
Generating Unit Tests for Concurrent Classes

Sebastian Steenbuck
Saarland University – Computer Science

Saarbrücken, Germany
steenbuck@st.cs.uni-saarland.de

Gordon Fraser
University of Sheffield

Sheffield, UK
gordon.fraser@sheffield.ac.uk

Abstract—As computers become more and more powerful,
programs are increasingly split up into multiple threads to
leverage the power of multi-core CPUs. However, writing cor-
rect multi-threaded code is a hard problem, as the programmer
has to ensure that all access to shared data is coordinated.
Existing automated testing tools for multi-threaded code mainly
focus on re-executing existing test cases with different sched-
ules. In this paper, we introduce a novel coverage criterion
that enforces concurrent execution of combinations of shared
memory access points with different schedules, and present
an approach that automatically generates test cases for this
coverage criterion. Our CONSUITE prototype demonstrates
that this approach can reliably reproduce known concurrency
errors, and evaluation on nine complex open source classes
revealed three previously unknown data-races.

Keywords-concurrency coverage; search based software en-
gineering; unit testing

I. INTRODUCTION

The increasing use of multi-core processors makes it ever
more important to use multi-threaded programming to lever-
age the power of multiple cores. However, writing correct
multi-threaded code is a hard problem, as the programmer
has to ensure that all access to shared data is coordinated.
The coordination is usually done with some sort of locking –
which in turn might lead to deadlocks [20]. Software testing
is an important countermeasure to identify such concurrency
issues in programs.

Writing test cases for concurrency errors is problematic
for three reasons: (1) The scheduler might not be control-
lable by the programmer; this is the case in Java. (2) The
programmer might not fully understand the consequences
of multiple threads accessing the same memory. (3) The
programmer might not think of some particular schedule that
would be required to lead to a concurrency issue; e.g., he
might know about a data race but assumes that one thread
always needs much longer than another thread and therefore
does not enforce the order of the threads [16].

For example, Figure 1 shows the entrySet method of
the HashMultimap.AsMap class, containing bug #3391.
If two threads access the same hashmap and call entrySet
at the same time, a race condition can lead to erroneous

1http://code.google.com/p/guava-libraries/issues/detail?id=339

1public Set entrySet() {
2 Set result = entrySet;
3 return (entrySet == null) ?
4 entrySet = new AsMapEntries()

:
5 result;
6}

Figure 1. Concurrency bug #339 in the HashMultimap.AsMap class
in the Guava library: entrySet() may return null if two threads call
the method at the same time.

HashMultimap multi0 = new HashMultimap();
HashMultimap.AsMap map0 = m.asMap();

Thread 1:
map0.entrySet();

Thread 2:
map0.entrySet();

Figure 2. Concurrent unit test produced by CONSUITE reveal-
ing the bug in Figure 1: Two threads independently access a shared
HashMultimap.AsMap instance, and are executed with all interleavings
of the three accesses to the entrySet field in Figure 1.

behavior: If entrySet is null initially, then the first
thread assigns null to result and should then check if
entrySet was null. However, if the scheduler switches
the context before the check can happen, the second thread
may assign a value to entrySet. The first thread will
evaluate the condition to false and return its local result
variable, which is null.

Automated test generation is important to simplify soft-
ware testing, and modern test generation techniques can
efficiently generate test data that exercise program code
thoroughly. However, structural test generation approaches
often assume that there is no concurrency (e.g., [9]). On
the other hand, tools to automate concurrent testing often
assume that tests already exist such that different schedules
can be explored (e.g., [7], [18]).

In this paper we present a technique that generates both,
concurrent test cases and execution schedules. All the tech-
nique needs as input is the bytecode of a class under test
(CUT). It generates test cases such that combinations of
memory accesses are exercised by different threads, and
then explores different schedules for these combinations.
For example, Figure 1 contains three synchronization points
(memory accesses to a shared variable, definition in Sec-
tion II-C) when accessing the entryMap member variable
at Lines 2, 3, and 4. Our approach would create test cases

http://code.google.com/p/guava-libraries/issues/detail?id=339

to cover all pairs and triples of such synchronization points,
and would then execute these with all possible interleavings.
Figure 2 shows such an example test case, and this test case
easily reveals the data race, leading to a null return value.

In detail, the contributions of this paper are as follows:
• Concurrency coverage: We formalize a coverage cri-

terion based on observations on real concurrency bugs
(Section II).

• Test generation: We present a search-based technique
to derive concurrent test cases that exercise a shared ob-
ject with respect to the concurrency coverage criterion
(Section III).

• Evaluation: We demonstrate on a set of concurrency
benchmarks that the approach can reliably reproduce
known concurrency issues (Section IV).

• Real bugs: We show the results of an evaluation on a
set of open source classes, revealing several previously
unknown data races (Section IV).

II. BACKGROUND

A. Evolutionary Testing of Classes

Search-based testing applies meta-heuristic search tech-
niques to test data generation [17]. A popular algorithm
also used in this paper is a ge¡netic algorithm (GA), in
which a population of candidate solutions is evolved towards
satisfying a chosen coverage criteria. A fitness function
guides the search in choosing individuals for reproduction,
gradually improving the fitness values with each generation
until a solution is found.

In this paper we consider object oriented software, for
which tests are essentially small programs exercising the
classes under test. A common representation is a variable
length instruction sequence [9], [26] (method sequences).
Each entry in such a sequence represents one statement
in the code, such as calls to constructors, methods, or
assignments to variables, member fields, or arrays. Recently,
search-based testing has also been extended to whole test
suite generation [9], where test suites are evolved with
similar operators towards satisfying entire coverage criteria.

