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Abstract—The length of test cases is a little investigated topic in
search-based test generation for object oriented software, where
test cases are sequences of method calls. While intuitively longer
tests can achieve higher overall code coverage, there is always
the threat of bloat – a complex phenomenon in evolutionary
computation, where the length abnormally grows over time. In
this paper, we show that bloat indeed also occurs in the context of
test generation for object oriented software. We present different
techniques to overcome the problem of length bloat, and evaluate
all possible combinations of these techniques using different
search lengths. Experiments on a set of difficult search targets
selected from several open source and industrial projects show
that the important choice in search-based testing is not the length
of test cases, but how to make sure that this length does not
become bloated.

Keywords-test case generation; search-based testing; test case
length; bloat control

I. I NTRODUCTION

Deriving test cases for object oriented software entails gen-
eration of sequences of method calls. Search-based techniques
have been demonstrated to be a suitable tool for this task [1],
[2], but raise important questions such as the choice of a search
length for these method sequences. The length, however, is
not only an important parameter of the search but also one
of its biggest threats:Bloat is a phenomenon in evolutionary
search where the length of individuals increases to the point
of making the search impossible.

For example, consider Figure 1, which shows the average
length of the test cases in a population of a genetic algorithm.
As a typical example of test case generation, the aim of
this search is to find a sequence of method calls that will
cover a non-trivial branch of theXMLElement class in the
open source Java project NanoXML. Without any techniques
to control bloat, the test cases become longer and longer
after each generation of the search, until all the memory is
consumed.

Bloat is an extremely complex phenomenon in evolutionary
computation, and after many decades of research it is still an
open problem whose dynamics and nature are not completely
understood [3]. Unfortunately, in the past the issue of length
has largely been neglected in the context of test case genera-
tion, and so there is no conclusive evidence on what length to
choose and how to prevent it from being bloated.
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Fig. 1. Bloat occurring during the search for a test case to cover a branch
of the XMLElement class in NanoXML. As the evolution progresses, the
average length of the population increases exponentially.

In this paper, we analyze the effects of length and bloat in
the context of testing object oriented software. The contribu-
tions of this paper are as follows:

Bloat: We propose and evaluate a set of different techniques
to control bloat, identifying which combinations of tech-
niques work best and should therefore be used in the
future.

Length: We analyze the effect of the test case length on the
results and on bloat, showing that the length has only
small influence on both, resulting test suites and bloat.

The evaluation of this paper considers a set of 100 dif-
ficult branches selected from six open source projects and
an industrial case study, and experiments are performed on
96 different configurations considering three different lengths,
repeated with 25 random seeds each, resulting in a significant
amount of data backing our results.

This paper is organized as follows: First, we give an
overview of the bloat and length problems as well as previous
work in Section II. In Section III we instantiate the concrete
domain for our experiments: testing of object oriented soft-
ware. Section IV describes different techniques that can be
applied to control bloat. Section V describes the experiments
and discusses the results in detail. Finally, Section VI discusses
threats to the validity of our study, and Section VII concludes
the paper.



II. BACKGROUND

As the number of possible test cases is usually infinite,
a practical solution is to choose a coverage criterion, which
represents a finite set of coverage goals. The objective is to
obtain a test suite that, once executed, covers as many as
possible of these goals. Unfortunately, for non-trivial software,
writing such test suites by hand is a complex and tedious
task. Therefore, automated techniques have been designed to
address this task. The predominant criterion in the literature on
structural testing is branch coverage, but in principle anyother
coverage criterion (e.g., mutation testing [4]) is amenable to
automated test generation.

For some testing goals it can be easy to find test input data
to cover them, but for other goals it might be very difficult
to find such data. Therefore, a common approach is to use
a first step of random testing to cover the easy branches [5].
After this initial phase, there is a second phase in which more
sophisticated techniques are used to target all the remaining
uncovered goals. A common approach in the literature is to
target one such goal at a time, generating test inputs either
symbolically [6] or with a search-based approach [1]. In this
paper, we focus our analyses on this second phase: finding test
data to cover difficult to reach testing goals, in particularfor
branch coverage.

Meta-heuristic search techniques have been suggested as a
possible solution to automate test case generation [1], [2].
In the context of object oriented software, test cases are
essentially small programs exercising the classes under test.
Search-based techniques have been applied to test object
oriented software using method sequences [7], [8] and strongly
typed genetic programming [9], [10]. A promising avenue
seems to be the combination of evolutionary methods with
dynamic symbolic execution (e.g., [11]), alleviating someof
the problems both approaches have.

While we aim to obtain the highest achievable coverage, it
is important that the resulting test suites should besmall. In
fact, in this paper we assume the general case in which no
automated oracleis available. In such a case, the output of
each test case needs to be manually checked (e.g., by writing
appropriate assert statements). This is often the case in unit
testing. Therefore, it is not feasible to ask a software tester to
manually write assert statements for thousands of test cases.
Long test sequences are also more difficult to analyze and to
understand. For all these reasons, there has been work in which
the goal was still obtaining highest coverage of the desired
testing criterion, but with the secondary goal of obtaininga
test suite that is as small as possible (e.g., [12]–[14]).

