It is Not the Length that Matters,
It is How You Control It

Gordon Fraser Andrea Arcuri
Saarland University — Computer Science Simula Research Laboratory
Saarbiicken, Germany P.O. Box 134, 1325 Lysaker, Norway
fraser@cs.uni-saarland.de arcuri@simula.no

9000
Abstract—The length of test cases is a little investigated topic in

search-based test generation for object oriented software, lvere

test cases are sequences of method calls. While intuitively longer
tests can achieve higher overall code coverage, there is always
the threat of bloat — a complex phenomenon in evolutionary
computation, where the length abnormally grows over time. In

this paper, we show that bloat indeed also occurs in the context of
test generation for object oriented software. We present diffeent

techniques to overcome the problem of length bloat, and evaluate
all possible combinations of these techniques using different
search lengths. Experiments on a set of difficult search targets
selected from several open source and industrial projects show

8000 -

lation

7000 -

popu

6000 -
5000
4000
3000 -
2000

1000 -

Average test length in

that the important choice in search-based testing is not the length 0
of test cases, but how to make sure that this length does not 0 20 40 60 80 100
become bloated. Generations

Keywords-test case generation; search-based testing; test caserig. 1. Bloat occurring during the search for a test case te@ica branch
length; bloat control of the XMLEI enent class in NanoXML. As the evolution progresses, the
average length of the population increases exponentially.

I. INTRODUCTION

Deriving test cases for object oriented software entaifts ge In this paper, we a”a'Yze thg effects of length and bloa}t n
eration of sequences of method calls. Search-based teﬂmic{?e contex; of testing object oriented software. The cbatri
have been demonstrated to be a suitable tool for this task [1§1S ©f this paper are as follows:

[2], but raise important questions such as the choice of @lseaBloat: We propose and evaluate a set of different techniques
length for these method sequences. The length, however, is to control bloat, identifying which combinations of tech-
not only an important parameter of the search but also one niques work best and should therefore be used in the
of its biggest threatsBloat is a phenomenon in evolutionary future.

search where the length of individuals increases to thetpokngth: We analyze the effect of the test case length on the
of making the search impossible. results and on bloat, showing that the length has only

For example, consider Figure 1, which shows the average small influence on both, resulting test suites and bloat.
length of the test cases in a population of a genetic algarith The evaluation of this paper considers a set of 100 dif-
As a typical example of test case generation, the aim fifult branches selected from six open source projects and
this search is to find a sequence of method calls that wilh industrial case study, and experiments are performed on
cover a non-trivial branch of th¥M_EI emrent class in the 96 different configurations considering three differemigtns,
open source Java project NanoXML. Without any techniquespeated with 25 random seeds each, resulting in a sigrtifican
to control bloat, the test cases become longer and longanount of data backing our results.
after each generation of the search, until all the memory isThis paper is organized as follows: First, we give an
consumed. overview of the bloat and length problems as well as previous

Bloat is an extremely complex phenomenon in evolutionamyork in Section Il. In Section Il we instantiate the coneret
computation, and after many decades of research it is still domain for our experiments: testing of object oriented -soft
open problem whose dynamics and nature are not completelgre. Section IV describes different techniques that can be
understood [3]. Unfortunately, in the past the issue of flengapplied to control bloat. Section V describes the experisien
has largely been neglected in the context of test case genenad discusses the results in detail. Finally, Section Wulses
tion, and so there is no conclusive evidence on what lengthttoeats to the validity of our study, and Section VII condad
choose and how to prevent it from being bloated. the paper.

Il. BACKGROUND between two test cases, better coverage is always preferred
regardless of length. On the other hand, Andrewal. [14]

As the number of possible test cases is usually infinitgsed(c x 1000) — S, which means that an increase of one
a practical solution is to choose a coverage criterion, Whig,sint in coverage is better only if it does not result in a test

reprgsents a finit.e set of coverage goals. The objective ist@sa that is 1000 function calls longer. Baresial. [13]
obtain a test suite that, once executed, covers as manyjfuded the length of test sequences in the fitness funetion
possible of these goals. Unfortunately, for non-triviateare, el put they do not specify how this was done. Notice that
writing such test suites by hand is a complex and tedioysese approaches try to find test sequences that cover as many
task. Therefore, automated techniques have been designeghiiing goals as possible. This can lead to potential prodbié
address this task. The predominant criterion in the lit#80n there are conflicting goals, such that a single sequenceotann
structural testing is branch coverage, but in principle @ifier cqoyer all goals at once. Another common approach that does
coverage criterion (e.g., mutation testing [4]) is ameaabl o suffer of such a problem is to target one coverage goal at
automated test generation. a time [1], [7], [8], [16].

For some testing goals it can be easy to find test input dataarcuri [17] studied what is the role of test sequence length
to cover them, but for other goals it might be very difficulpn pranch coverage. In that work, only container classee wer
to find such data. Therefore, a common approach is 10 Ugged as case study. Usilanger sequences made the testing
a first step of random testing to cover the easy branches [§f.these container classes trivial even with naive techesqu
After.th.|s initial phage, there is a second phase in Wh'ChGT]Oéuch as random testing. A simple post processing was very
sophisticated techniques are used to target all the rentRingffective to minimize such sequences without compromising
uncovered goals. A common approach in the literature is fi9gjr coverage.
target one such goa_l at a time, generating test inputs e'the"l’here has been other related work to shed light on the role of
symbolically [6] or with a search-based approach [1]. Irsthiength of test sequences. Andreetsal. [18] studied whether
paper, we focus our analyses on this second phase: finding {gp the fault detectionof random testing it is better to have
data to cover difficult to reach testing goals, in particftar few Jong sequences or many short ones. Similar work has been

branch coverage. carried out by Fraser and Gargantini [19].
Meta-heuristic search techniques have been suggested as a

possible solution to automate test case generation [1], [2] [1l. EVOLUTIONARY TESTING OF

In the context of object oriented software, test cases are OBJECTORIENTED SOFTWARE

essentially small programs exercising the classes under te Search-based testing uses meta-heuristic search teesniqu
Search-based techniques have been applied to test objgcévolve an initial set of candidate test cases towards-sati
oriented software using method sequences [7], [8] andglyonfying a given test objective, for example to reach a certain
typed genetic programming [9], [10]. A promising avenu@ranch in the control flow of the software under test. In this
seems to be the combination of evolutionary methods Witlaction, we describe the techniques commonly used in search
dynamic symbolic execution (e.g., [11]), alleviating sonfe pased testing for object oriented software, which are &isse
the problems both approaches have. used for experimentation in this paper.

