 𝑝) ={
reachc (𝑎) ∧c ¬coverwritec (𝑐, 𝑣, 𝑎, 𝑝) if 𝑣 = true

¬c (reachc (𝑎) ∧c ¬coverwritec (𝑐, 𝑣, 𝑎, 𝑝)) otherwise
(5)

In the case that 𝑝 = 𝑎, the result of overwritec (𝑐, 𝑣, 𝑎, 𝑝) is ⊥c since
the set of assignments between 𝑝 and 𝑎 𝐴(𝑐, 𝑎, 𝑝) will be empty.
Consequently, whenever a variable is written, the certainty of the
variable is equal to the certainty that the instruction is reached.

2.3 Testability Transformation
While Section 2.2 defined the certainty in terms of all possible execu-
tions, in practice we measure the certainty for concrete executions,
such that certainty values are used to calculate branch distances
for branching conditions depending on Booleans. In order to make
programs use Certainty Booleans instead of Booleans, several trans-
formation steps are necessary: First, we update all declarations

1 int allPositive(int[] integers) {
2 // certainty of: i >= integers.length
3 int certainty_1 = Integer.MIN_VALUE;
4 // certainty of: integer <= 0
5 int certainty_2 = Integer.MIN_VALUE;
6 boolean isChanged = true; // Monitor if update is needed
7 int b = Integer.MAX_VALUE; // Initial Assignment
8 int i = 0;
9 while (true) {
10 certainty_1 = intCmpGe(i,integers.length);
11 if (i >= integers.length) break;
12 int integer = integers[i];
13 // If b is not written in previous iteration -> update b
14 if (!isChanged)
15 b = update(b, certainty_2, false);
16 // b will be updated if no write is executed
17 isChanged = false;
18
19 certainty_2 = intCmpLe(integer,0);
20 if (integer <= 0) { // Begin of dependent update.
21 // Overwrite b
22 b = neg(lor(land(neg(certainty_1),certainty_2)));
23 isChanged = true; // Mark as written
24 break;
25 } else i++; // b is not overwritten
26 }
27 // Update if b is not written in last iteration
28 if (!isChanged)
29 b = update(b, certainty_2, false);
30 isChanged = true; // Necessary for nested loops.
31 return b;
32 }

Listing 2: allPositive after completing the transformation.

and signatures in the program to use Certainty Booleans instead
of regular Booleans. Second, we update conditional statements to
make use of the certainty value and to store the branch distance
values at runtime. Third, we instrument the program with addi-
tional information that calculates and updates the certainty values
of the Certainty Booleans along the execution path taken.

As a running example, Listing 1 shows the function allPositive,
where true is initially assigned to a Boolean variable in Line 2. Then
the value may be overwritten in Line 7, depending on whether the
parameter integers contains at least one non positive integer. As-
sumewewant to generate tests for themethod setMemberVariable,
which has an if-statement that depends on the return value of the
function allPositive. In order to provide guidance for covering
either branch of this if, the certainty of b must be encoded in the
return value of allPositive.

2.3.1 Transforming Signatures and Declarations. As the datatype
boolean is not able to encode values other than true or false, we
alter all variables of type boolean to int. In Java bytecode, local
boolean variables are already implemented as ints, so no actual
transformation is necessary to change the type. However, arrays,
fields, method and constructor parameters, as well as method re-
turn types are updated. In particular, transformation of method
signatures is a prerequisite to enable certainty values to be propa-
gated interprocedurally.Whenever a signature is changed, a method
with the original signature that only converts the types and calls
the instrumented method is added to ensure the compatibility be-
tween instrumented and non-instrumented code. In the function
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allPositive (Listing 1), our transformation changes the type of
the variable b and the return type from boolean to int.