Effectively, this means that there are two conflicting goals:
maximizing coverageC while minimizing the size of the test
suiteS. How to combine these two measures? An approach
would be to use a pareto-based multi-objective algorithm [15],
but the problem is that the length/size is less important than
coverage. Arcuri and Yao [12] used the following fitness
function to maximize coverage:C + (1/S + 1), where C
is coverage andS is the size. In this way, in a comparison

between two test cases, better coverage is always preferred
regardless of length. On the other hand, Andrewset al. [14]
used(C × 1000) − S, which means that an increase of one
point in coverage is better only if it does not result in a test
case that is 1000 function calls longer. Baresiet al. [13]
included the length of test sequences in the fitness functionas
well, but they do not specify how this was done. Notice that
these approaches try to find test sequences that cover as many
testing goals as possible. This can lead to potential problems if
there are conflicting goals, such that a single sequence cannot
cover all goals at once. Another common approach that does
not suffer of such a problem is to target one coverage goal at
a time [1], [7], [8], [16].

Arcuri [17] studied what is the role of test sequence length
on branch coverage. In that work, only container classes were
used as case study. Usinglonger sequences made the testing
of these container classes trivial even with naive techniques
such as random testing. A simple post processing was very
effective to minimize such sequences without compromising
their coverage.

There has been other related work to shed light on the role of
length of test sequences. Andrewset al. [18] studied whether
for the fault detectionof random testing it is better to have
few long sequences or many short ones. Similar work has been
carried out by Fraser and Gargantini [19].

III. E VOLUTIONARY TESTING OF

OBJECTORIENTED SOFTWARE

Search-based testing uses meta-heuristic search techniques
to evolve an initial set of candidate test cases towards satis-
fying a given test objective, for example to reach a certain
branch in the control flow of the software under test. In this
section, we describe the techniques commonly used in search-
based testing for object oriented software, which are also those
used for experimentation in this paper.

A. Genetic Algorithms

A genetic algorithm is a meta-heuristic search technique that
tries to imitate the mechanisms of natural adaptation by evolv-
ing a population of candidate solutions using genetics-inspired
operations. Algorithm 1 shows a commonly used version of
such a genetic algorithm, a steady state genetic algorithm:
Starting with a randomly generated initial population, parents
are selected using, for example, rank selection [20], and then
crossed over and mutated with a certain probability. Depending
on the fitness values, either the offspring or the parents are
carried over to the next population. An iteration is done if
the next generation has reached the same size as the current
generation. This process is repeated until either an optimal
solution has been found, or some other criterion stops the
search (e.g., maximum allowed resources spent).

B. Fitness Function

The fitness function of a test case generation search depends
on the chosen coverage criterion. In this paper, we consider
branch coverage, which is also the predominant criterion used



Algorithm 1 A steady state genetic algorithm as used for
search-based testing.

1 current population← generate random population
2 repeat
3 Z ← elite of current population
4 while |Z| 6= |current population| do
5 P1,P2 ← select two parents with rank selection
6 if crossover probabilitythen
7 O1,O2 ← crossoverP1,P2

8 else
9 O1,O2 ← P1,P2

10 mutateO1 andO2

11 fP = min(fitness(P1),fitness(P2))
12 fO = min(fitness(O1),fitness(O2))
13 if fO ≤ fP then
14 Z ← Z ∪ {O1,O2}
15 else
16 Z ← Z ∪ {P1,P2}
17 current population← Z
18 until solution found or maximum resources spent

in the literature and in practice. A traditional fitness function
for branch coverage [1], [2] consists of theapproach leveland
the branch distance:

The approach levelA is used to guide the search towards
the target branch. It is determined as the minimal number
of control dependent edges in the control dependency graph
between the target branch and the control flow represented by
the test case.

The branch distanceB is a common heuristic to guide the
search for input data to solve the constraints in the logical
predicates of the branches [1]. The branch distance for any
given execution of a predicate can be calculated by applying
a recursively defined set of rules (see [1] for details). For
example, for predicatex ≥ 10 andx = 5, the branch distance
to the true branch is10 − 5 + k, with k ≥ 1. In practice, to
determine the branch distance, each predicate of the software
under test is instrumented to evaluate and keep track of the
distances for each execution.

To avoid that the branch distance dominates the approach
level, the branch distance has to be normalized in[0,1]. A
recommendable normalizing functionν(x) is that suggested
by Arcuri [21]: ν(x) = x/(x+1). The fitness function for test
caset and branch coverage goalc can therefore be defined as
follows:

fitness(t,c) = Ac + ν(Bc) (1)

C. Problem Representation

In search-based testing for object oriented software, test
cases and thus also the chromosomes of the genetic algorithm
are sequences of statements [7], [8]. A statement can be a call
to a constructor, a method call, or a reference to a field or
primitive value. Parameters of method and constructor calls,
and source objects of method calls and field accesses have

(a) Crossover (b) Mutation

Fig. 2. Crossover and mutation are the basic operators for thesearch using
a GA.

to be objects generated in the same test case at a previous
position.

Primitive statements represent numeric variables, e.g.,
int var0 = 54.

Constructor statements generate new instances of any given
class; e.g.,
XMLElement var1 = new XMLElement().

Field statements access public member variables of objects,
e.g.,
int var2 = var1.line_nr.

Method statements invoke methods on objects or call static
methods, e.g.,
int var3 = var1.countChildren().

A test case is a sequence of such statements, and the length
of a test case is the number of statements it consists of.