B. Concurrent Testing

The majority of work on automated unit testing considers
the case of single-threaded programs. In the context of
multi-threaded programs, test automation usually focuses on
the exploration of different schedules for existing program
runs. For example, the DejaVu platform [4] allows the
deterministic replay of a multi-threaded Java program. Other
approaches assume existing tests such that different sched-
ules for these tests can be tested. For example, Contest [7]
allows the replay of program runs and the generation of
new interleavings by adding random noise to the scheduler.
Alternatively, stateless model checkers like CHESS [18]
can systematically explore all thread interleavings for a
given test case. Heuristics have been shown useful to speed

up this exploration (e.g., [5]). Finding good schedules can
also be interpreted as an optimization problem [8] solvable,
for example, by a GA. LineUp [3] checks linearizability
by comparing whether sequential behavior to interleaved
behavior, but assumes a set of method calls given as input,
i.e., it does not address the test generation problem.

There are only few approaches that try to generate not
only schedules, but also test cases: Krena et al [13] proposed
a search-based technique that optimizes schedules used by
the Contest [7] tool. Ballerina [19] uses random test prefixes,
and then explores two methods executed in parallel in two
different threads. Sen and Agha [22] combined jCute [23]
with race detection algorithms. The Ballerina tool [19] is
the most similar to the approach described in this paper:
It randomly invokes methods on a shared object under test
in parallel. However, it cannot find concurrency issues that
require execution of parallel sequences of code rather than
individual method calls, and it cannot find data races based
on more than two memory access points [16] (e.g., Figure 4).

Godefroid and Khurshid [11] used a GA in a model check-
ing approach to find deadlocks; their fitness function aims to
maximize the number of waiting threads. A similar approach
is also followed by Alba et al [1]. These approaches search
for individual program inputs rather than sequences of calls,
and they are not driven by structural coverage criteria. In
model checking partial order reduction [10] is used to reduce
the number of schedules that need to be explored. In prin-
ciple, partial order reduction could serve as an optimization
of our test generation approach.

C. Concurrency Coverage

Systematic test generation is often guided by a cover-
age criterion that describes which aspects of a program
a test suite needs to cover; e.g., statements or branches.
To explore different interesting concurrency scenarios, dedi-
cated coverage criteria for concurrency have been proposed.
Synchronization coverage [2] was designed as an easy to
understand concurrent coverage criterion such that testers
would be able to apply it when manually writing unit tests.
The coverage criterion requires that for each synchronization
statement in the program (e.g., synchronize blocks, wait(),
notify(), notifyAll() of an object instance and others) there
is a test such that a thread is stopped from progressing at
this statement.

To also consider shared data accesses that are not guarded
by synchronization statements, Lu et al [15] defined a hi-
erarchy of more rigorous criteria, including all-interleaving
coverage, which requires that all feasible interleavings of
shared access from all threads are covered; thread pair
interleaving requires for a pair of threads that all feasible in-
terleavings are covered; single variable interleaving requires
that for one variable all accesses from any pair of threads are
covered; finally, partial interleaving requires either coverage
of definition-use pairs or consecutive execution of pairs of

access points. In general, many of the existing criteria are
either too weak or too complex to be of practical value in a
testing context [21], [24].

Lu et al. [16] analyzed 105 concurrency bugs in open
source applications, and learned that:

• 96% of the examined concurrency bugs are guaranteed
to manifest if a certain partial order between two threads is
enforced,

• 92% of the examined concurrency bugs are guaranteed
to manifest if a certain partial order among no more than
four memory accesses is enforced; 75% are guaranteed to
manifest themselves with up to three memory accesses; all
deadlocks were guaranteed to manifest themselves with up
to three memory accesses,

• 97% of the examined deadlock bugs involved at most
two variables, and 66% of the examined non-deadlock bugs
involved only one variable.
This suggests that it is feasible to find most concurrency is-
sues by exhaustively covering combinations of low numbers
of memory access points, threads, and variables.

In the this paper, we use term synchronization point
(SP) synonymously for a memory access to a shared
variable. For example, in the case of Java bytecode this
amounts to the GETFIELD, GETSTATIC as well as PUT-
FIELD and PUTSTATIC instructions. A schedule is a
list 〈(t1, s1), . . . , (tn, sn)〉 where ti ∈ [1, . . . ,m], si ∈
[1, . . . , n]. For example, (t1, s1) with t1 = 1 and s1 = 3
means thread 1 executes the instruction associated with the
synchronization point 3. The example in Figure 1 has three
synchronization points: s1 = 1 and s2 = 2 in line 2 and 3
for the GETFIELD bytecode instructions used to load the
entrySet and s3 = 3 in line 4 for the underlying PUT-
FIELD instruction. With two threads (t1 = 1, t2 = 2) the
schedule 〈(t1, s1), (t2, s3)〉 is a failure enforcing schedule,
while 〈(t1, s3), (t2, s1)〉 is not.

We define concurrency coverage as a parameterized cri-
terion that requires covering all possible schedules for sets
of threads, variables, and synchronization points:

Definition 1 (Concurrency coverage): All feasible com-
binations of n synchronization points for each group of v
variables, being accessed by m threads.

In a program which only one thread can access at a
time, no such schedule can be executed. Therefore we also
count schedules that cannot be executed due to deliber-
ate synchronization as covered. Concurrency coverage fits
between thread pair interleaving and partial interleaving
coverage [15]. The number of schedules in the criteria can be
larger or smaller as in single variable interleaving, depending
on the tested code. As Lu et al. [16] determined that more
than 70% of all concurrency bugs manifest if a certain
partial order between three main memory accesses to each
combination of two variables is enforced, in this paper we
consider concurrency coverage for the case of n = 3, m = 2,
and v = 2.