2.3.2 Transforming Branching Conditions. When transforming pro-
grams to use Certainty Booleans rather than Booleans, any branches
depending on Boolean values can be transformed such that the
branching condition is expressed in terms of the certainty value,
rather than the Boolean value. This makes it possible to calculate
a branch distance on the certainty, and thus provides guidance to
search algorithms. Given a Boolean 𝑏 ∈ B and the corresponding
Certainty Boolean 𝑐 ∈ C, the conditions are transformed as follows:

𝑏 ↦→ 𝑐 > 0
¬𝑏 ↦→ 𝑐 ≤ 0

𝑏1 = 𝑏2 ↦→ max(min(¬c𝑐1, 𝑐2),min(𝑐1,¬c𝑐2)) ≤ 0
𝑏1 ≠ 𝑏2 ↦→ max(min(¬c𝑐1, 𝑐2),min(𝑐1,¬c𝑐2)) > 0

(6)

At the level of Java bytecode, instructions that may operate on
Booleans are IFEQ, IFNE, IF_ICMPEQ and IF_ICMPNE. As Booleans
are represented as integers that only have the values 0 and 1 in Java
bytecode, we first determine the type of the top of the operand stack
(tos) using a simple dataflow analysis, and only apply a transforma-
tion if tos is a Boolean. The instructions IFEQ and IFNE compare
the tos with 0 and branch depending on the result of the compari-
son. If tos is a Boolean, we replace these instructions according to
Equation 6 with IFGT and IFLE. The instructions IF_ICMPEQ and
IF_ICMPNE compare the two values on the top of the operand stack
for equality. This comparison can be expressed as XOR in Boolean
algebra. As two Certainty Booleans may represent the same truth
value but with different certainty, we transform the equality to a
logical expression over the truth values using

𝑐1 ⊕c 𝑐2 = (¬c𝑐1 ∧c 𝑐2) ∨c (𝑐1 ∧c ¬c𝑐2)

This preserves the semantics of the program, and a certainty value
is derived by replacing the logical operators with the certainty
operators in Equation 6.

In addition to these transformations, we further instrument
all branch conditions such that the certainty of the condition is
stored (cached), because this information is important to com-
pute the certainty of a path as described previously. The function
certaintycond (𝑐) returns the cached value for the condition 𝑐 . If a
condition has not been executed yet, the certainty is ⊥c. In the
allPositive function in Listing 1, the certainty of the conditions
of the while loop (i < integers.length in Line 4) and the if
statement (integer <= 0 in Line 6) are cached. In the function
setMemberVariable, the condition of the if statement in Line 15 is
transformed to allPositive(array) > 0 according to Equation 6.

2.3.3 Transforming Boolean Assignments. Assignments of the con-
stants true and false are transformed to assignments of Certainty
Booleans according to Section 2.2. That is, the certainty of a variable
at an assignment is the certainty that the assignment is reached
via any of the paths leading to it. The instrumentation of branches
described in Section 2.3.2 ensures that the value of certaintycond
is known at runtime for all conditions that have been executed.
The path actually taken at runtime will have a certainty that corre-
sponds to true, such that the logical disjunction of the certainties of

all relevant paths involved in the certainty calculation will also rep-
resent true. If the constant being assigned is false, the certainty
is negated according to Equation 1.

In the allPositive example (Listing 1) there are two Boolean
constants: The initial assignment of true in Line 2, and the value
false in Line 7. The initial assignment of b is only control de-
pendent on the method entry and no other conditions. Therefore,
the replacement for the true constant is ⊤c. When b is overwrit-
ten in Line 7, two control dependent conditions must hold: On
the one hand, there must be elements remaining in the parameter
integers (while-condition in Line 4) and on the other hand, the
current integer must be less than zero (if-condition in Line 6).
There is only one path from the method entry to the overwrite sat-
isfying these two conditions, and the certainty of the replacement
is therefore:

certaintycond (i < integers.length)
∧c certaintycond (integer ≤ 0)

Finally, this certainty value is negated because b was originally
assigned the constant value false in Line 7 of Listing 1.

2.3.4 Transforming Dependent Updates. Assume we are testing
Listing 1 with arrays that contain only positive numbers. Intuitively,
a test case with an array of [2021,31415] is “further away” from
making the branching condition in Line 6 false than a test with
[3,1]. In order to express this difference in terms of the Certainty
Boolean returned by allPositive, we also include instrumentation
that updates the certainty for paths that could have changed the
truth value of b (cf. Section 2.2); in other words, the certainty should
include how close the if-condition in Line 6, which checks if a value
is negative, was from evaluating to true.