D. Crossover

Crossover creates two offspring test cases from two parent
test casesP1, P2. Different flavors of crossover operators
have been defined; in evolutionary testing of classes usually a
single point crossover is used, meaning that each of the parent
chromosomes is split at a single point, and the constituent parts
of the parents are merged together (see Figure 2(a)).

Crossover functions can further vary in how the crossover
point is chosen. Tonella [7] chooses a random point in the
range of[1,min(length(P1),length(P2))]. Baresiet al. [13]
and Fraser and Zeller [8] choose different random positions
for each of the parents in the range[1,length(P1)] and
[1,length(P2)]. In this paper, we call this latter crossover
operatorTwo Point Crossover(TPX).

As statements in the test cases might have dependencies, it is
necessary to try to satisfy these dependencies when attaching
two sub-sequences from the parents. If there are alternative
objects of the required type, then one of these objects is
randomly chosen. If there is no object that would satisfy the
dependency, then additional statements need to be added to
create the required object.

E. Mutation

Mutation introduces local changes into individuals. When
applying mutation to sequences of method calls, we distinguish
three main types of mutation, illustrated in Figure 2(b):



Deletion: This mutation operator removes a statement from
a test case. As there are dependencies between statements
(e.g., a return value might be used as a parameter in an-
other method call), the dependencies need to be resolved,
either by recursively deleting dependent statements, or by
replacing references with different suitable objects. In a
chromosome of lengthl, each statement is deleted with
probability 1/l.

Change: This mutation operator alters a given statement.
For example, Tonella [7] lists a number of different
possibilities to change statements. In our experiments, a
change replaces a method call with a randomly chosen
method call that has the same return type and has all
dependencies satisfied at the given position in the test
case. Primitive values (e.g., integer numbers) are changed
by a random but bounded increase or decrease. In a
chromosome of lengthl, each statement is changed with
probability 1/l.

Insertion: In terms of bloat analysis insertion is the most
interesting operator, as it is the only mutation operator
that contributes to growth of the length. We use the
following strategy to insert statements: With probabil-
ity σ′, a new randomly chosen statement is inserted at
a random position in the test case. If it is added, then a
second statement is added with probabilityσ′2, and so on
until the ith statement is not inserted. Parameters of new
method calls are either satisfied with existing objects, or
lead to addition of further statements to create necessary
objects.

To generate the initial population of the search, we sample
test cases at random. First, we choose a valuer in 1 ≤ r ≤W
with uniform probability, whereW is a value that needs to be
set (e.g.,W = 80). Then, on an empty sequence we repeatedly
apply the insertion operator described above until the testcase
has a length≥ r. Because on average we expectr = W/2,
the value ofW should not be set too high, otherwise there is
the risk of consuming all the available memory.

F. Generating Test Suites

Any non-trivial class will have a number of different cov-
erage goals, even for simple coverage criteria. As discussed
in Section II, it is common practice to have a first phase of
random testing to cover the easy branches. Then, each remain-
ing target can be individually sought with more sophisticated
techniques. Some of these remaining coverage goals may be
infeasible, which means that there exists no test case that
would cover them. To avoid that all available resources are
wasted on infeasible or difficult coverage goals on which the
search fails, it is necessary to limit the resources spent ona
single coverage goal. For this, we apply the following strategy:

• For |B| branches to cover and an initial budget ofX
statements (or fitness evaluations, generations, etc.), the
execution limit for the search on each branch isX/|B|.

• If a branch is covered, some budget may be left over,
and so after the first iteration on all branches there is
a remaining budgetX ′. For the remaining uncovered

Algorithm 2 Adapted genetic algorithm that includes bloat
checks, highlighted with gray background.

1 current population← generate random population
2 repeat
3 Z ← elite of current population
4 while |Z| 6= |current population| do
5 P1,P2 ← select with extended rank selection
6 if crossover probabilitythen
7 O1,O2 ← crossoverP1,P2 with RPX
8 else
9 O1,O2 ← P1,P2

10 mutateO1 andO2 with size check
11 fP = min(fitness(P1),fitness(P2))
12 fO = min(fitness(O1),fitness(O2))
13 lP = length(P1) + length(P2)
14 lO = length(O1) + length(O2)
15 TB = best individual ofcurrent population
16 if fO < fP ∨(fO = fP ∧ lO ≤ lP ) then
17 for O in {O1,O2} do
18 if length(O) ≤ 2× length(TB) then
19 Z ← Z ∪ {O}
20 else
21 Z ← Z ∪ {P1 or P2}
22 else
23 Z ← Z ∪ {P1,P2}
24 current population← Z
25 until solution found or maximum resources spent

branchesB′ a new budgetX ′/|B′| is calculated and a
new iteration is started on these branches.

• This process is continued until the maximum number of
statements is reached.

Test cases are only generated for branches that have not
been covered previously by other test cases, as a test case can
cover more than one branch.

IV. B LOAT CONTROL TECHNIQUES

Bloat occurs when small negligible improvements in the
fitness value are obtained with larger solutions. This is very
typical in classification/regression problems. When in software
testing the fitness function is just the obtained coverage, then
we would not expect bloat, because the fitness would assume
only few possible values. However, when other metrics are
introduced with large domains of possible values (e.g., branch
distance [1] or mutation impact [8]), then bloat might occur.