Algorithm 1 Test suite generation conceptional view.
Require: Class C
Require: Number of synchronization points n
Require: Number of threads m
Require: Number of variables v
Ensure: Test Suite T

1: procedure GENERATESUITE((C, n,m, v))
2: p←GENERATEPREFIXSEQUENCE(C)
3: N ←GETSYNCHRONIZATIONPOINTS(C)
4: S ← GENERATESCHEDULES(n,m, v,N)
5: P ← GENERATEPARTIALGOALS(S,m)
6: S ← remove statically infeasible schedules from S
7: A← generate method sequences for P
8: T ← {}
9: for s ∈ S do

10: for sequences ∈ GETMATCHINGS(s,A) do
11: if seq. execution of seq reaches s then
12: if par. execution of seq reaches s then
13: T ← T ∪ {(p, sequences, s)}
14: return T ;

III. GENERATING CONCURRENCY TESTS

Unlike synchronization coverage [25], which was specif-
ically designed in order to cater for the needs of developers
when manually writing unit tests, concurrency coverage is
likely to produce far more coverage goals that need to be
exercised by tests. Thus, the aim of our test generation
approach is to automatically produce test sets that achieve
high concurrency coverage.

Algorithm 1 depicts the approach at a high level. The
output of the algorithm is a set of test cases, where each
test is a triple consisting of a prefix sequence p that creates
a shared object, a set of m method sequences performing
operations on the shared object, and a schedule s which
determines how the m threads are interleaved. This set of
tests covers as many as possible of all n combinations of
synchronization points of v variables with m threads.

The algorithm first generates a simple prefix sequence that
creates an instance of the class under test C – in most cases,
this is simply a constructor call and some setup of required
complex parameters. Then, the first step of the analysis
consists of determining all test goals, i.e., all schedules that
the coverage criterion requires for the given parameters m,
n, v on the class C. Based on the set of schedules S,
the algorithm then determines a set of individual method
sequences that need to be generated. For this, the schedules
are summarized in a tree-like data structure; this is described
in detail in Section III-A.

The result of this analysis is a set of sub-goals P ,
each of which is a single method sequence that covers
different synchronization points of class C. As described
in Section III-B, we use a GA to derive these sequences.

Finally, given the set of method sequences A we can

Algorithm 2 Schedule generation.
Require: Number of synch. points n in a schedule
Require: Number of threads m
Require: Number of variables v
Require: Set of synchronization points N
Ensure: Schedules S

1: procedure GENERATESCHEDULES(n,m, v,N)
2: G← [1, . . . ,m]× [1, . . . , |N |]
3: S ← G
4: for 2 to n do
5: S ← S ∪ S ×G
6: clean(S) //remove schedules with only one thread
7: return S;

iterate over all target schedules S and try to assemble a
concurrent test consisting of m individual method sequences
in parallel. The procedure GETMATCHINGS in Algorithm 1
selects all combination of the method sequences in A which
reach the points needed by the threads in s. Therefore
sequences is a list of method sequences. Whose first el-
ements reaches the points thread t1 should visit. This thread
consists of first executing the individual threads in sequence
to verify if the synchronization points are still covered that
way, and then executing them in the target schedule s. This
step is described in Section III-C.

A. Determining Coverage Goals

The first step of the test generation approach is to deter-
mine the set of synchronization points N for a given class
C. A memory access happens every time a field of C is read
from or written to. In our scenario (Java bytecode) these are
the read (GETFIELD, GETSTATIC) and write (PUTFIELD,
PUTSTATIC) bytecode instructions.

Based on these synchronization points, the target sched-
ules can be determined. For m threads, |N | synchronization
points and schedule length n, in the worst case (all |N |
synchronization points access the same variable) there are
(|N | ·m)n schedules. In practice, the number of schedules
depends on how many memory access points each variable
has. Algorithm 2 illustrates schedules generation.

The number of schedules can become very large, but not
all schedules are feasible: Some infeasible schedules can
easily be detected using static analysis. E.g., consider the
schedule 〈(t1, s1), (t1, s2), (t2, s3)〉: If s1 and s2 are in the
same method, and s2 dominates s1, then there exists no
test that can satisfy this schedule, under the assumption that
both s1 and s2 have to be in the same method call. We
identify and eliminate such infeasible schedules by checking
for every synchronization point if there is a path in the
control flow graph from this point to the other points that
the schedule requires in the same thread and method.

To satisfy the individual schedules, we need to create
method sequences such that we can assemble combinations

Algorithm 3 Test goal generation.
Let f(ti, 〈(t1, s1), . . . , (tn, sn)〉) → [(sx1

), . . . , (sxy
)] be

a function, which selects all the y synchronization points
belonging to thread ti from a schedule and returns them as
an ordered list.
Require: Set of schedules S
Require: Number of threads t
Ensure: Set of partial goals G

1: procedure GENERATEPARTIALGOALS(S, t)
2: G← empty tree
3: for 〈(t1, s1), . . . , (ti, si)〉 ∈ S do
4: for t ∈ {1, . . . , t} do
5: add(G, f(t, 〈(t1, s1), . . . , (ti, sj)〉))
6: return Paths(G);

of m different sequences in a way that all synchronization
points described in the schedule can be matched by their
corresponding threads. We first determine the combinations
of synchronization points that the individual method se-
quences need to cover. The upper bound on schedules is
(|M | ·m)n, but as many of the schedules are very similar
the number of actual sequences required is much lower. For
example, consider the schedules 〈(t1, s1), (t2, s2), (t1, s3)〉
and 〈(t1, s1), (t1, s3), (t2, s2)〉: They differ only in terms of
the scheduling, but not in terms of the memory access points.

To determine the actual set of method sequences that we
require to cover all goals, we determine a set of partial
goals, where each partial goal consists of a sequence of
synchronization points that need to be covered by an in-
dividual method sequence. As illustrated in Algorithm 3
illustrates, we generate a tree G of synchronization points,
where each path from the root to a leaf equals the projection
of a schedule on one thread. The set of partial goals is
determined as the set of paths in the tree G.