To achieve this, the testability transformation needs to add in-
strumentation to update the certainty value according to Equation 4
in cases where the variable is not assigned a new value. This in-
strumentation is placed in branches that are exclusive to the branch
that contains a variable assignment. A branch 𝑏1 is considered to
be exclusive to a branch 𝑏2, if and only if there is an instruction i,
such that 𝑏1 and 𝑏2 are control dependent on i and the execution
of either branch ensures that the other one is not executed until i
is executed again (e.g., the then and corresponding else block of an
if-statement are exclusive to each other with i being the if state-
ment). Updates that are control dependent on at least one branching
condition and for which at least one exclusive branch that does
not write the variable exists, are referred to as dependent updates.
Executing a dependent update is equal to adding an element to the
set of assignments 𝐴(𝑐, 𝑎, 𝑝) in Section 2.2.

One update routine is added before the most common post-
dominator [7] of the branching condition and the writing state-
ment, e.g., after the else branch. Another update is added before
the branching condition of the dependent update to tackle loops
with dependent updates. Based on Section 2.2, the update does not
change the truth value of the Certainty Boolean, but the conjunc-
tion ensures that the certainty after the update is less or equal than
the certainty before the update.

In the allPositive example in Listing 1, the overwrite of b is
dependent on the if-condition. The most common post-dominator
of the if-condition and the reassignment of b is the end of the loop.
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2.3.5 Instrumentation Example. The transformation described in
this section is fully automatic and implemented at the level of
Java bytecode. Listing 2 shows the complete instrumentation of
allPositive at the level of the source code:

• The return type and the type of b are changed to int (Sec-
tion 2.3.1).

• The variables certainty_1 and certainty_2 cache the cer-
tainty values for the while-loop and if-condition, respec-
tively, and these conditions are transformed to calculate the
corresponding values (Section 2.3.2).

• The assignments to b in Line 7 and 22 are updated to repre-
sent the certainty of reaching the corresponding assignments
(Section 2.3.3).

• Dependent updates are handled by monitoring when b is
not assigned a value (encoded in the Boolean isChanged),
and calling the method update to calculate the dependent
updates where needed (Section 2.3.4).

The method update(c,d,v) takes three parameters: 𝑐 is the
current Certainty Boolean,𝑑 is the cached certainty of the condition
that would lead to overwriting 𝑐 being met and 𝑣 is the value that
would be assigned, if the condition would bemet. The Boolean value
of fromCertainty(𝑑) will always be false, because otherwise the
assignment would be executed.

𝑢𝑝𝑑𝑎𝑡𝑒 (𝑐, 𝑑, 𝑣) =


𝑐 if fromCertainty(𝑐) = 𝑣

𝑐 ∧c ¬c𝑑 if 𝑣 = false

𝑐 ∨c 𝑑 otherwise
(7)

There are two locations in the code where dependent updates
of the certainty of b are required: First, an update is added before
the branching condition (Lines 14–15). Second, an update is added
before the most common post-dominator (Lines 28–29). Each of
those updates the certainty of b only if isChanged is false. When
entering the dependent update block, isChanged is set to false. In
order to ensure that the certainty is only updated if b is not written,
isChanged is set to true (Line 22) after every write in between the
branching condition and the post-dominator.

3 EVALUATION
In order to evaluate the effects of the proposed testability transfor-
mation, we aim to answer the following research questions:
RQ 1: Does the testability transformation lead to higher code cover-

age?
RQ 2: How does the testability transformation influence the fitness

landscape?

3.1 Experimental Setup
3.1.1 Dataset. As targets for test generation we used the corpus of
64 Java classes introduced in earlier work [21] for the evaluation of
theMulti-Objective SearchAlgorithm (MOSA). For 7 of these classes
the testability transformation seemed to interact with EvoSuite’s
bytecode instrumentation such that EvoSuite could no longer
generate tests. We excluded these classes, leaving a total of 57
classes for experiments. We did not further select classes with many
Boolean branches in order to increase the external validity of our
experiments. Note that the testability transformation is not only

applied to the class under test, but also its transitive dependencies:
In order to find the relevant classes for the instrumentation, the
call tree [26] of the target class is analyzed and every class that
might be called is instrumented. Internal classes of Java (package
java.*) and classes that are part of EvoSuite or the testability
transformation itself are excluded.