While we aim to obtain the highest achievable coverage, it
is important that the resulting test suites shouldsbeall In A. Genetic Algorithms
fact, in this paper we assume the general case in which noa genetic algorithm is a meta-heuristic search technigae th
automated oraclds available. In such a case, the output ofries to imitate the mechanisms of natural adaptation byvevo
each test case needs to be manually checked (e.g., by writing a population of candidate solutions using geneticpiied
appropriate assert statements). This is often the caseiin wperations. Algorithm 1 shows a commonly used version of
testing. Therefore, it is not feasible to ask a softwareetest such a genetic algorithm, a steady state genetic algorithm:
manually write assert statements for thousands of tesscasgtarting with a randomly generated initial population,guas
Long test sequences are also more difficult to analyze andgi@ selected using, for example, rank selection [20], ard th
understand. For all these reasons, there has been workdh wigrossed over and mutated with a certain probability. Dejmgnd
the goal was still obtaining highest coverage of the desiresh the fitness values, either the offspring or the parents are
testing criterion, but with the secondary goal of obtainag carried over to the next population. An iteration is done if
test suite that is as small as possible (e.g., [12]-[14]). the next generation has reached the same size as the current

Effectively, this means that there are two conflicting goalgeneration. This process is repeated until either an optima
maximizing coverag&’' while minimizing the size of the test solution has been found, or some other criterion stops the
suite S. How to combine these two measures? An approaskarch (e.g., maximum allowed resources spent).
would be to use a pareto-based multi-objective algorith&j,[1))
but the problem is that the length/size is less importann th®: Fitnéss Function
coverage. Arcuri and Yao [12] used the following fithess The fitness function of a test case generation search depends
function to maximize coverageZ + (1/S + 1), where C on the chosen coverage criterion. In this paper, we consider
is coverage ands is the size. In this way, in a comparisonbranch coverage, which is also the predominant criteri@u us

Algorithm 1 A steady state genetic algorithm as used for
search-based testing.

1 current_population < generate random population

 repeat EREREN 0 o

3 Z + elite of current_population

[a0 [60 | 0 |

+ while |Z| # |current_population| do b0

5 Py,P, < select two parents with rank selection

6 if crossover probabilitghen a0 p b0 | x0

7 01,04 < crossoverP;, P,

s else (a) Crossover (b) Mutation

9 01,02 <= P, P, Fig. 2. Crossover and mutation are the basic operators fosehech using
10 mutateO; and O, a GA.

1 fp = min(fitness(Py),fitness(Py))
12 fo = min(fitness(O1),fitness(02))

" if fo < fp then to pe_ objects generated in the same test case at a previous
14 7« ZU{01,05} position.

15 else Primitive statements represent numeric variables, e.g.,

16 Z «+— ZU{P,Ps} int varO = 54,

17 current_population < Z Constructor statements generate new instances of any given

1 until solution found or maximum resources spent class; e.g.,

XMLEl ement var1l = new XM_El enent ().
Field statements access public member variables of objects,

in the literature and in practice. A traditional fitness ftioe |engt var2 = vari line nr
Iﬁregrrzrrf:u Cdci);/gr?g: [1]. [2] consists of thpproach levehnd Method statementsinvoke methods on objects or call static

The approach levelA is used to guide the search towards methods, e'%" .
the target branch. It is determined as the minimal number hnt var? = varl. countChildren().
of control dependent edges in the control dependency grapH® (€St case is a sequence of such statements, and the length
between the target branch and the control flow representeddfy? (€St case is the number of statements it consists of.
the test case.

The branch distanceB is a common heuristic to guide the
search for input data to solve the constraints in the logica
predicates of the branches [1]. The branch distance for ah

Vi

given execution of a predicate can be calculated by appl V‘T bee.n defined; in gvolut:;)nary tgstma of claisefs r?s aall
a recursively defined set of rules (see [1] for details). Fg(ngle point crossover is used, meaning that each of thevpare

example, for predicate > 10 andz — 5, the branch distance chromosomes is split at a single point, and the constituamns p
to the true branch ig0 — 5 + k, with £ > 1. In practice, to of the parents are merged together (see Figure 2(a)).

determine the branch distance, each predicate of the seftwa Crossover functions can further vary in how the crossover

under test is instrumented to evaluate and keep track of t‘i’m%'nt IS chos_en. Tonella [7] chooses a randqm point in the
distances for each execution. range of[1,min(length(Py),length(P,))]. Baresiet al. [13]

To avoid that the branch distance dominates the appro%rﬁd Fraser and Zeller [8] choose different random positions

level, the branch distance has to be normalizedoin]. A 'O €ach of the parents in the rangélength(P)] and
recommendable normalizing functionz) is that suggested [Llength(Py)]. In this paper, we call this latter crossover
by Arcuri [21]: v(z) = z/(x+1). The fitness function for test operatorTwo Point Crossove(TPX).

caset and branch coverage goakan therefore be defined as As statements in the t est cases might have.dependencses, '.t'
follows: necessary to try to satisfy these dependencies when attpchi

) two sub-sequences from the parents. If there are alteenativ

fitnesgt,c) = A. +v(Be) (1) objects of the required type, then one of these objects is

randomly chosen. If there is no object that would satisfy the

dependency, then additional statements need to be added to
In search-based testing for object oriented software, testate the required object.

cases and thus also the chromosomes of the genetic algorithm)

are sequences of statements [7], [8]. A statement can bé a Eal Mutation

to a constructor, a method call, or a reference to a field orMutation introduces local changes into individuals. When

primitive value. Parameters of method and constructoiscalapplying mutation to sequences of method calls, we distiigu

and source objects of method calls and field accesses htwee main types of mutation, illustrated in Figure 2(b):

D. Crossover

ICrossover creates two offspring test cases from two parent
t casesP;, P,. Different flavors of crossover operators

C. Problem Representation

Deletion: This mutation operator removes a statement frof¥gorithm 2 Adapted genetic algorithm that includes bloat

a test case. As there are dependencies between statenf@isks, highlighted with gray background.