B. Satisfying Partial Goals
Given a set of partial goals, the next step in the algorithm

is to derive sequences of method calls to satisfy them. A
partial goal is a sequence of synchronization points, and a
sequence of method calls satisfies a partial goal if it executes
these synchronization points in order.

To produce a sequence of method calls that reaches one
particular synchronization point, we use a GA. The fitness
function to drive the GA towards covering one synchroniza-
tion point is based on the well-established approach-level
and branch distance metrics (see e.g., [17]). The approach
level represents the number of unsatisfied control depen-
dencies towards reaching the target statement, whereas the
branch distance estimates how close the point of diversion
was towards evaluation as required. There are standard
rules to derive the branch distance [17]. The overall fitness
function for one synchronization point si thus is:

d(t, si) = approach level + α(branch distance)

Here, α is a normalization function in the range [0, 1],
and the optimization needs to minimize this fitness value.
A partial goal is a sequence of synchronization points
g = 〈s1, . . . sn〉. The fitness function for a partial goal is
thus a combination of the individual fitness values for the
synchronization points:

fitness(t, 〈s1, . . . , sn〉) =
n∑

i=1

1 if i > 1 and

∃x < i : sxwas
not covered,

α(d(t, si)) otherwise

This fitness function estimates the distance towards the next
synchronization point not yet covered. For example, if the
first synchronization point s1 is not covered, then the fitness
function consists of the distance d(t, s1) towards reaching
s1, and for each remaining synchronization point we add 1.
Once s1 is covered its fitness is 0, and the overall fitness
consists of d(t, s2) plus 1 for every synchronization point
thereafter; and so on.

Because the number of partial goals can be large and many
of them can be similar, we apply a further optimization
and do not search for individual partial goals, but sets of
partial goals. This is based on the idea of whole test suite
generation [9], and means that the individuals of the GA
are not sequences of method calls, but sets of sequences
of method calls. For operations on sets of sequences of
method calls we refer to [9]. If the number of partial goals
is too large, it is possible to consider subsets of a chosen
size X of all partial goals, which are randomly selected out
of the set of partial goals not already covered. Once the
GA has covered a certain amount of partial goals or the
fitness has not improved after a predetermined number of
generations the GA would restart with a new set of partial
goals, and the best individuals of the GA are retained to
seed further iterations of the search. The fitness function for
a set of partial goals P = {p1, . . . , pn} on a set of test cases
T = {t1, . . . , tm} is calculated as follows:

fitness(T, P) =
n∑

i=1

(minmj=1(fitness(tj , pi)))

C. Assembling Concurrent Tests

After the second step, we now have at least one sequential
test for each partial goal, except for the cases where the
search failed; due to coincidental coverage the number of
tests for each partial goal in practice is usually higher than
one. In the last step of the algorithm we combine an m-
tuple of sequences for each schedule s ∈ S to generate the
concurrent tests.

This assembly step works as follows: First, we select
m sequences of method calls that together cover all the
synchronization points required by the chosen schedule s.
These tests are executed per thread on a shared object of
the CUT, which is generated in terms of the prefix sequence

p. This sequential execution determines whether the syn-
chronization points in s that were covered by the sequences
in isolation are still covered when the tests are combined.
For example, a call to empty() on a container class might
result in a different result if a previous test has already
put some object into the container. So for the schedule
〈(t1, s1), (t2, s2), (t1, s3)〉, we would try to find two tests:
One which covers 〈s1, s3〉, and one that covers 〈s2〉, if both
are executed sequentially. If the synchronization points are
no longer covered by the schedule, we drop this combination
and attempt a different one. As the behaviour changes if
the tests are executed with some tighter interleaving, we
generate multiple candidate tests for each schedule.

IV. EVALUATION

To analyze the effectiveness of our approach we have
implemented our CONSUITE prototype as an extension to
the EVOSUITE [9] unit test generation tool and performed
a set of experiments. The aim of these experiments is to
demonstrate that it is able to find concurrency issues, and to
gain insights on its efficiency and scalability.

A. Experimental Setup

CONSUITE is a search-based Java test generation tool that
works on the bytecode level, i.e., no source code is required
for its operation. Instrumentation for concurrency cover-
age is also performed at the bytecode level. In particular,
data accesses are performed at all GETFIELD/GETSTATIC
and PUTFIELD/PUTSTATIC bytecode instructions. Conse-
quently, the bytecode instrumentation consists of additional
tracing calls inserted before each of these instructions; this
instrumentation serves for both, to track coverage and to
influence the scheduling.

The GA used to generate method sequences for partial
goals was configured to run for a total of 20 minutes for
all partial goals per class. The GA created sets of method
sequences targeting all partial goals at the same time; the size
of the sets during the search is variable. All other parameters
of the GA were set to their defaults according to the
underlying EVOSUITE. To accommodate for the randomness
of the approach, each experiment was repeated five times,
and all values listed in this paper are averaged over all runs.

B. Concurrency Bug Benchmarks

Our first set of experiments is performed on known
concurrency bug examples taken from the Software Infras-
tructure Repository (SIR) [6]. Table I lists the details; each
example is minimized to reveal one particular concurrency
fault. The aim of the first experiment is to determine if
our approach is able to generate tests that would reveal
these bugs. In total SIR contains 25 Java concurrency bug
examples, out of which we used the 12 listed in Table I; the
other examples did not qualify for our experiments because
a) they required access to files, which is problematic for

Table II
OPEN SOURCE CONCURRENT CLASSES USED FOR EVALUATION

Example Project LOC SP Schedules P. goal pairs Partial goals

CH ConcurrentHashMap java.util 1,323 162 290,607 96,869 4,174
FT FastTreeMap Commons Collections 827 148 1,418,919 472,973 6,066
FH FastHashMap Commons Collections 718 106 469,095 156,365 2,898
SB StaticBin1D Colt 301 100 28,176 9,392 704
AM AbstractMultiMap$AsMap Guava 150 47 2,859 953 117
MA MemoryAwareConcurrentReadMap Groovy 369 61 316,332 105,444 3,525
FA FileAppender Log4j 463 33 13,766 4,589 543
CR ConcurrentReaderHashMap Groovy 1,231 136 820,992 273,664 9,050
CW CopyOnWriteArrayList EDU.oswego.cs 1,199 114 448,902 149,634 2,825