3.1.2 RQ1. In order to measure the overall improvement in cover-
age we generated test suites with and without the testability trans-
formation enabled for each class in the dataset. We then compare
the branch coverage of the generated test suites. We used EvoSuite
withMOSA and branch coverage as target criterion. Since search
algorithms are inherently stochastic, every configuration is exe-
cuted 30 times. The search budget was set to 600 s to ensure the
search has enough time to converge and to evaluate the effects of
the transformation over time. To avoid conflating effects or interac-
tions, other testability transformations as well as seeding [9] were
disabled during the experiments. All other parameters were left at
their established defaults [3].

3.1.3 RQ2. In order to investigate how the testability transforma-
tion affects the fitness landscapes of individual target branches, we
measure the success rate (SR) of a branch b as the ratio of number of
times the branch was covered in the 30 runs of the RQ1 experiment,
and the success rate improvement (SRI) as the difference between
success rate with testability transformation and without.

The fitness landscape describes the topological structure of the
search space [1]. The key features of a fitness landscape impacting
the performance of a genetic algorithm are ruggedness and the
neutrality. The former describes the number of local optima in
the landscape [22], while the latter tells the number of adjacent
samples having the same fitness value [23]. In order to measure the
impact of the proposed testability transformation on the ruggedness
of the fitness landscape, we employ the following four metrics:
Autocorrelation (AC), Information Content (IC), Partial Information
Content (PIC) and Density-Basin Information (DBI). To measure
the impact on the neutrality we use the Neutrality Distance (ND)
and Neutrality Volume (NV). All the above metrics are based on
measurements of the fitness values for every step in a random
walk [1]. The random walks were limited to 1000 steps and 600 s,
and repeated 30 times. Branches with a success rate of either 0.0%
or 100.0% were excluded since no knowledge can be derived from
the measurements. After this, there were 1761 of 11,268 (∼ 15.6%)
branches left.

For every metric the branches are grouped by whether the value
for the metric has increased, decreased or stayed equal. For this
grouping procedure, the 𝑝-value was computed according to the
Mann-Whitney 𝑈 -test [19] and the effect size 𝐴12 according to
Vargha and Delaney [27] was used to determine whether the metric
has increased or decreased.

3.2 Threats to Validity
A threat to the construct validity of our experiments arises from the
metrics used to measure the testability. We used branch coverage
and success rate, which are commonly used metrics. To counter
the threat to internal validity arising from the stochastic nature of
search-based approaches, we repeated all experiments 30 times and
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Figure 2: Distribution of difference in class-wisemean branch
coverage. Positive values indicate that the testability trans-
formation improved the mean branch coverage.

applied statistical analyses. The parameters of a search-based tech-
nique can potentially have an impact on the performance. Therefore,
we used established default parameters [3]. We used the Mann-
Whitney 𝑈 -test to test the significance of the results. Additionally,
we used the Vargha Delaney effect size [27] to estimate the differ-
ences. We tested our approach on 57 real world Java classes from
different open source projects. While these classes provide a wide
diversity of branches, further experiments with more classes would
increase the confidence in our experiments. Future changes of the
Java language may require changes in the implementation, but the
principle of Certainty Booleans is not limited to one Java version.

3.3 RQ1: Effects on Branch Coverage
Figure 2 shows the distribution of the difference in mean coverage
for all classes. For most target classes, the difference is ∼0%. The
median difference is exactly 0.0%, indicating that the number of
classes for which the testability transformation increased the mean
coverage is similar to the number of classes for which the testabil-
ity transformation lead to a decrease in mean coverage. However,
some individual outliers, for which the testability transformation
increases the guidance, do exist.

Table 1 lists the mean coverage. The 𝑝-value is computed with
the Mann-Whitney 𝑈 -test. In total, 15 classes show a statistically
significant difference, but out of these only 8 show an increase in
coverage, whereas in the other cases the coverage is decreased.

The highest improvement was measured for DoubleMetaphone1,
where the coverage increased from 69% to 79%. The branches for
which the success rate was improved themost within this class were
inside private methods that take a Boolean as parameter; in those
private methods branching decisions were made on these Boolean
parameters. In all cases, the passed value for the parameter was
computed by a call to another private method isSlavoGermanic.
In isSlavoGermanic the disjunction of four conditions is returned.
In this case, the testability transformation was capable of reducing
the loss of information caused by the Booleans and provide infor-
mation how close the Boolean variable is to flip. Other improved
classes only showed a slight increase, e.g., the difference measured
for Conversion is only one branch.
1https://github.com/apache/commons-codec

Table 1: Mean coverage for every class. Â12 > 0.5means the
testability transformation (“TT”) improved the coverage.