(e.g., a return value might be used as a parameter in an: current_population < generate random population
other method call), the dependencies need to be resolved, repeat

either by recursively deleting dependent statements, or by
replacing references with different suitable objects. In a-
chromosome of length, each statement is deleted with s
probability 1/1. 6

Change: This mutation operator alters a given statement. -

For example, Tonella [7] lists a number of different s
possibilities to change statements. In our experiments, &
change replaces a method call with a randomly chosem
method call that has the same return type and has alk
dependencies satisfied at the given position in the test
case. Primitive values (e.g., integer numbers) are changed
by a random but bounded increase or decrease. In a
chromosome of length each statement is changed with s
probability 1/1. 16

Insertion: In terms of bloat analysis insertion is the most ;,

interesting operator, as it is the only mutation operator,,
that contributes to growth of the length. We use the
following strategy to insert statements: With probabil-
ity o/, a new randomly chosen statement is inserted af,
a random position in the test case. If it is added, then g,

7 + elite of current_population
while |Z| # |current_population| do

Py,P, < select with extended rank selection
if crossover probabilitghen
01,05 < crossoverP;, P> with RPX
else
01702 — Pl,PQ
mutateO; and O, with size check
fp = min(fitness(Py),fitness(Py))
fo = min(fitness(Oy),fitness(03))
lp = length(Py) + length(Ps)
lo = length(O1) + length(O2)
Tp = best individual ofcurrent_population
if fo<fp Vfo=fpAlo<lp) then
for O in {01,0,} do
if ~length(O) < 2 X length(Tg) then
Z + ZU{0}
else
Z(—ZU{Pl 0rP2}
else

second statement is added with probabitity, and soon 7+ ZU{P,P,}
until the ith statement is not inserted. Parameters of new,, .yrent_population « Z
method calls are either satisfied with existing objects, or,; ynil solution found or maximum resources spent
lead to addition of further statements to create necessary
objects.
To generate the initial population of the search, we sample
test cases at random. First, we choose a valmel < r < W
with uniform probability, wherdV is a value that needs to be
set (e.g.JV = 80). Then, on an empty sequence we repeatedly

apply the insertion operator described above until thedase
has a length> . Because on average we expect W/2, Test cases are only generated for branches that have not

the value of¥” should not be set too high, otherwise there {@€€N covered previously by other test cases, as a test aase ca
the risk of consuming all the available memory. cover more than one branch.

branchesB’ a new budgetX’/|B’| is calculated and a
new iteration is started on these branches.

« This process is continued until the maximum number of
statements is reached.

F. Generating Test Suites IV. BLOAT CONTROL TECHNIQUES

Any non-trivial class will have a number of different cov- Bloat occurs when small negligible improvements in the
erage goals, even for simple coverage criteria. As discussness value are obtained with larger solutions. This i/ ver
in Section II, it is common practice to have a first phase @pical in classification/regression problems. When invsafe
random testing to cover the easy branches. Then, each remaisting the fitness function is just the obtained coveraug t
ing target can be individually sought with more sophistcat we would not expect bloat, because the fitness would assume
techniques. Some of these remaining coverage goals mayob#y few possible values. However, when other metrics are
infeasible which means that there exists no test case thatroduced with large domains of possible values (e.gnhda
would cover them. To avoid that all available resources aghistance [1] or mutation impact [8]), then bloat might occur
wasted on infeasible or difficult coverage goals on which the Bloat can be a particularly harmful phenomenon. Longer
search fails, it is necessary to limit the resources sperd orsequences can consume large amounts of memory and take
single coverage goal. For this, we apply the following > |onger to evaluate, which would lead to less generations in

« For |B| branches to cover and an initial budget &f the evolutionary search (within the same amount of time).

statements (or fitness evaluations, generations, ete), furthermore, very long sequences cannot be directly used fo
execution limit for the search on each branchXig|B|. testing purposes unless an automated oracle is availabiehw

« If a branch is covered, some budget may be left ovas usually not the case.

and so after the first iteration on all branches there is The problem of bloat is long known in the field of evolu-
a remaining budgetX’. For the remaining uncoveredtionary computation, and so different techniques have been