Table I
CONCURRENCY BUGS FROM THE SIR

Example LOC SP Bug Revealing
Tests

Account 116 4 Data Race 7
Airline 52 12 Data Race 1
Allocation Vector 151 15 Data Race 8
Sleeping Barber 154 27 Deadlock 10
Deadlock 41 14 Deadlock 14
Dining 101 12 Deadlock 4
LinkedList 130 37 Data Race 22
NestedMonitor 139 2 Deadlock 1
ReadersWriters 170 40 Data Race 4
Reorder 42 10 Data Race 6
TwoStage 62 11 Data Race 2
WrongLock 40 6 Data Race 4

automated test generation in general, or b) they are examples
of a producer-consumer pattern, which is not the scenario
our approach is targeting (i.e., it would require to generate
additional threads during test generation, or it would require
the test generator to handle additional threads generated
during test execution).

The last columns of Table I summarizes the results of
the experiments on the SIR examples. Each of the SIR
examples contains an oracle that allows us to detect if the
bugs the example represents was triggered by a test. As the
examples are minimized with respect to these bugs, they
are not representative with respect to the number of tests or
the effort that goes into generating them, therefore we only
focus on whether our approach leads to tests that reveal the
bugs. As can be seen in Table I, for each of the examples
there is at least one test case that triggers the bug; for the
LinkedList example there are 22 test cases.

In our experiments, our CONSUITE prototype
revealed all benchmark concurrency bugs.

C. Open Source Concurrent Classes

As the SIR examples are minimized with respect to the
concurrency bugs they contain, they are not representative
in terms of the scalability and effectiveness of the approach.
Therefore we performed a second set of experiments on a
selected number of concurrent open source classes, with
the aim to gain insight on the level of coverage that can
be achieved with our approach, the number of potential

Table III
RESULTING NUMBER OF TEST CASES

Example MS MS Pairs Executed Schedules

CH 251 589 446,535 150,670
FT 241 5,273 5,902,732 986,128
FH 159 799 1,093,958 345,965
SB 20 19 97,881 28,176
AM 13 42 2,587 2,040
MA – – – –
FA 91 542 28,798 7,239
CR 178 1,517 1,876,288 176,054
CW 155 716 1,915,757 448,838

problems detected, and the performance. Details of these
classes are given in Table II. The number of test targets
(schedules) prescribed by the concurrency coverage crite-
rion can become very large, and ranges from 2,859 in
the AbstractMultiMap$AsMap subclass to 1,418,919
for the FastTreeMap. This describes the total number
of schedules to be executed; the number of unique syn-
chronization point combinations is significantly lower. The
column labelled “P. goal pairs” in Table II refers to unique
combinations of partial goal pairs (pairs as we used m = 2
for the evaluation). This number is lower than the number
of schedules, as several schedules of a combination of n
memory access points in m threads can be done with the
same m-tuple of individual method sequences. Finally, the
partial goals are those that the GA has to satisfy.

These numbers are not comparable to the small numbers
of coverage goals one would get for traditional structural
criteria like branch coverage. However, we argue that this
is a feasible number, as the approach is targeting unit tests
of concurrent classes, and unit tests are generally supposed
to run fairly quick. Furthermore, the resulting test set will
not be reported to the user in its entirety, unlike, e.g., a
branch coverage test suite, where the objective is often to
provide a complete test set to the developer, who then is
supposed to add test oracles. In the concurrency coverage
scenario, however, the user would only see those tests that
lead to actual concurrency issues such as deadlocks or data
races, and these can be further post-processed such that only
unique concurrency issues are reported to the users. As will
be seen later in Table V this number is much lower.

Table III summarizes the results in terms of the number

Table IV
COVERAGE RESULTS ON OPEN SOURCE CLASSES

Example P. goal pairs Partial goals Schedules

CH 59% 53% 52%
FT 78% 73% 70%
FH 85% 77% 74%
SB 100% 100% 100%
AM 83% 73% 72%
MA – – –
FA 64% 54% 53%
CR 38% 22% 22%
CW 100% 100% 100%

of produced tests. It can be seen that the actual num-
ber of method sequences (MS) generated is much lower
than the number of partial goals. This is mainly because
a single method sequence usually covers more than one
partial goal. The number of method sequence pairs is also
significantly lower than the number of goals. The column
labelled “Executed” denotes the actual number of test cases
executed, which is significantly larger than the number of
actually covered schedules (“Schedules”). This is because
we usually need to execute several different combinations
of method sequences until the interleaved execution properly
reaches all synchronization points as required by the target
schedule. Table III and the following tables list no results for
the MemoryAwareConcurrentReadMap (MA) class, as
CONSUITE detected a deadlock in this class early on. This
deadlock appeared for so many different schedules that we
had to cancel test generation, as the deadlock detection slows
down test execution such that a full exploration would have
taken too long. In practice, one would fix the deadlock and
then restart CONSUITE on the fixed class.

Table IV lists how many of the schedules and partial
goals have been covered by the tests listed in Table III.
We can see a small decrease from method sequences to
combinations, which arises when the combination leads to
individual synchronization points no longer being reached
in sequential execution. The decrease from combinations
to actually executed schedules arises when an interleaved
execution leads to different synchronization points than the
sequential execution. In all cases, this loss is relatively small.
The largest potential for improvement of coverage lies in
individual method sequences – this could quite easily be
increased simply by giving the GA more time to perform the
search; in our experiments it was set to 20 minutes, which in
the larger classes simply was not enough to achieve higher
coverage.