Target Class No TT TT 𝑝-value �̂�12

Branches:
transformed/
unchanged

AbstractSimplex 0.00 0.00 — 0.50 4 54
ArrayUtils 1.00 1.00 0.0000 0.23 84 1104
AttributeList 0.87 0.89 0.0000 0.82 14 126
BasePeriod 0.96 0.96 0.9887 0.50 8 58
BasicMonthOfYearDateTimeField 0.98 0.98 0.0552 0.38 8 58
BigIntegerMath 0.92 0.92 0.5080 0.55 14 130
BooleanUtils 0.96 0.95 0.0014 0.26 56 256
BrentOptimizer 0.07 0.07 — 0.50 20 74
CacheBuilderSpec 0.96 0.96 0.4233 0.56 36 122
CompareToBuilder 0.96 0.95 0.1507 0.40 32 240
Conversion 0.97 0.97 0.0058 0.64 4 760
DfpDec 0.06 0.06 0.3337 0.52 26 122
DoubleMetaphone 0.69 0.79 0.0007 0.76 248 484
EnglishStemmer 0.62 0.61 0.0476 0.35 94 286
Expression 0.86 0.85 0.0004 0.26 114 168
FunctionUtils 0.17 0.17 0.6432 0.54 0 94
HashCodeBuilder 0.91 0.91 0.0738 0.62 34 94
HelpFormatter 0.93 0.93 0.9325 0.51 38 112
IntervalsSet 1.00 1.00 — 0.50 26 46
ItalianStemmer 0.56 0.56 0.8930 0.51 104 226
JDOMResult 0.60 0.58 0.1607 0.47 6 26
LimitChronology 0.01 0.01 — 0.50 20 68
LinearMath 0.81 0.83 0.4669 0.56 0 260
MatrixUtils 0.83 0.83 0.7670 0.52 4 146
Monitor 0.10 0.10 — 0.50 94 176
MultivariateNormalMixtureExp. 0.33 0.33 0.9226 0.51 2 60
MutablePeriod 0.97 0.97 — 0.50 0 8
NamespaceStack 0.81 0.81 — 0.50 16 64
Option 1.00 1.00 — 0.50 18 72
Partial 0.54 0.54 0.2814 0.43 12 116
PeriodFormatterBuilder 0.92 0.92 0.0645 0.64 146 644
RandomAccessByteList 0.96 0.96 — 0.50 20 58
SAXOutputter 0.80 0.80 — 0.50 28 64
SchurTransformer 0.82 0.87 0.0818 0.62 12 92
SequencesComparator 0.97 0.97 — 0.50 8 82
SimpleCharStream 0.98 0.98 0.6684 0.53 6 66
SpecialMath 0.87 0.87 0.0018 0.72 0 186
StrBuilder 1.00 1.00 0.5838 0.46 24 514
TByteFloatHashMap 0.98 0.97 0.0066 0.30 90 238
TByteIntHash 0.67 0.67 0.6999 0.48 2 76
TByteObjectHashMap 0.95 0.96 0.0067 0.70 66 196
TCharHash 0.94 0.94 0.9155 0.49 2 56
TDoubleLinkedList 0.93 0.95 0.0002 0.77 132 244
TDoubleShortMapDecorator 0.73 0.73 0.6543 0.48 26 50
TFloatCharHash 0.67 0.66 0.2862 0.45 2 76
TFloatDoubleHash 0.66 0.66 0.7582 0.52 2 76
TFloatObjectHashMap 0.93 0.89 0.2857 0.58 66 196
TShortByteMapDecorator 0.73 0.73 0.1003 0.42 26 50
TShortHash 0.94 0.93 0.0345 0.38 2 56
TreeBidiMap 0.78 0.82 0.2868 0.58 96 362
TreeList 0.94 0.95 0.0000 0.83 30 198
TricubicSplineInterpolatingFun. 0.96 0.94 0.0071 0.30 0 80
Utf8 0.90 0.91 0.3337 0.52 0 62
Validate 0.99 0.99 0.1607 0.47 32 118
Verifier 0.87 0.88 0.0097 0.69 56 272
XMLElement 0.80 0.80 0.6673 0.47 54 266
XMLOutputter 0.95 0.95 — 0.50 0 18

Overall 0.77 0.78 — 0.51 2064 10006
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Figure 3: Convergence of experiments with a 95% confidence
interval. The plot shows the improvement of the branch
coverage over the previous 10 s of the search.