proposed to keep bloat under control. However, there is aBut how to choose a maximum lengil? Should it be equal
difference between the length of the test cases that are give 100 or 1,000? A too small value might make the search very
as output after the search and those that exist during thalikely to succeed. With a large value there might be the ris
search itself. On one hand, the output sequences shouldobeunning out of memory and being severely affected by bloat
as short as possible (while optimizing coverage). On therotin GP, a rule of thumb is to have trees of maximum depth
hand, during the search it can be very useful to have longsgual17. In the case of testing object-oriented software, we
sequences [17], because it would make the search ableate aware of no work that tries to analyze and give an answer
explore larger areas of the search landscape without betogthis research problem.
trapped in fitness plateaus. Once the search for maximumAs previously discussed, bloat is a very complex phe-
coverage is finished, a post-processing can be used to easdynenon. This is illustrated by the fact that, counterintely,
remove the unnecessary function calls. using a limit L might actually favor the raise of bloat. As a
Therefore, the dynamics of bloat and the methods comingtailed discussion of this would go beyond the scope of this
from the literature of genetic programming (GP) to contiast paper, we refer the interested reader to the literature [3].
might not behave in a similar manner in the case of testirg; i
object-oriented software. This section describes bloatrob - Dynamic Upper Bounds
techniques that can be applied to test case generation. Choosing a proper value for the upper liniit might not
be easy, and there might be side-effects due to the use of a
fixed L. BesideL, one further approach discussed by Silva and
One possible source of bloat is the crossover function, @osta [3] is to use a dynamic limit based on the best inditidua
which one of the offspring can grow in size. When using TPX in the current generation. For example, an offspritg
we choose two different splitting points in the parents.(€% could be rejected ifength(O) > 2 x length(Ts) (Line 18 in
and P,) at random, then the length of the offspring can be veddgorithm 2). In this way, we would not need the burden of
unbalanced when the splitting points are at the oppositesddxing a value forL, and would allow a less constrained search
of the chromosomes. The length of the offspring would vamyf the solution space. For example, if the current best solut
between0 andlength(Py) + length(Ps), with average value has lengthl0, we would still able to explore sequences up to
(length(Py) + length(P2))/2. length 20. Notice that such a dynamic limit can be used in
Another version of the crossover operator generates twonjunction with the static limitL.
offspring O; and O, from two parent test casd® and . A))])
random valuex is chosen froml0,1]. On one hand, the first D- Integrating Length in the Ranking Function
offspring O; will contain the firsta|P;| test cases from the Another approach to prevent bloat is to penalize the length
first parent, followed by the lagl — «)|P| test cases from directly in the fithess function [8], [12]-[14]. However, as
the second parent. On the other hand, the second offspxingdiscussed in Section Il, combining two different objecsive
will contain the firsta|P,| test cases from the second parenthat have different order of measure is not easy. Furthezmor
followed by the last1—«)|P; | test cases from the first parentbecause the branch distance might obtain any possible con-
In this paper, we call this operat&elative Position Crossover tinuous value, it would not be possible to combine it with
(RPX), and it is shown in Line 7 in Algorithm 2. In contrastthe length such that the length would be less important. The
to TPX, in RPX the offspring will never be longer than thditness functionC' + (1/5+ 1) (whereS is the size of the test
longest of the parents. case) discussed in Section Il works only because the cozerag
Regardless of the crossover operator, test cases can €tilbnly assumes integer values.
grow in size, as additional statements might be added tsfgati Instead of combining the length in the fithess function in
dependencies of merged parts of the parents. In additieh, tEquation 1, we use a different approach: In general, thestne

A. Relative Position Crossover

cases can grow as part of the mutation operator. function is only used to select individuals for reprodustio
)) In this paper, we useank selection[20] (see Line 5 in
B. Fixed Maximum Length Algorithm 2). Test cases are ranked based on their fitness

A very common approach to contrast bloat is to put avalue. Individuals with better fitness will receive a better
upper limit L to the length of the test cases, e.ff.= 100 rank, and so will have higher chances of being selected
function calls. This constraint can be enforced in seveelsy for reproduction. To penalize longer test sequences withou
First, by having search operators that do not sample offgpripenalizing a better fithess branch distance and approaeh lev
that are longer thai (Line 10 in Algorithm 2). For example, in case of ties in the ranking, we resolve the ties by giving a
an insertion mutation could be avoided if the length alreadyetter rank to the test cases that are shorter.
equalsL. Second, offspring that are longer than(e.g., when
we use TPX) can be rejected, and the parents will be copiedfto L€ngth Dependent Parent Replacement
the next generation instead of the offspring. Finally, tineit| The last method we investigate to contrast bloat is based on
can be given implicitly by specifying a maximum amount ofhe relations between the performance of the parents and its
resources to be spent per individual. For example, one aaiifspring. If one offspring has a fitness value strictly bethan
define a timeout for the execution of test cases. the fittest of its parents, then both offspring will be aceelpt

in the new generation independently of their length (bueoth Bo:

bloat control methods might still prevent it). However, mse

of equal fitness, the offspring will be accepted only if they
are not longer than their parents; see Line 16 in Algorithm 2.
In other words, we accept longer test sequences in the new

generations if and only if at least one of the offspring has Xo:
strictly better fithess value than both the parents. Ra:

V. EXPERIMENTAL EVALUATION Pa:

To study the effects of both the test case length and theBe:
bloat control techniques, we performed a set of experiments
In detail, this evaluation aims to answer the following egsé
guestions:
RQ1:
the search results?
RQ2:
achieved coverage?
RQ3:

the maximum length for the test cases is bounded
from above, i.e., if we set an upper limit. In
particular, we chosd. = W, where [1,IW] is the
range in which the length of new random test cases
is chosen from.

the crossover RPX is used instead of TPX.

use the length of the test cases to resolve the ties in
the rank selection of the parents for reproduction.
check length of offspring against parents’ length.
check the length of offspring against best solution’s
length in the current population.

For the initial length of random test cases, we consider
three values forlV, specifically W € {20,50,80}. For the
How does the maximum starting lengihi influence experiments in this paper, the total number of configuration
for the genetic algorithm is hen@é x 3 = 96. Because we run
How do the bloat control methods impact théhe search on each branch independently, this means atotal o
96 x 100 = 9,600 different experiments. In all the experiments,
Which techniques to control bloat are most effective®e give a budget 0100,000 statement evaluations (a typical

value in the literature, e.g. [16]). The search can finish for

A. Case Study

two reasons: either a test case that covered the targethbranc

As subject for our experiments, we selected a set of openfound (a so calledlobal optimun), or the entire execution
source Java libraries: Java Collections (a subset of tleeyv budget has been consumed.
library), Apache Commons Collections and Commons Prim- To compare whether a configuratighis better than another
itives, NanoXML, and a Java translation of the String casmnfiguration3 on a branch, we follow the follow procedure,
study subjects used by Alshraideh and Bottaci [22]. We alss described in more detail by Arcuri and Briand [25]. We
use a set of numerical applications used in [23] and a subset the genetic algorithnm times for both configurations
of classes from an industrial application [24]. This resdlin on that branch (s@n runs), and we record the number of

a large and variegated case study.