In our experiments, our CONSUITE prototype achieved
68% concurrency coverage on average.

D. Data Race Detection

There are several ways to select the interesting test cases
out of the large amount produced by our approach. If there
are automated oracles in terms of assertions or contracts,

1public Object put(Object key,Object value){
2 if (fast) {
3 synchronized (this) {
4 TreeMap temp = (TreeMap) map.clone();
5 Object result = temp.put(key, value);
6 map = temp;
7 return (result);
8 }
9 } else {

10 synchronized (map) {
11 return (map.put(key, value));
12 }
13 }
14}

Figure 3. Concurrency bug detected by CONSUITE in the FastTreeMap
class in Apache Commons Collection: put(Object, Object) may
lose an update if two threads call the method at the same time.

then violations of these would be candidates. This was done
for the SIR examples above; in the case of the open source
classes selected there are no such oracles except for dead-
locks or generic object contracts (e.g., there should be no
undeclared exceptions or program crashes). An alternative
way to report concurrency issues is to monitor data races. We
use an approach based on the happens-before relation [14].

To find data races, we instrumented all inter-thread ac-
tions2 in the tested code. As we are only interested in data
races in the tested code we did not instrument any other
classes (e.g., in java.utils), therefore the overhead of the data
race detection was negligible compared to the overhead of
the instrumentation already in place to monitor and force
context switches. When the control flow leaves instrumented
code, we assumed synchronization actions on all objects.

CONSUITE was able to find data races in all but
three classes: The ConcurrentHashMap from the
java.util.concurrent package is very complex;
much of this complexity originates from rigorous treatment
of potential and past concurrency issues. All data races we
found in the ConcurrentHashMap are, to the best of our
knowledge, benign. They are optimizations, where a result
is produced without a lock and is checked afterwards with
the read of a volatile version number. CONSUITE was also
not able to find any data races on the StaticBin1D class
from the Colt library and the CopyOnWriteArrayList.
Manual investigation of these classes confirms that synchro-
nization seems to be correctly implemented.

CONSUITE was able to find real unreported bugs in the
FastTreeMap and FastHashMap classes of the current
stable version of Apache Commons Collections. For exam-
ple, Figure 3 shows the put method of FastTreeMap,
containing a data race detected by CONSUITE. If two threads
(as shown in CONSUITE’s test case in Figure 4) access the
same FastTreeMap and call put at the same time, a race
condition can lead to erroneous behavior: If the first thread
starts execution and runs until Line 5 in put, and then the

2http://java.sun.com/docs/books/jls/third edition/html/memory.html

http://java.sun.com/docs/books/jls/third_edition/html/memory.html

FastTreeMap map0 = new FastTreeMap();

Thread 1:
map0.setFast(true);
map0.put(1,1);

Thread 2:
map0.setFast(false);
map0.put(2,2);

Figure 4. Concurrent unit test produced by CONSUITE, revealing the bug
in Figure 3: Two threads independently access a shared FastTreeMap
instance, and are executed with all interleavings needed for concurrency
coverage of the three synchronization points in Figure 3. The method
setFast is a wrapper around fast without any synchronization.

second thread executes all its commands it puts the value
into the initial backing TreeMap map. When the first thread
starts execution again it will override the reference map with
temp. As temp does not contain the value that the second
thread added, that value is lost.

The bug shown in Figure 3 is one manifestation of the
failed synchronization attempt. Another interesting version
of that bug, which manifests as a data race, involves the Java
memory model3. The method get() is not synchronized,
if fast is true. If two threads access one instance of the
FastTreeMap class, one calls setFast(true) once
and after that always calls get(’A’) until a value for ’A’
is found, while the other calls put(’A’, ’B’) once, the
compiler (which in the Java memory model also includes the
memory hierarchy) is free to never return a value different
from NULL to the first thread. Because of errors like this, it
is not enough to check for linearizability [19]. The compiler
has some degrees of freedom and may choose to only display
this error on a production system, e.g., if the production
system has more processor caches. The FastTreeMap and
FastHashMap classes both have further real concurrency
issues; however, we did not investigate all reported data races
in detail, as the first issue we considered revealed a design
error that leads to the same type of data race at several
locations in the classes.

The AbstractMultiMap$AsMap from the Guava
project contains a known bug, and we deliberately selected
a version of the class before this data races was fixed.
CONSUITE was able to find the data race without problems
(see Figure 1 and 2). The FileAppender of the Log4j
1.0.2 library contains a known data race that leads to a
NullPointerException, and is thus easy to discover, even
without data race detection.

Finally, in the MemoryAwareConcurrentReadMap
class from the Groovy project CONSUITE found a dead-
lock. The ConcurrentReaderHashMap from the same
project contains a data race that allows the number of
elements contained in the map to differ arbitrarily from the
number that is reported. Further investigation of the class
revealed that it is no longer used, so we did not report this
particular bug.

In our experiments, our CONSUITE prototype revealed
three new and three known real concurrency issues.

3http://java.sun.com/docs/books/jls/third edition/html/memory.html

Table V
DATA RACES FOUND BY CONSUITE

Example Data Races Unique Data Races

CH 127,641 42
FT 8,005,102 341
FH 2,236,636 218
SB 0 0
AM 2,195 5
MA – –
FA 65,708 28
CR 461,002 23
CW 0 0

Table V lists the numbers of data races detected in detail.
The number of data races given refers to the number of
tests that revealed a data race; these data races were then
minimized with respect to the synchronization point, such
that at the end only the small number of unique data races
was left to investigate.

E. Concurrency Coverage vs. Random Tests

As a sanity check with respect to the optimization of
the concurrency coverage criterion, we ran another set of
experiments where we configured CONSUITE to produce
random tests. From these we generated combined tests as
described in Section III-C, so this experiment does not
represent a true random testing approach where schedules
would be randomized as well, but should give an upper
bound on what is possible with random testing. We used
the number of executed tests by CONSUITE as a stopping
criterion for the random approach, and the length of the tests
was on average the same.