Bloat can be a particularly harmful phenomenon. Longer
sequences can consume large amounts of memory and take
longer to evaluate, which would lead to less generations in
the evolutionary search (within the same amount of time).
Furthermore, very long sequences cannot be directly used for
testing purposes unless an automated oracle is available, which
is usually not the case.

The problem of bloat is long known in the field of evolu-
tionary computation, and so different techniques have been



proposed to keep bloat under control. However, there is a
difference between the length of the test cases that are given
as output after the search and those that exist during the
search itself. On one hand, the output sequences should be
as short as possible (while optimizing coverage). On the other
hand, during the search it can be very useful to have longer
sequences [17], because it would make the search able to
explore larger areas of the search landscape without being
trapped in fitness plateaus. Once the search for maximum
coverage is finished, a post-processing can be used to easily
remove the unnecessary function calls.

Therefore, the dynamics of bloat and the methods coming
from the literature of genetic programming (GP) to contrastit
might not behave in a similar manner in the case of testing
object-oriented software. This section describes bloat control
techniques that can be applied to test case generation.

A. Relative Position Crossover

One possible source of bloat is the crossover function, in
which one of the offspring can grow in size. When using TPX
we choose two different splitting points in the parents (e.g., P1

andP2) at random, then the length of the offspring can be very
unbalanced when the splitting points are at the opposite edges
of the chromosomes. The length of the offspring would vary
between0 and length(P1) + length(P2), with average value
(length(P1) + length(P2))/2.

Another version of the crossover operator generates two
offspringO1 andO2 from two parent test casesP1 andP2. A
random valueα is chosen from[0,1]. On one hand, the first
offspring O1 will contain the firstα|P1| test cases from the
first parent, followed by the last(1 − α)|P2| test cases from
the second parent. On the other hand, the second offspringO2

will contain the firstα|P2| test cases from the second parent,
followed by the last(1−α)|P1| test cases from the first parent.
In this paper, we call this operatorRelative Position Crossover
(RPX), and it is shown in Line 7 in Algorithm 2. In contrast
to TPX, in RPX the offspring will never be longer than the
longest of the parents.

Regardless of the crossover operator, test cases can still
grow in size, as additional statements might be added to satisfy
dependencies of merged parts of the parents. In addition, test
cases can grow as part of the mutation operator.

B. Fixed Maximum Length

A very common approach to contrast bloat is to put an
upper limit L to the length of the test cases, e.g.,L = 100
function calls. This constraint can be enforced in several ways:
First, by having search operators that do not sample offspring
that are longer thanL (Line 10 in Algorithm 2). For example,
an insertion mutation could be avoided if the length already
equalsL. Second, offspring that are longer thanL (e.g., when
we use TPX) can be rejected, and the parents will be copied to
the next generation instead of the offspring. Finally, the limit
can be given implicitly by specifying a maximum amount of
resources to be spent per individual. For example, one can
define a timeout for the execution of test cases.

But how to choose a maximum lengthL? Should it be equal
to 100 or 1,000? A too small value might make the search very
unlikely to succeed. With a large value there might be the risk
of running out of memory and being severely affected by bloat.
In GP, a rule of thumb is to have trees of maximum depth
equal17. In the case of testing object-oriented software, we
are aware of no work that tries to analyze and give an answer
to this research problem.

As previously discussed, bloat is a very complex phe-
nomenon. This is illustrated by the fact that, counterintuitively,
using a limitL might actually favor the raise of bloat. As a
detailed discussion of this would go beyond the scope of this
paper, we refer the interested reader to the literature [3].

C. Dynamic Upper Bounds

Choosing a proper value for the upper limitL might not
be easy, and there might be side-effects due to the use of a
fixedL. BesideL, one further approach discussed by Silva and
Costa [3] is to use a dynamic limit based on the best individual
TB in the current generation. For example, an offspringO
could be rejected iflength(O) > 2× length(TB) (Line 18 in
Algorithm 2). In this way, we would not need the burden of
fixing a value forL, and would allow a less constrained search
of the solution space. For example, if the current best solution
has length10, we would still able to explore sequences up to
length 20. Notice that such a dynamic limit can be used in
conjunction with the static limitL.

D. Integrating Length in the Ranking Function

Another approach to prevent bloat is to penalize the length
directly in the fitness function [8], [12]–[14]. However, as
discussed in Section II, combining two different objectives
that have different order of measure is not easy. Furthermore,
because the branch distance might obtain any possible con-
tinuous value, it would not be possible to combine it with
the length such that the length would be less important. The
fitness functionC+(1/S+1) (whereS is the size of the test
case) discussed in Section II works only because the coverage
C only assumes integer values.

Instead of combining the length in the fitness function in
Equation 1, we use a different approach: In general, the fitness
function is only used to select individuals for reproduction.
In this paper, we userank selection[20] (see Line 5 in
Algorithm 2). Test cases are ranked based on their fitness
value. Individuals with better fitness will receive a better
rank, and so will have higher chances of being selected
for reproduction. To penalize longer test sequences without
penalizing a better fitness branch distance and approach level,
in case of ties in the ranking, we resolve the ties by giving a
better rank to the test cases that are shorter.