There are classes for which a significant decrease of the branch
distance was measured, e.g., TricubicSplineInterpolatingFun.
Since no Boolean variables are contained in this class, we antici-
pated no increase in coverage. The decrease can be explained by
the execution overhead introduced by the testability transforma-
tion. There are two points where overhead is added, irrespective of
whether there are Boolean variables: First, the caching of branching
conditions adds additional instructions and (in our implementa-
tion) an additional method call. Second, the testability transforma-
tion is executed for every class in the transformation scope. For
TricubicSplineInterpolatingFun the effects can be observed
when considering the number of statements executed within the
search budget: Without transformation the search executed an av-
erage of ∼2.2 million statements, while this reduced to ∼1.6 million
(∼72%) after the transformation.

The presence of Boolean branches does not guarantee an increase
in coverage: There are classes in the data set, like ItalianStemmer,
that have a relatively high proportion of Boolean branches, but do
not show a significant change in coverage. It was also observed
that not all Boolean branches are a challenge to cover. Classes
like IntervalSet are fully covered even without transformation
despite a high proportion of Boolean branches (26/46).

Figure 3 shows that the transformation seems to have effects only
at the beginning of the search. After ∼150 s the search generally
barely finds solutions to uncovered branches, regardless of whether
the transformation is activated.

Overall, these effects are much smaller than we would have ex-
pected. It appears that the effect of Boolean branches in practice
is not a dominant reason when EvoSuite does not achieve higher
coverage; instead, other likely causes may include environmental
dependencies (e.g., files), the challenge of creating valid configura-
tions of complex classes, or branches that do not depend on Boolean
variables but on reference or null comparisons.

Summary (RQ1) In our experiments, the testability transfor-
mation increased the coverage from 77% to 78% overall, but the
majority of classes showed no change in coverage.

Table 2: Mean improvement of the success rate for every met-
ric. Bold values are higher than the mean over all branches
(∼ 3.78%).

increased equal decreased

Metric # SRI (%) # SRI (%) # SRI (%)

AC 263 5.4 1349 2.8 149 9.7
ND 124 9.5 1412 1.8 225 13.2
NV 222 17.0 1207 2.1 332 1.0
IC 221 16.9 1208 2.2 332 0.7
PIC 220 17.0 1207 2.2 334 0.7
DBI 213 8.4 1351 2.7 197 6.3

0% 10% 20% 30% 40% 50% 60% 70%
Proportion of Boolean branching conditions

0

5

10

15

20

Co
un

t

Figure 4: Distribution of the proportion of branches with a
Boolean branching condition per class. The bars represent
the count of the corresponding bin and the line is the kernel
density estimation.

3.4 RQ2: Effects on the Fitness Landscape
RQ1 suggests that the transformation overall only has little effect.
This raises the question whether the transformation is actually
achieving its goal of transforming the fitness landscape. Figure 4
shows the proportion of branches per class that are actually Boolean
branches and can be transformed in the first place; overwhelmingly,
classes are dominated by branching conditions that are not based
on Boolean comparisons, reducing the possible effects of the trans-
formation. Consequently, the majority of branches in our dataset
are either always covered in all runs, or never covered, regardless
of the transformation; only 1761 of 11,268 branches lie in between
these two categories. To study the effects on the fitness landscape,
RQ2 focuses on these 1761 branches, for which, interestingly, the
transformation increases the mean success rate by ∼3.78 %.

Table 2 groups the branches according to the changes in the
landscapes caused by the testability transformation. Additionally,
the mean success rate improvement for every group is shown. For
the majority of branches, the fitness landscape has not significantly
changed, which is in line with the number of transformations per-
formed according to Figure 4, as most branching decisions are not
based on Booleans. Interestingly, even these non-Boolean branches
show a slight increase in the success rate. We conjecture that this
is because the equal group contains branches where the fitness
landscape of their control dependencies provides more guidance.
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Figure 5: Success rate improvement vs. PIC change intro-
duced by the testability transformation. The marginals of
the plot are the kernel density estimations of the groups.