For reasons of space we cannot provide the full data of
these experiments, but only summarize our findings. As ex-
pected, random tests achieve significantly lower concurrency
coverage: On average, random testing was able to cover
50.5% of the partial goal pairs (vs. 75.9% by CONSUITE),
41.0% of the partial goals (vs. 69.0%), and thus in total only
26.6% of all schedules (vs. 67.9%). The number of detected
data races is also lower than in the test sets produced with
respect to concurrency coverage; CONSUITE detected 657
unique data races in total, whereas the random tests revealed
574. Consequently, we can conclude that the results achieved
with CONSUITE are not simply due to the large number of
tests, but also due to the underlying coverage criterion.

In our experiments, concurrency coverage tests detected
14.5% more data races than random tests.

In general, random tests are good at detecting shallow
bugs; the example in Figure 3 was not found by the random
tests. The data race results consist of two groups: For the
ConcurrentHashMap, AbstractMultiMap$AsMap,
and ConcurrentReaderHashMap examples
random tests find nearly as many data races as
evolved tests. These classes are either very small
(AbstractMultiMap$AsMap) or the data races are

http://java.sun.com/docs/books/jls/third_edition/html/memory.html

Table VI
SYNCHRONIZATION COVERAGE

Example Random Tests Conc. Coverage Tests

CH 92% 92%
FT 95% 95%
FH 94% 94%
SB 64% 67%
AM 100% 100%
MA – –
FA 100% 100%
CR 91% 91%
CW 94% 100%

1public void trimToSize() {
2 synchronized(this){}
3}

Figure 5. Example of a default method implementation in StaticBin1D.

intentional to improve performance. In this case the data race
is often an optimistic execute of some logic and the complex
case is only triggered if this fails; this is the case for all the
ConcurrentHashMap data races. The one unintentional
data race in the ConcurrentReaderHashMap class is
caused by the clear function which is easy to cover, as
it only has one branch. The other group consists of classes
in which the data races are in more complex methods, e.g.,
FastTreeMap, FastHashMap, and FileAppender.
In these cases CONSUITE was able to find data races which
the random approach could not.

F. Synchronization Coverage

To set our concurrency coverage criterion into context,
we further measured the synchronization coverage of the
resulting test sets. As shown in Table VI, synchronization
coverage was, except for the StaticBin1D, upward of
90%. These results are the same for the randomly generated
tests and the evolved tests. Synchronization coverage was
designed to be reachable 100% of the time [25], therefore it
is not unexpected that we can reach this coverage. For the
StaticBin1D class the synchronization coverage is only
67% as some methods contain only default implementations
as shown in Figure 5. There are no memory access points in
the synchronized block and therefore CONSUITE generates
no schedules which wait inside the synchronized block. In
general, the missing 5% to 9% coverage are an artifact of our
implementation (e.g., the hashCode method is excluded by
the underlying EVOSUITE).

In our experiments, CONSUITE achieved more
than 95% synchronization coverage on average.

G. Performance

To shed some light on the scalability of the approach,
Table VII lists the time that went into test generation. The
first step of generation of sequences of method calls was
always fixed to 20 minutes and is therefore not listed in

Table VII
TEST GENERATION TIME ON OPEN SOURCE CONCURRENT CLASSES (IN
SECONDS); THE GA USED TO SATISFY PARTIAL GOALS WAS SET TO 20

MINUTES IN ALL EXAMPLES.

Example Sequential Combined Total

CH 23 591 614
FT 1,282 9,427 10,709
FH 60 1,740 1,800
SB <1 420 420
AM <1 3 3
MA <1 – –
FA 1 44 45
CR 233 5,540 5,773

the table. The column labelled “Sequential” describes the
time spent on the sequential execution of pairs of tests (see
Section III-C), and “Combined” denotes the time spent on
executing tests with different schedules. As also suggested
by the large number of test executions shown in Table III,
there is room for optimization in the latter part.

In our experiments, generating and executing
a concurrency coverage test suite took

from 20 minutes up to 3 hours.

H. Threats to Validity

Our experiments are subject to the following threats to
construct validity: We measured the performance in terms
of the achieved coverage and the number of data races found.
In practice, there might be other factors that need to be con-
sidered, such as the readability and understandability of the
resulting tests in order to explain the detected concurrency
issues, and the high costs of the approach might outweigh
the benefits.

Threats to internal validity might come from how the
empirical study was carried out. To reduce the probability
of having faults in our CONSUITE prototype, it has been
carefully tested. Threats to external validity regard the gen-
eralization to other types of software. Our set of evaluation
classes is small, and has a strong emphasis on container
classes. However, the application area of the approach is
unit testing of classes under external concurrency, and we
see no reason why the approach should not generalize to
other classes in this domain.

V. CONCLUSIONS

In this paper, we have introduced concurrency coverage
as a result of the insights gained in observations of real
concurrency bugs [16]. The CONSUITE tool implements
a technique to automatically generate concurrent tests that
satisfy this criterion. Although the number of tests required
by the criterion can be very large, only few suspicious test
cases need to be reported to the user. In our evaluation we
revealed several previously unknown concurrency bugs in
open source classes, demonstrating the effectiveness of the
approach.

The CONSUITE prototype has potential for several op-
timizations: While generating individual method sequences
for the partial goals we keep track of which other goals
are covered accidentally by the current result. When run-
ning individual schedules, however, we do not perform this
optimization because the overhead of the analysis would
be too large on our current implementation. This results in
the large numbers in Table III, and has significant potential
for improvement, as a run likely satisfies more then one
schedule. Furthermore, there may be cases where the GA is
not able to derive a method sequence for a combination of
synchronization points, yet during execution of a different
test this particular schedule would be covered; currently,
CONSUITE would miss such cases. The achieved levels of
concurrency coverage showed that there is also room for
improvement on the test generation part.