E. Length Dependent Parent Replacement

The last method we investigate to contrast bloat is based on
the relations between the performance of the parents and its
offspring. If one offspring has a fitness value strictly better than
the fittest of its parents, then both offspring will be accepted



in the new generation independently of their length (but other
bloat control methods might still prevent it). However, in case
of equal fitness, the offspring will be accepted only if they
are not longer than their parents; see Line 16 in Algorithm 2.
In other words, we accept longer test sequences in the new
generations if and only if at least one of the offspring has
strictly better fitness value than both the parents.

V. EXPERIMENTAL EVALUATION

To study the effects of both the test case length and the
bloat control techniques, we performed a set of experiments.
In detail, this evaluation aims to answer the following research
questions:

RQ1: How does the maximum starting lengthW influence
the search results?

RQ2: How do the bloat control methods impact the
achieved coverage?

RQ3: Which techniques to control bloat are most effective?

A. Case Study

As subject for our experiments, we selected a set of open
source Java libraries: Java Collections (a subset of the java.util
library), Apache Commons Collections and Commons Prim-
itives, NanoXML, and a Java translation of the String case
study subjects used by Alshraideh and Bottaci [22]. We also
use a set of numerical applications used in [23] and a subset
of classes from an industrial application [24]. This resulted in
a large and variegated case study.

This case study resulted in nearly 1,000 classes and more
than 15,000 branches— far too many for an in-depth analysis
of bloat control methods. We needed a way to filter out the
easy branches, and identify the difficult ones. This is also
of practical interest: If a testing techniqueA is twice as
fast as another techniqueB, then solving an easy problem
in one millisecond instead of two milliseconds would be an
improvement of no value from a practical stand point. On the
other hand, solving a problem in one hour instead of two hours
would be of practical interest.

In our case study, we applied the following filtering phase
to choose a selection of difficult branches: We applied our test
case generation tool with a search limit of 200,000 statements
per branch (of which there were more than 15,000) with
all bloat control techniques enabled, collecting information
for each branch about the number of statements executed
until a solution was found (one run per branch). Given this
information, we selected the subset of those branches which
resulted in a solution (i.e., are feasible), but required between
100,000 and 200,000 statements for this solution (i.e., are
non-trivial). This resulted in a set of exactly 100 difficultbut
feasible branches, which we used for further experimentation.

B. Experimental Setup

For the experiments we consider the five bloat control
techniques described Section IV. In particular, we use the
following labels to indicate whether a bloat technique is
employed:

Bo: the maximum length for the test cases is bounded
from above, i.e., if we set an upper limitL. In
particular, we choseL = W , where [1,W ] is the
range in which the length of new random test cases
is chosen from.

Xo: the crossover RPX is used instead of TPX.
Ra: use the length of the test cases to resolve the ties in

the rank selection of the parents for reproduction.
Pa: check length of offspring against parents’ length.
Be: check the length of offspring against best solution’s

length in the current population.
For the initial length of random test cases, we consider

three values forW , specificallyW ∈ {20,50,80}. For the
experiments in this paper, the total number of configurations
for the genetic algorithm is hence25×3 = 96. Because we run
the search on each branch independently, this means a total of
96×100 = 9,600 different experiments. In all the experiments,
we give a budget of100,000 statement evaluations (a typical
value in the literature, e.g. [16]). The search can finish for
two reasons: either a test case that covered the target branch
is found (a so calledglobal optimum), or the entire execution
budget has been consumed.

To compare whether a configurationA is better than another
configurationB on a branch, we follow the follow procedure,
as described in more detail by Arcuri and Briand [25]. We
run the genetic algorithmn times for both configurations
on that branch (so2n runs), and we record the number of
times a out of n an optimal solution is found with the first
configurationA, and the number of timesb it is found with
the other configurationB. The success ratefor A is defined
asa/n. If a > b, then it would seem thatA is better thenB,
and the other way round ifa < b. However, because genetic
algorithms are randomized, we need rigorous statistical tests
to assess whether there is enough empirical evidence to claim
with high confidence that the two success rates are indeed
different. We apply a Fisher exact test at significance level
α = 0.05. If the p-value is above the chosenα level, then
there would not be enough evidence to claim a difference in
the success rates ofA and B. Still, the performance of the
two algorithms can be statistically different, as we will now
discuss in more detail.

In case there is no statistical difference in the success
rates, we can analyze thetime an algorithm takes to find an
optimal solution for the runs in which it is successful [25].For
example, assume thata = b = n, i.e., for the given budget of
statements the algorithm finds an optimal solution in all the2n
runs. This would happen if the target branch is easy and/or the
given computational budget is very high. In these cases, we
might want to know how fast the algorithm finds a solution.
This is of practical importance, because we can stop the search
as soon as we find an optimal solution. For each run that
leads to find an optimal solution, we can monitor how much
computational effort has been spent, measured in the number
of statements executed before finding the optimal solution for
each run. We can hence compare the computational effort ofA
(based ona observations/values) with the effort ofB (based on
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(d) Check against best
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(e) Length in rank
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(f) Check against parents

Fig. 3. Evolution for the same branch as in Figure 1, using the different bloat control techniques one at a time. Evolution isbounded by 100,000 executed
statements for these graphs, results are averaged for 25 runs.

b observations/values). As discussed in [25], we use a Mann-
Whitney U-test (withα = 0.05) to asses which configuration
requires less computational effort to find optimal solutions.

The genetic algorithm was configured with a population
size of100, and a rank bias of1.7. The crossover probability
was set to0.75, and mutation is applied with probability1/3
each for insertion, deletion, and change. The initial insertion
probability σ was set to0.5. These settings are in line with
common practice in the literature and our past experience with
genetic algorithms.