times a out of n an optimal solution is found with the first

This case study resulted in nearly 1,000 classes and mogafiguration.4, and the number of times it is found with
than 15,000 branches— far too many for an in-depth analysie other configuratio5. The success ratdor A is defined
of bloat control methods. We needed a way to filter out th&sa/n. If a > b, then it would seem that is better thens,
easy branches, and identify the difficult ones. This is alsand the other way round i < b. However, because genetic
of practical interest: If a testing techniqué is twice as algorithms are randomized, we need rigorous statisticsb te
fast as another techniqu®, then solving an easy problemto assess whether there is enough empirical evidence ta clai
in one millisecond instead of two milliseconds would be awith high confidence that the two success rates are indeed
improvement of no value from a practical stand point. On ttdifferent. We apply a Fisher exact test at significance level
other hand, solving a problem in one hour instead of two hours= 0.05. If the p-value is above the chosen level, then

would be of practical interest.

there would not be enough evidence to claim a difference in

In our case study, we applied the following filtering phasthe success rates of and 5. Still, the performance of the
to choose a selection of difficult branches: We applied ostr téwo algorithms can be statistically different, as we willno
case generation tool with a search limit of 200,000 statésnexliscuss in more detail.
per branch (of which there were more than 15,000) with In case there is no statistical difference in the success
all bloat control techniques enabled, collecting inforimat rates, we can analyze ttigne an algorithm takes to find an
for each branch about the number of statements execuggdimal solution for the runs in which it is successful [25r
until a solution was found (one run per branch). Given thigxample, assume that= b = n, i.e., for the given budget of
information, we selected the subset of those branches whgiatements the algorithm finds an optimal solution in allxhe

resulted in a solution (i.e., are feasible), but requiretiveen

runs. This would happen if the target branch is easy andér th

100,000 and 200,000 statements for this solution (i.e., sgven computational budget is very high. In these cases, we

non-trivial). This resulted in a set of exactly 100 difficbiut

might want to know how fast the algorithm finds a solution.

feasible branches, which we used for further experimeartati This is of practical importance, because we can stop thelsear
as soon as we find an optimal solution. For each run that

B. Experimental Setup

leads to find an optimal solution, we can monitor how much

For the experiments we consider the five bloat contreabmputational effort has been spent, measured in the number
techniques described Section IV. In particular, we use tloé statements executed before finding the optimal solutbon f
following labels to indicate whether a bloat technique isach run. We can hence compare the computational effoft of

employed:

(based oru observations/values) with the effort Bf(based on

2
- o + ©° A+ A
8 ! = et ++++ e R sl
' +, 41 +. A+
+ 8 8 gt o w=20 g 4 Tt o W=20
= s - T A W=50 N A W=50
3 T a 5 81 +H + W=80) + W=80
5 8- T 008t 6O 5 e Y9N 5 84
2 Ay DAN = DA, - A A
7 e ot 287 80000000 7 9 AANABARANBANAE 7 Anntd
k) AN 00 2 MAMAMAMA g
® A4 LOAD 000° o . o
& . ++++++ N Ai 5000000° g 8 pae” 2 {7
g g9 + A 00 g 000000 g
< ®° A AAAAAO 007 = 2]RA ooooooooooooooooooooooooooo° z ©0000000000000000000000000000000000000006000000
L8500 o W=20 00000000 9 060
X 5000 A W=50 S - %00000°
00 + W=80
© 1 o o -
T T T T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
% of budget used 9 of budget used 9% of budget used
(a) No bloat control (b) RPX crossover function (c) Fixed upper bound
8 ¥ o 7 ¥
/ g\ 2 - T
3 + H+H+H++H++‘*’*+++++++++ o w=20 |y’ | o w=20 . bR
- e A W=50 - + A W=50 . 8 g a0
5 o | Tt + W=80 £ 84 T W=80 =3 L A
8 T 1 + 8 94 Tt pOABDANNBE
g o PNTLINYN pdanattS g Ty g st °
28 AOK ADDA 2 o =+ 2 o | YNNIV 000
% Bpapatt EN ADAAANBALAN % & N ++ % ® “ nannst oooooooooooooooooooo
s g g +] 2ah 000
s « 2 + 2 4 600°"
< 1000000000000000060000000000000000000000000000° < g4 “anen iy < 5000000°°%° ° W=20
3 o0 ° 00°0§AAA ++*ﬂﬂ—‘+u. S 00000 A W=50
o0 06 + W=80
© 1 o o -
T T T T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
% of budget used 9 of budget used 9% of budget used
(d) Check against best (e) Length in rank (f) Check against parents

Fig. 3. Evolution for the same branch as in Figure 1, using ffferdnt bloat control techniques one at a time. Evolutioddsinded by 100,000 executed
statements for these graphs, results are averaged for 25 runs

b observations/values). As discussed in [25], we use a Marfinally, Figure 3(f) shows how the average length increases
Whitney U-test (witha = 0.05) to asses which configurationslowly when using the parent check.
requires less computational effort to find optimal solusion
The genetic algorithm was configured with a populatio
size 0f 100, and a rank bias of.7. The crossover probability ~To study the effects of the individual bloat control tech-
was set t).75, and mutation is applied with probability/3 niques in detail, we ran a first set of experiments in which,
each for insertion, deletion, and change. The initial itiser for eachi¥’ € {20,50,80}, we ran a genetic algorithm with no
probability o was set to0.5. These settings are in line withbloat control activatedNo) and with the five bloat control
common practice in the literature and our past experientte wactivated one at a time, for a total 8fx (1 +5) = 18

R. Analysis of Individual Bloat Control Techniques

genetic algorithms. configurations for each branch (i.e., a subset of the taial
] configurations). This first set of experiments is used tosssse
C. Bloat Control Techniques lllustrated the implication of each bloat control method in isolation.