For those cases where the landscape metrics show a change due
to the testability transformation, the guidance is overall affected
positively. Thus, the fitness landscape without transformation is
likely flat, and any alteration of the plateaus, regardless how they
affect the metrics, improves the search. Consequently, the testability
transformation is capable of improving the guidance.

The largest increase in the success rate can be seen for branches
in which the partial information content metric (PIC) has increased.
PIC is the ratio of local extrema to the length of the randomwalk and
measures the modality of a landscape [1], and thus reinforces the
conjecture that plateaus are removed. Figure 5 plots the success rate
improvement against the PIC change introduced by the testability
transformation. The increased group has nearly exclusively positive
SRI, indicating that the testability of the branch has increased. The
distribution regarding SRI for the decreased group is similar to the
one of the equal group indicating that decreasing the PIC has not
increased the testability of these branches. For the equal group no
clear patterns are discernible.

Summary (RQ2) Transformed branches show a change in the
fitness landscapewhich increases the success rate from 68% to 71%.
However, the majority of branches does not depend on Booleans.

4 RELATED WORK
Since the introduction of the concept of testability transforma-
tion [12], many different specific transformations have been pro-
posed. A main target of testability transformations are Boolean
flags [11], and transformations have been applied also for specific
scenarios such nesting [20] or loop-assigned flags [4, 5]. Most of
these transformations target procedural code, and flags assigned
and used within the same procedure, by substituting the conditions
of a flag variable at the branch instruction. In contrast, we target
object-oriented code, which usually consists of many small meth-
ods in classes that interact with complex call chains, thus requiring
inter-procedural transformations.

An inter-procedural transformation was proposed by Li and
Fraser [16] at the level of Java bytecode. This transformation aims
to replace Boolean values with distance values similar to our trans-
formation. While the use of integers to encode distances is similar
to our approach, the transformation rules are different and very
intricate, and superseded by our Certainty Boolean transformation.
Furthermore, the certainty value is also influenced by how close
an execution comes to altering a Boolean value, and an impor-
tant difference between the two approaches is that we consider all
control dependencies of the Boolean flag variable to be replaced,
rather than only consider the immediate branch condition. Lin et
al. [17] address the problem of interprocedural Boolean flags by
first calculating context-sensitive branch distance values for all
branches in methods returning Boolean flags, and then aggregating
the appropriate distance values for the corresponding call context.
While this approach is not based on a program transformation, it
has similar effects on the fitness landscape. Similar to our findings,
the authors conclude that interprocedural flags are in most cases
not the limiting factor for automatic test generation.

5 CONCLUSIONS
Although search-based test generation has been reported to pro-
duce test suites of high coverage [6] there are still fundamental
limitations [25]. Recent analyses of the fitness landscape in search-
based test generation [1, 2] have confirmed that in the domain of
test generation for object-oriented programs the search faces partic-
ularly challenging fitness landscapes. While there are speculations
about the reasons, improvement requires a deeper understanding of
which are the factors that influence these landscapes. In this paper,
we introduced a testability transformation that addresses one of
the challenges posed by the information loss through Boolean flag
variables. Our experiments indicate that the transformation success-
fully alters the fitness landscape when Boolean variables are used,
but overall branching conditions depending on Booleans are less
influential than expected. We expect similar results for other object-
oriented programming languages than Java, but further work must
be done to generalize our results for other programming languages.

The transformation applied to calculate Certainty Booleans could
be generalized beyond the use case of Boolean branches. As next
step in our work, we plan to investigate the influence of branches
that compare references against null (IFNULL, IFNONNULL) and
against other references (IF_ACMPEQ, IF_ACMPNEQ). Similar to the
certainty of a Boolean variable being true we can use our transfor-
mation to calculate the certainty of a reference being null.

There is also potential to further refine the certainty calculation.
For example, dependent updates are currently only performed as
part of exclusive branches. However, inspired by the concept of
the approach level [28], it might be possible to represent execution
paths as sums of normalized branch distances, rather than just
the most certain one. Besides refinement of the fitness function,
orthogonal approaches to address the problem of challenging fitness
landscapes lie in modifying the search operators that induce this
landscape [14], or using multiple different fitness functions [24].
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