C. Bloat Control Techniques Illustrated

To illustrate the effects of the individual bloat control
techniques, we performed a set of experiments on the branch
used to generate the plot in Figure 1. We generated test
cases for this branch using 25 different random seeds and
a maximum of 100,000 statements, and averaged the results.
Figure 3(a) shows the behavior of the length without any bloat
control techniques activated—the length grows, as expected.
Figure 3(b) shows how the average test case length behaves
over the evolution of test generation when we use RPX for
the same branch. The average size of the test cases increases,
but at a much slower rate than with TPX. Figure 3(c) shows
how the average test case length converges when a fixed
maximum length is used. Figure 3(d) shows how the average
test case length first shrinks as the long individuals of the
initial population are removed, and then grows only slowly.
Figure 3(e) shows how the use of length in the rank reduces
the average test case length for the usual example branch.

Finally, Figure 3(f) shows how the average length increases
slowly when using the parent check.

D. Analysis of Individual Bloat Control Techniques

To study the effects of the individual bloat control tech-
niques in detail, we ran a first set of experiments in which,
for eachW ∈ {20,50,80}, we ran a genetic algorithm with no
bloat control activated (No) and with the five bloat control
activated one at a time, for a total of3 × (1 + 5) = 18
configurations for each branch (i.e., a subset of the total96
configurations). This first set of experiments is used to assess
the implication of each bloat control method in isolation.
In fact, the case of multiple combinations of bloat control
methods is harder to analyze and visualize.

For each configuration and for each branch, we ran the
genetic algorithmn = 25 times, for a total of100 × 18 ×
25 = 45,000 runs. Figure 4 shows18 boxplots, one for each
analyzed configuration. Each boxplot shows the distribution
of success rates on the100 branches for that configuration.
Table I and II summarize the statistical analyses we carried
out on these data. In particular, in Table I for eachW ∈
{20,50,80} we report the results of the statistical comparisons
of each configuration against the other five (for a total of
100 × 6 × 5 × 3 = 9,000 comparisons). On the other hand,
in Table II we report the results of the statistical comparisons
regarding the choice of the valueW ∈ {20,50,80}. For the five
bloat control and no control at all configurations, we compared
each choice ofW with the other two (hence3 × 2 = 6
combinations), for a total of100×6×6 = 3,600 comparisons.
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Fig. 4. Success rate for 18 configurations, each applied on all the 100
branches. Left six boxplots are forW = 20, W = 50 in the centre and
W = 80 for the six boxplots on the the right of the figure.

TABLE I
COMPARISONS OF BLOAT CONTROL METHODS AGAINST EACH OTHER,

WHEN CONSIDERING EACH METHOD IN ISOLATION.

No Bo Xo Ra Pa Be

Statistically Better 8 49 15 268 51 29
Statistically Equivalent 1347 1393 1392 1224 1402 1402
Statistically Worse 145 58 93 8 47 69

As we can see in those tables and figure, all the controlling
bloat techniques have a beneficial effect for obtaining higher
success rate. In particular, penalizing longer lengths in rank
selection (Ra) seems to be the most effective technique
regardless of the choice ofW .

Regarding the choice ofW , we do not see any particular
trend in the data. Having short starting sequences (W = 20) or
long ones (W = 80) can have an effect, but that is dependent
on the chosen bloat control method (see Table II).

E. Investigations on All Bloat Control Techniques

There can be subtle interactions within the different bloat
control methods when more than one is used at the same time.
To study these interactions, we carried out the same type of
experiments on the remaining96 − 18 configurations, for a
total of 100× 96× 25 = 240,000 runs of the algorithm. This
is a very large set of experiments that took several days to
complete even when run on a cluster of computers.

TABLE II
FOR EACH BLOAT CONTROL METHOD IN ISOLATION, THIS TABLE REPORTS

THE NUMBER OF TIMES A PARTICULAR CHOICE OFW PROVIDES BETTER

PERFORMANCE THAN THE OTHER TWO.

Bloat Control W = 20 W = 50 W = 80

No 8 13 24
Bo 20 12 14
Xo 11 17 15
Ra 32 10 18
Pa 18 15 14
Be 16 17 14

To analyze and visualize the results of this large set of data,
we followed the following procedure: For each branch, we
compared the effectiveness of each configuration against all
other configurations, one at a time (so,96× 95 comparisons,
which can be reduced by half due to the symmetric property
of the comparisons). Initially, we assign a score of0 to each
configuration. For each comparison in which a configuration
is statistically better, we increase its score by one, and we
reduce it by one in case it is statistically worse. Therefore, in
the end each configuration has a score between−95 and95.
The higher the score, the better the configuration is.

After this first phase, we rank these scores, such that the
highest score has the best rank, where better ranks have lower
values. In case of ties, we average the ranks. For example, if
we have five configurations with scores{10,0,0,20,−30}, then
their ranks will be{2,3.5,3.5,1,5}. We repeat this procedure
for all the100 branches, and we calculate the average of these
ranks for each configuration, for a total of100× 96× 95/2 =
456,000 statistical comparisons.