To illustrate the effects of the individual bloat controln fact, the case of multiple combinations of bloat control
techniques, we performed a set of experiments on the bramohthods is harder to analyze and visualize.
used to generate the plot in Figure 1. We generated testor each configuration and for each branch, we ran the
cases for this branch using 25 different random seeds agehetic algorithmn = 25 times, for a total ofl00 x 18 x
a maximum of 100,000 statements, and averaged the resdlis= 45,000 runs. Figure 4 show$8 boxplots, one for each
Figure 3(a) shows the behavior of the length without anytloanalyzed configuration. Each boxplot shows the distriloutio
control techniques activated—the length grows, as expectefl success rates on th0 branches for that configuration.
Figure 3(b) shows how the average test case length behaVakle | and Il summarize the statistical analyses we carried
over the evolution of test generation when we use RPX fout on these data. In particular, in Table | for eddh €
the same branch. The average size of the test cases in¢reg28s50,80} we report the results of the statistical comparisons
but at a much slower rate than with TPX. Figure 3(c) shows each configuration against the other five (for a total of
how the average test case length converges when a fiXx€ x 6 x 5 x 3 = 9,000 comparisons). On the other hand,
maximum length is used. Figure 3(d) shows how the averageTable Il we report the results of the statistical compants
test case length first shrinks as the long individuals of thlregarding the choice of the valli€ € {20,50,80}. For the five
initial population are removed, and then grows only slowlploat control and no control at all configurations, we coregar
Figure 3(e) shows how the use of length in the rank reduceach choice oflV’ with the other two (henc& x 2 = 6
the average test case length for the usual example branmtmbinations), for a total of00 x 6 x 6 = 3,600 comparisons.

To analyze and visualize the results of this large set of,data
we followed the following procedure: For each branch, we

Eh eT T T TT compared the effectiveness of each configuration agaihst al
o | T R b other configurations, one at a time (96, x 95 comparisons,
Sle i b T T T T which can be reduced by half due to the symmetric property

0.6
Il

of the comparisons). Initially, we assign a score0db each

R SR — L configuration. For each comparison in which a configuration
: ‘ H QH is statistically better, we increase its score by one, and we
H H E ; — L5 ‘ reduce it by one in case it is statistically worse. Therefare

0.4

1

Success Rate

0.2

the end each configuration has a score betwegh and 95.

S eeetiietielieetieelieeetielieetieetlieelieetilies The higher the score, the better the configuration is.
o Bo ¥o Ra Pa B No B0 Xo Ra Pa Be Mo 8o o Ra Pa Be After this first phase, we rank these scores, such that the
Configurations for Bloat Control highest score has the best rank, where better ranks have lowe

values. In case of ties, we average the ranks. For example, if
Fig. 4. Success rate for 18 configurations, each applied bthal 100 we _have five qonflguratlons with SCOI’@H),0,0,QO,_—SO}, then
branches. Left six boxplots are faf/ = 20, W = 50 in the centre and their ranks will be{2,3.5,3.5,1,5}. We repeat this procedure
W = 80 for the six boxplots on the the right of the figure. for all the 100 branches, and we calculate the average of these
TABLE | ranks for each configuration, for a total b0 x 96 x 95/2 =
COMPARISONS OF BLOAT CONTROL METHODS AGAINST EACH oTHER 456,000 statistical comparisons.
WHEN CONSIDERING EACH METHOD IN ISOLATION This a very large number of comparisons, which can lead
to a high probability of Type | error [25] if we consider
No Bo Xo Ra Pa Be the hypothesis thall tests are significant at the same time.
Statistically Better 8 49 15 268 51 29 We do not use corrections such as the Bonferroni one, for
Statistically Bquivalent 1347 1393 1392 1224 1402 1402re550ns that are discussed in detail and at length in [25. Th
Statistically Worse 145 58 93 8 47
configurations with lower average ranks can be considered
better then the others. Table Il shows the performancelof al

. , .the 96 configurations, ordered by their ranks.
As we can see in those tables and figure, all the controlling . :
The results in Table Il confirm some of our hypotheses,

bloat techniques have a beneficial effect for obtaining dmghbut also point out some unexpected behaviors. The worst

success rate. In particular, penalizing longer lengthsaimkr : Lo) .
; . . configuration is when no bloat control is activated, and the
selection Ra) seems to be the most effective techniqué o
! Search starts from small lengths (see last row). This is a
regardless of the choice 6. . .) .
; : i . particular configuration, with an average success 6at60
Regarding the choice , we do not see any partlcularthat is much lower than the.464 of the top configuration
trend in the data. Having short starting sequen&gs= 20) or ' P g '

long ones IV = 80) can have an effect, but that is dependent On one hand, regarding the.blo_at control techniques, the
one that has most effect iBa. Activating Ra always produces
on the chosen bloat control method (see Table).

better results, whatever the setting of the other paramseter
E. Investigations on All Bloat Control Techniques On the other hand, it came as a surprise tRatX is

There can be subtle interactions within the different blo&Ctually giving bad results (i.eXo does not appear in the top
control methods when more than one is used at the same tiffKings). It seems that an unbalanced length crossovér suc
To study these interactions, we carried out the same type@. X, which can produce very long as well as very short
experiments on the remainir@s — 18 configurations, for a test.cases, is gctually bengflual. We can providmajecture .
total of 100 x 96 x 25 = 240,000 runs of the algorithm. This 0 give a plausible explanation to such an unexpected behavi
is a very large set of experiments that took several days lfbSome cases, longer test sequences can have more chances

complete even when run on a cluster of computers. to achieve higher coverage [17], so sampling longer test
sequences is beneficial. However, when during the search a

fitness plateau is reached, longer test sequences would not
TABLE have better fitness. Smaller offspring generated WithX will
FOR EACH BLOAT CONTROL METHOD IN ISOLATION, THIS TABLE REPORTS X) X p g g s .
THE NUMBER OF TIMES A PARTICULAR CHOICE OFW ProviDES BETTER likely have the same fitness (plateau), buRi# is activated
PERFORMANCE THAN THE OTHER TWO they will be preferred. The search will hence have a sudden
drift toward smaller test sequences. Smaller test seqgsence
are quicker to evaluate, and so more generations would be