There are also ample opportunities for future work. The
CONSUITE tool is not yet optimized towards producing
readable test cases; how to best represent multi-threaded unit
tests is a problem that is still actively researched (e.g., [12]).
A related question is how to select representative regression
test sets from the large concurrency coverage test sets.

Finally, in this paper we considered the case of external
concurrency when testing individual classes. The concur-
rency coverage criterion presented is not limited to this
scenario, but in principle can also be applied to non-unit
testing scenarios and internal concurrency.
Acknowledgments. Thanks to Clemens Hammacher for
comments on an earlier version of this paper, and Kiran
Lakhotia for discussions on synchronization coverage. This
project has been funded by a Google Focused Research
Award on “Test Amplification”.

REFERENCES

[1] E. Alba, F. Chicano, M. Ferreira, and J. Gomez-Pulido,
“Finding deadlocks in large concurrent java programs using
genetic algorithms,” in Proc. GECCO’08. ACM, 2008, pp.
1735–1742.

[2] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur, “Applications
of synchronization coverage,” in Proc. PPoPP. ACM, 2005,
p. 212.

[3] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan, “Line-up:
a complete and automatic linearizability checker,” SIGPLAN
Not., vol. 45, no. 6, pp. 330–340, Jun. 2010.

[4] J. Choi, B. Alpern, T. Ngo, M. Sridharan, and J. Vlissides,
“A perturbation-free replay platform for cross-optimized mul-
tithreaded applications,” in Proc. IPDPS. IEEE, 2001, pp.
10–pp.

[5] K. E. Coons, S. Burckhardt, and M. Musuvathi, “Gambit:
effective unit testing for concurrency libraries,” in Proc.
PPoPP’10. ACM, 2010, pp. 15–24.

[6] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,” Empirical Software Engineering,
vol. 10, pp. 405–435, October 2005.

[7] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur,
“Multithreaded java program test generation,” IBM Systems
Journal, vol. 41, no. 1, pp. 111–125, 2002.

[8] Y. Eytani, “Concurrent java test generation as a search prob-
lem,” Electron. Notes Theor. Comput. Sci., vol. 144, pp. 57–
72, May 2006.

[9] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Transactions in Software Engineering, 2013.

[10] P. Godefroid, Partial-order methods for the verification of
concurrent systems—an approach to the state-explosion prob-
lem, ser. Lecture Notes in Computer Science. Springer, 1996,
vol. 1032.

[11] P. Godefroid and S. Khurshid, “Exploring very large state
spaces using genetic algorithms,” International Journal on
Software Tools for Technology Transfer (STTT), vol. 6, pp.
117–127, 2004.

[12] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and
D. Marinov, “Improved multithreaded unit testing,” in Proc.
ESEC/FSE ’11. ACM, 2011, pp. 223–233.

[13] B. Křena, Z. Letko, T. Vojnar, and S. Ur, “A platform
for search-based testing of concurrent software,” in Proc.
PADTAD ’10. ACM, 2010, pp. 48–58.

[14] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, 1978.

[15] S. Lu, W. Jiang, and Y. Zhou, “A study of interleaving
coverage criteria,” in Proc. ESEC/FSE. ACM, 2007, pp.
533–536.

[16] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mis-
takes: a comprehensive study on real world concurrency bug
characteristics,” in ACM SIGPLAN Notices, vol. 43, no. 3.
ACM, 2008, pp. 329–339.

[17] P. McMinn, “Search-based software test data generation: A
survey,” Software Testing, Verification and Reliability, vol. 14,
no. 2, pp. 105–156, 2004.

[18] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu, “Finding and reproducing heisenbugs in con-
current programs,” in Proc. OSDI’08. USENIX Association,
2008, pp. 267–280.

[19] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov,
“Ballerina: Automatic generation and clustering of efficient
random unit tests for multithreaded code,” in Proc. ICSE,
2012.

[20] J. Ousterhout, “Why threads are a bad idea (for most pur-
poses),” in Presentation given at the 1996 Usenix Annual
Technical Conference, 1996.

[21] G. Ramalingam, “Context-sensitive synchronization-sensitive
analysis is undecidable,” ACM Trans. Program. Lang. Syst.,
vol. 22, no. 2, pp. 416–430, 2000.

[22] K. Sen and G. Agha, “A race-detection and flipping algorithm
for automated testing of multi-threaded programs,” in Proc.
HVC’06. Springer-Verlag, 2007, pp. 166–182.

[23] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit
testing engine for C,” in Proc. ESEC/FSE-13. ACM, 2005,
pp. 263–272.

[24] E. Sherman, M. B. Dwyer, and S. Elbaum, “Saturation-based
testing of concurrent programs,” in Proc. ESEC/FSE’09.
ACM, 2009, pp. 53–62.

[25] R. N. Taylor, D. L. Levine, and C. D. Kelly, “Structural testing
of concurrent programs,” IEEE Trans. Softw. Eng., vol. 18,
no. 3, pp. 206–215, Mar. 1992.

[26] P. Tonella, “Evolutionary testing of classes,” in Proc. ISSTA,
2004, pp. 119–128.

	I Introduction
	II Background
	II-A Evolutionary Testing of Classes
	II-B Concurrent Testing
	II-C Concurrency Coverage

	III Generating Concurrency Tests
	III-A Determining Coverage Goals
	III-B Satisfying Partial Goals
	III-C Assembling Concurrent Tests

	IV Evaluation
	IV-A Experimental Setup
	IV-B Concurrency Bug Benchmarks
	IV-C Open Source Concurrent Classes
	IV-D Data Race Detection
	IV-E Concurrency Coverage vs. Random Tests
	IV-F Synchronization Coverage
	IV-G Performance
	IV-H Threats to Validity

	V Conclusions
	References