This a very large number of comparisons, which can lead
to a high probability of Type I error [25] if we consider
the hypothesis thatall tests are significant at the same time.
We do not use corrections such as the Bonferroni one, for
reasons that are discussed in detail and at length in [25]. The
configurations with lower average ranks can be considered
better then the others. Table III shows the performance of all
the 96 configurations, ordered by their ranks.

The results in Table III confirm some of our hypotheses,
but also point out some unexpected behaviors. The worst
configuration is when no bloat control is activated, and the
search starts from small lengths (see last row). This is a
particular configuration, with an average success rate0.190
that is much lower than the0.464 of the top configuration.

On one hand, regarding the bloat control techniques, the
one that has most effect isRa. Activating Ra always produces
better results, whatever the setting of the other parameters.

On the other hand, it came as a surprise thatRPX is
actually giving bad results (i.e.,Xo does not appear in the top
rankings). It seems that an unbalanced length crossover such
asTPX, which can produce very long as well as very short
test cases, is actually beneficial. We can provide aconjecture
to give a plausible explanation to such an unexpected behavior:
In some cases, longer test sequences can have more chances
to achieve higher coverage [17], so sampling longer test
sequences is beneficial. However, when during the search a
fitness plateau is reached, longer test sequences would not
have better fitness. Smaller offspring generated withTPX will
likely have the same fitness (plateau), but ifRa is activated
they will be preferred. The search will hence have a sudden
drift toward smaller test sequences. Smaller test sequences
are quicker to evaluate, and so more generations would be
possible. More generations would lead to a more focused
search of the test data in input to those sequences, which might
help to find the right input data to escape from the plateau.
Although this is a plausible explanation, more research will
be required to verify whether that is actual the case, and no



other subtle dynamics are involved.
Regarding the other three bloat control methods, they seem

beneficial, but they are not as important asRa. When we look
at the bottom of the table, it seems thatPa is better thanBo
andBe. But at the top, there is not much difference.

The role of W is rather particular: In the best seven
configurations, it is set toW = 50. But then, for other
configurations it does not seem that the choice ofW has any
particular effect (i.e., we do not see any particular pattern in
the data). At the moment, we do not know whether there is
any specific reason for why that is the case.

Regarding our initially posed research questions, this leads
us to the following conclusions:

RQ1: How does the maximum starting lengthW influ-
ence the search results?

The results of our experiments show that the choice of the
maximum starting lengthW is not particularly important.

Our results have also clearly shown that all bloat control
techniques have a large effect of the achieved coverage.

RQ2: How do the bloat control methods impact the
achieved coverage?

Applying bloat control techniques
increases coverage significantly.

Among the bloat control methods,Ra has a strong beneficial
effect, whereasXo decreases the performance. The other three
methods are useful, but not as important asRa. Because using
only Ra alone does not give good enough results (see Table
III), based on our results we can suggest the practitioners to
use all bloat control methods butXo at the same time.

RQ3: Which techniques to control bloat are most effec-
tive?

Rank selection with length has the best effect, and should
be used together with all other techniques but RPX.

VI. T HREATS TOVALIDITY

Threats to internal validity might come from how the
empirical study was carried out. To reduce the probability of
having faults in our testing framework, it has been carefully
tested. But it is well known that testing alone cannot prove
the absence of defects. Furthermore, randomized algorithms
are affected by chance. To cope with this problem, we ran
each experiment25 times, and we followed rigorous statistical
procedures to evaluate their results.

The selection of the set of100 difficult branches was based
on only one run for practical reasons (total number of branches
was more than 15,000). Therefore, it might be possible that
some of them would not be difficult on average, and we could
have missed some other difficult branches. However, once the
set was selected, all experiments on that set were valid and
independent from the chosen selection mechanism.

We used both open source projects and industrial software
as case studies, for a total of nearly 1,000 classes. We

TABLE III
PERFORMANCE OF THE THE96 CONFIGURATIONS, ORDERED FROM TOP

(BEST PERFORMANCE) TO BOTTOM (WORST PERFORMANCE). SYMBOLS

ARE USED TO INDICATE WHETHER A PARTICULAR BLOAT CONTROL

METHOD IS ACTIVATED.

Bo Xo Ra Pa Be W Av. Rank Av. Success Rate
20 50 80

△ ⊕ ▽ ⊞ W 31.475 0.464
△ ⊕ ▽ W 31.840 0.456
△ ⊕ ⊞ W 32.595 0.482

⊕ ▽ ⊞ W 32.670 0.456
⊕ ▽ W 34.725 0.447

△ ⊕ W 35.415 0.448
⊕ ⊞ W 36.070 0.442

△ ⊕ ⊞ W 37.335 0.423
△ ⊠ ⊕ ▽ ⊞ W 37.430 0.430
△ ⊕ ⊞ W 37.605 0.459

⊠ ⊕ ⊞ W 37.615 0.418
△ ⊠ ⊕ ⊞ W 38.080 0.422

⊠ ⊕ ▽ ⊞ W 39.325 0.419
⊠ ⊕ ⊞ W 39.455 0.423
⊠ ⊕ ▽ W 39.580 0.413

△ ⊕ W 39.790 0.431
⊕ ⊞ W 39.815 0.431

⊠ ⊕ W 40.050 0.414
△ ⊕ ▽ W 40.140 0.420
△ ⊠ ⊕ ▽ W 40.330 0.425
△ ⊕ ▽ ⊞ W 40.670 0.413
△ ⊕ ▽ ⊞ W 40.700 0.432
△ ⊠ ⊕ ⊞ W 40.835 0.405