Bloat Control W =20 W =50 W =280

gg 2*(3) g _?Li possible. More generations would lead to a more focused
X0 11 17 15 search of the test data in input to those sequences, whidit mig
Ra 32 10 18 help to find the right input data to escape from the plateau.
EZ 12 1? 12‘ Although this is a plausible explanation, more researct wil

be required to verify whether that is actual the case, and no

other subtle dynamics are involved. TABLE Il
Regarding the other three bloat control methods, they seeRtrRFORMANCE OF THE THE96 CONFIGURATIONS ORDERED FROM TOP
beneficial, but they are not as importantRe When we look (BEST PERFORMANCE TO BOTTOM (WORST PERFORMANCE. SYMBOLS
at the bottom of the table. it seems thi is better tharBo ARE USED TO INDICATE WHETHER A PARTICULAR BLOAT CONTROL
J METHOD IS ACTIVATED.
andBe. But at the top, there is not much difference.

The role of W is rather particular: In the best seven s x ra Pa Be w AvRank Av. Success Rate
configurations, it is set td = 50. But then, for other ~ P 2 sto 2 P v
configurations it does not seem that the choicdiothas any o e v g W 31840 058
particular effect (i.e., we do not see any particular patier ¢ vy 8 w 32670 0456
the data). At the moment, we do not know whether there is 2 ® . W 35415 0448
any specific reason for why that is the case. 2 g &, B v 37.3% 023

Regarding our initially posed research questions, thiddea — ~ ® 2 wo s 0459
us to the following conclusions: 4 8 o B w 38080 0422
RQ1: How does the maximum starting lengthW influ- B o W 39580 0413

VAN (&) w 39.790 0.431

ence the search results? e 2 5w 39215 0431
The results of our experiments show that the choice ofithe 2~ = & o " 10330 o4
maximum starting lengti” is not particularly important. % . § v % :VV w %Zéé E%E
@ 53] w 40.940 0.438

Our results have also clearly shown that all bloat control 2 g £ ¥ W W o

techniques have a large effect of the achieved coverage. e T 8 w A ppres
® v w 41.925 0.413

RQ2: How do the bloat control methods impact the T A W s P
achieved coverage? I S 4250 0395
X ® w 42.800 0.422

Applying bloat control techniques 8 o W o oo

increases coverage significantly. 2 B8 2 . a w” Py 9429

B 6 v YW s 0303

Among the bloat control methodRa has a strong beneficial A = &7 W s 0412
effect, whereaXo decreases the performance. The other three 2 e W e o418
methods are useful, but not as importanias Because using 2 B ¢ . W dees 0388
only Ra alone does not give good enough results (see Table ~ & & v = W aneo 0379
), based on our results we can suggest the practitiomers t 2 v w 4898 0342
use all bloat control methods bib at the same time. N v B, 49.105 0334
RQ3: Which techniques to control bloat are most effect L voEo 50.740 0356
tive? a " g W 21350 0340

AN 53] w 51.570 0.327
Rank selection with length has the best effect, and should - VOB w Y e 035
be used together with all other techniques but RPX| . ® N w Z Eggé §§§§
v X .
VI. THREATS TOVALIDITY = v oo W e4ts 0312

Threats tointernal validity might come from how the v : w w Egégg §§§§
empirical study was carried out. To reduce the probability o X v W ggfggg gfgéj
having faults in our testing framework, it has been cargfull 2 s w o oes 0308
tested. But it is well known that testing alone cannot prove 4 ¥ v W s6.008 0310
the absence of defects. Furthermore, randomized alggithm & L B W, B 0304
are affecteq by chgnce. To cope with th|_s problem, we ran = v w 56295 0312
each experimerit5 times, and we followed rigorous statistical 4 & v W mes 0201
procedures to evaluate their results. 4 = W s 0291

The selection of the set d00 difficult branches was based & W s 0306
on only one run for practical reasons (total number of braach A 2 w0 0297
was more than 15,000). Therefore, it might be possible that ~ & 5w 80210 0285
some of them would not be difficult on average, and we could » G W o 0300
have missed some other difficult branches. However, once the = " w650 0280
set was selected, all experiments on that set were valid and , & B W eoros 0289
independent from the chosen selection mechanism. - w7 sL6% 0267

We used both open source projects and industrial software w 71765 0190

as case studies, for a total of nearly 1,000 classes. We

selected different types of applications, such as for exampi[4] Y. Jia and M. Harman, “An analysis and survey of the develept of

implementations of data structures, complex manipulatiah mutation testing,” CREST Centre, King's College London, ton, UK,

. . .. Technical Report TR-09-06, September 2009.
St_”ng data and numerical gppllcatlon_s. Neverthelessrfeth'ae [5] J. W. Duran and S. C. Ntafos, “An evaluation of randomitest IEEE
still the threat toexternal validityregarding the generalization Transactions on Software Engineerjngl. 10, no. 4, pp. 438-444, 1984.
to other types of software, which is common for any empirica[6] J. C. King, “Symbolic execution and program testingdmmunications

lysis. Furth d he | f : of the ACM pp. 385-394, 1976.
analysis. Furthermore, due to the large amount of expetsNen 7 p. Tonella, “Evolutionary testing of classes.” IBSTAO4: Proceedings

only 100 branches were used as case study. of the ACM International Symposium on Software Testing amalyis
ACM, 2004, pp. 119-128.
VIl. CONCLUSIONS [8] G. Fraser and A. Zeller, “Mutation-driven generation wfit tests and

. oracles,” INISSTA'10: Proceedings of the ACM International Symposium
Evolutionary search with variable size representation is oy software Testing and AnalysisACM, 2010, pp. 147-158.

susceptible tdloat—that is, a disproportional growth of the [9] S. Wappler and F. Lammermann, “Using evolutionary alganisifor the

length of individuals that quickly uses up all resources sod unit testing of object-oriented software,” BECCO'05: Proceedings of
.g v h . h d h y f P | hi | the 2005 Conference on Genetic and Evolutionary Computati@CM,
seriously harming the search. Unfortunately, this alsormsea 5005, pp. 1053-1060.

it applies to search-based testing for object-orientetivewé, [10] J. C. B. Ribeiro, “Search-based test case generatian ofgect-

lth h this has n n sufficientlv tr in th oriented Java software using strongly-typed genetic @armogning,” in
although this has not been sufficie tyt eated the liteen GECCO’08: Proceedings of the 2008 GECCO conference coropani

so far. "_1 this paper, we performed a set of experimentsgusin 5 Genetic and evolutionary computatioCM, 2008, pp. 1819—1822.
a genetic algorithm, on the properties of test sequégiogth [11] K. Inkumsah and T. Xie, “Improving structural testing dfject-oriented

programs via integrating evolutionary testing and symbakecetion,”
and how t.O Cloumer the Ieﬁe(r:]ts of |e?1§hb§t hoi f . in ASE’08: Proceedings of the 23rd IEEE/ACM International @&wence
Interestingly, our results showed that the choice of stgrti on Automated Software Engineerjr2008, pp. 297—306.

length for the search is secondary to the choice of bloap] A. Arcuriand X. Yao, “Search based software testing bjest-oriented

control techniques. Not only is there the danger of running gggtsai”ers””forma“"” Sciencesvol. 178, no. 15, pp. 3075-3095,

Into prpblems such as us!ng up all memory and mcreasm@] L. Baresi, P. L. Lanzi, and M. Miraz, “Testful: an evalomary test
execution times, our experiments showed that the succtss ra approach for Java,” iHfCST'10: Proceedings of the 3rd International

for the same amount of resourcessignificantlyhigher when Conference on Software Testing, Verification and Validatio IEEE
Vi bloat trol techni Computer Society, 2010, pp. 185-194.
applying bloat control techniques. [14] J. H. Andrews, T. Menzies, and F. C. Li, “Genetic algoniis for

Our experiments clearly points to which bloat control tech- randomized unit testingJEEE Transactions on Software Engineering

niques to use and which ones should not be used in practifa] vol. 99, no. PrePrints, 2010. . . .
. 15] K. Deb, Multi-Objective Optimization Using Evolutionary Algdrins
contexts. As long as bloat is properly taken under conthal, t John Wiley and Sons, 2001.

choice of test sequence lengths at the beginning of searchié M. Harman and P. McMinn, “A theoretical and empirical staf search
not particularly important, because the search algoritbars based testing: Local, global and hybrid seardEEE Transactions on

. . Software Engineeringvol. 36, no. 2, pp. 226-247, 2010.
learn which are the best lengths toward direct the searoteff 171 A~ arcuri, “Longer is better: On the role of test sequeniength in

To support our claims, we carried out a very large empirical software testing,” inlCST'10: Proceedings of the 3rd International
study on several types of applications (e_g_, data strestur Conference on Software Testing, Verification and Validatio IEEE
. Computer Society, 2010, pp. 469-478.
string processing, numerical applications), using botlenop[18] J. H. Andrews, A. Groce, M. Weston, and R. G. Xu, “Randast run
source and industrial software. A rigorous statistical hodt length and effectiveness,” iIfEEE/ACM International Conference on
has been employed to verify with high confidence that oy Automated Software Engineering (ASEJ08, pp. 19-28. _
It ientificall lid 19] G. Fraser and A. Gargantini, “Experiments on the tesedasgth in
results are scientincally valid.) specification based test case generationhiernational Workshop on
As future work, we plan to apply our experiments to a larger Automation in Software Test (AST009.

set of case studies, and include further coverage criterial0] D. Whitley, “The GENITOR algorithm and selective pressuWhy

dditi to b h | dditi dt id rank-based allocation of reproductive trials is best,TGGA'89: Pro-
addiuon 1o branch coverage. In addition, we need to consiae ceedings of the Third International Conference on Genelgokhms

the effects of other parameters such as the population 8ize i Morgan Kaufmann Publishers, 1989, pp. 116-121.
enetic algorithms. [21] A. Arcuri, “It does matter how you normalise thg branchtaiiee in
% K | g Gord = is funded by the CI search based software testing,”I®@ST'10: Proceedings of the 3rd In-
cknowledgments. OI’. on kraser Is .un e y the IUSter ternational Conference on Software Testing, Verificatiod &alidation
of Excellence on Multimodal Computing and Interaction at IEEE Computer Society, 2010, pp. 205-214.

Saarland University, Germany. Andrea Arcuri is funded bQZ] M. Alshraideh and L. Bottaci, “Search-based softwagst tdata gener-
he N . R hC i ation for string data using program-specific search opesa®esearch
the Norwegian Research Council. articles,” Software Testing, Verification, and Reliabilityol. 16, no. 3,
pp. 175-203, 2006.

REFERENCES [23] A. Arcuri and L. Briand, “Adaptive random testing: Anlukion of

[1] P. McMinn, “Search-based software test data generatforsurvey,” effectiveness,” Simula Research Laboratory, Tech. Rep0-28] 2010.
Software Testing, Verification and Reliabilityol. 14, no. 2, pp. 105— [24] A. Arcuri, M. Z. Igbal, and L. Briand, "Black-box systertesting of
156. 2004. real-time embedded systems using random and search-baseg, test

[2] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege ICTSS'10: Proceedings of the IFIP International Conferernn Testing
“A systematic review of the application and empirical invgation iof;ware_ ancé Sl_yséemsjp‘rx]ger, %01?' ide for using sistical test

of search-based test-case generati®BEE Transactions on Software [25] A. Arcuri and L. Briand, “A practical guide for using ststical tests
Engineering vol. 99, no. PrePrints, 2009. to assess randomized algorithms in software engineering|EEE

[3] S. Silva and E. Costa, “Dynamic limits for bloat control irergetic International Conference on Software Engineering (IGSE)L1.

programming and a review of past and current bloat theor{@srietic
Programming and Evolvable Machinegol. 10, no. 2, pp. 141-179,
2009.