⊕ ⊞ W 40.940 0.438
△ ⊕ ▽ W 41.200 0.455
△ ⊠ ⊕ W 41.350 0.410

⊕ ▽ ⊞ W 41.695 0.423
⊕ ▽ ⊞ W 41.890 0.405
⊕ ▽ W 41.925 0.413

⊠ ⊕ ▽ W 42.150 0.399
⊠ ⊕ ▽ ⊞ W 42.195 0.401
⊠ ⊕ ▽ ⊞ W 42.470 0.388

△ ⊠ ⊕ ▽ W 42.500 0.395
⊠ ⊕ ⊞ W 42.800 0.422

⊕ W 43.075 0.407
⊠ ⊕ W 43.095 0.421

△ ⊠ ⊕ W 43.255 0.420
△ ⊠ ⊕ ▽ ⊞ W 43.635 0.377

⊕ W 45.160 0.398
⊠ ⊕ ▽ W 45.205 0.393

⊕ ▽ W 45.285 0.412
△ ⊠ ⊕ ▽ W 45.450 0.392
△ ⊕ W 45.850 0.418

⊕ W 46.460 0.401
△ ⊠ ⊕ W 46.625 0.388
△ ⊠ ⊕ ⊞ W 46.700 0.409
△ ⊠ ⊕ ▽ ⊞ W 47.760 0.379

⊠ ⊕ W 47.850 0.384
△ ▽ ⊞ W 48.985 0.342

▽ W 49.585 0.329
▽ ⊞ W 49.705 0.334

△ ▽ ⊞ W 49.995 0.369
△ ⊠ ▽ ⊞ W 50.290 0.313
△ ▽ W 50.740 0.356
△ ⊠ ▽ W 51.295 0.313
△ ▽ W 51.350 0.340
△ ⊞ W 51.570 0.327
△ ▽ ⊞ W 52.215 0.326
△ ⊞ W 52.800 0.330

▽ ⊞ W 53.260 0.330
⊠ ▽ ⊞ W 53.610 0.309

△ ▽ W 53.845 0.321
⊠ ▽ ⊞ W 54.040 0.310
⊠ ▽ W 54.475 0.312

▽ ⊞ W 54.835 0.296
▽ W 55.080 0.306

⊞ W 55.290 0.317
⊠ ▽ W 55.390 0.313
⊠ ▽ ⊞ W 55.605 0.304

△ W 55.635 0.305
▽ W 55.695 0.324

△ ⊠ ▽ W 56.065 0.310
△ W 56.160 0.309

⊠ ⊞ W 56.200 0.304
△ ⊠ ▽ ⊞ W 56.255 0.301

⊠ ▽ W 56.295 0.312
△ ⊠ ▽ ⊞ W 56.655 0.312
△ ⊠ ▽ W 56.835 0.291
△ ⊠ W 57.095 0.279
△ ⊠ ⊞ W 57.135 0.291
△ ⊞ W 57.180 0.319

⊞ W 57.390 0.306
W 58.955 0.285

△ ⊠ ⊞ W 59.085 0.297
⊞ W 59.190 0.297

△ ⊠ ⊞ W 59.270 0.285
⊠ W 59.595 0.279

△ W 59.995 0.300
⊠ ⊞ W 60.145 0.281
⊠ W 60.150 0.289

△ ⊠ W 60.675 0.278
⊠ ⊞ W 60.705 0.289

△ ⊠ W 60.975 0.292
W 61.655 0.267

⊠ W 65.220 0.238
W 71.765 0.190



selected different types of applications, such as for example
implementations of data structures, complex manipulations of
string data and numerical applications. Nevertheless, there is
still the threat toexternal validityregarding the generalization
to other types of software, which is common for any empirical
analysis. Furthermore, due to the large amount of experiments,
only 100 branches were used as case study.

VII. C ONCLUSIONS

Evolutionary search with variable size representation is
susceptible tobloat—that is, a disproportional growth of the
length of individuals that quickly uses up all resources andso
seriously harming the search. Unfortunately, this also means
it applies to search-based testing for object-oriented software,
although this has not been sufficiently treated in the literature
so far. In this paper, we performed a set of experiments, using
a genetic algorithm, on the properties of test sequencelength
and how to counter the effects of lengthbloat.

Interestingly, our results showed that the choice of starting
length for the search is secondary to the choice of bloat
control techniques. Not only is there the danger of running
into problems such as using up all memory and increasing
execution times, our experiments showed that the success rate
for the same amount of resources issignificantlyhigher when
applying bloat control techniques.

Our experiments clearly points to which bloat control tech-
niques to use and which ones should not be used in practical
contexts. As long as bloat is properly taken under control, the
choice of test sequence lengths at the beginning of search is
not particularly important, because the search algorithmscan
learn which are the best lengths toward direct the search effort.
To support our claims, we carried out a very large empirical
study on several types of applications (e.g., data structures,
string processing, numerical applications), using both open
source and industrial software. A rigorous statistical method
has been employed to verify with high confidence that our
results are scientifically valid.

As future work, we plan to apply our experiments to a larger
set of case studies, and include further coverage criteria in
addition to branch coverage. In addition, we need to consider
the effects of other parameters such as the population size in
genetic algorithms.
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