
Reconstructing Core Dumps

Jeremias Rößler∗ · Andreas Zeller∗ · Gordon Fraser† · Cristian Zamfir‡ · George Candea‡
∗Saarland University, Saarbrücken, Germany
Email: {roessler, zeller}@cs.uni-saarland.de

†University of Sheffield, Sheffield, United Kingdom
Email: gordon.fraser@sheffield.ac.uk

‡École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Email: {cristian.zamfir, george.candea}@epfl.ch

Abstract—When a software failure occurs in the field, it is
often difficult to reproduce. Guided by a memory dump at
the moment of failure (a “core dump”), our RECORE test
case generator searches for a series of events that precisely
reconstruct the failure from primitive data. Applied on seven
non-trivial Java bugs, RECORE reconstructs the exact failure
in five cases without any runtime overhead in production code.

Keywords-debugging; failure reproduction; test case genera-
tion; memory dumps

I. INTRODUCTION

When a program fails in the field, the developer who
wants to debug the failure must first be able to reproduce
it. Being able to reproduce a failure locally is important
for diagnostic purposes, because developers can then inspect
arbitrary aspects of the failing execution to locate the failure
cause. If the problem cannot be reproduced, though, one can
never know whether the fix is successful: Only if the failure
goes away after the fix has been applied does the developer
know that she effectively found the failure cause.

Reproducing a failure is easy—in theory. Since a program
is but a mathematical mapping of inputs to outputs, all it
takes is to record the inputs to reproduce the output. The
problem in practice is that recording inputs incurs time and
memory overhead, and neither developers nor users may be
willing to spend resources on a diagnostic feature that (in
the best of cases) will never be used.

Once a failure has occurred, though, such diagnostic
overhead no longer matters. A common practice on modern
operating systems is to produce a core dump—a persistent
snapshot of the stack and heap memory at the moment of
the failure. Such a core dump can be loaded into interactive
debuggers, and programmers can then inspect it post-mortem
to understand how the failure came to be.

As an example, consider Figure 1, showing a stack
trace originating from a failure in the JAVA JODATIME
date and time library. We see that the toInterval()
method was called with some specific date and time
zone, resulting in the method localToUTC() raising an
IllegalArgumentException. In addition to this stack

trace, a full core dump would also hold all values on the
stack and on the heap at the moment of failure.

Such a core dump, however, just reports the final state,
not the history. Assuming one finds an illegal value in some
variable: How did that value come to be? The input that
caused the failure may long have been overwritten by later
input: What was it that caused the problem in the first place?
With a core dump, you are a detective faced with a corpse—
and you have to reconstruct all the events that lead to it.

For computer programs, however, we do have tools that
can construct such events automatically. Test case generation
addresses the problem of generating inputs that fulfill a num-
ber of constraints—typically, reaching a particular location
in the program. Constraint-based test generators do so by
solving the path conditions from input to these locations.
Reproducing a full core dump, though, would impose far
too many constraints on any practical constraint solver.

In practice, it may suffice to have a test case that produces
a state as similar as possible to the core dump. This is the
domain of search-based test generators, which systemati-
cally evolve the input according to a fitness function. If
similarity to the core dump induces high fitness, we could
then automatically obtain a test case that reproduces the
core dump—without incurring overhead during execution.

This is what we explore in this paper. Given a stack
and heap dump, our RECORE prototype uses search-based
test generation to automatically produce a set of inputs that

java.lang.IllegalArgumentException:
Illegal instant due to time zone offset transition:
2009-10-18T03:00:00.000

at org.joda.time.chrono.ZonedChronology.localToUTC
(ZonedChronology.java:143)

at org.joda.time.chrono.ZonedChronology.getDateTimeMillis
(ZonedChronology.java:119)

at org.joda.time.....AssembledChronology.getDateTimeMillis
(AssembledChronology.java:133)

at org.joda.time.base.BaseDateTime.<init>
(BaseDateTime.java:254)

at org.joda.time.DateMidnight.<init>
(DateMidnight.java:268)

at org.joda.time.LocalDate.toDateMidnight
(LocalDate.java:740)

at org.joda.time.LocalDate.toInterval
(LocalDate.java:847)

Figure 1. JODATIME bug 2487417: toInterval() fails when process-
ing October 18, 2009, Brazil time.

void recore_test() {
LocalDate localDate1 =

new LocalDate(1255824000000L);
FixedDateTimeZone fixedDateTimeZone2 =

new FixedDateTimeZone
("America/Sao_Paulo", "", 7, 7);

TimeZone timeZone0 =
fixedDateTimeZone2.toTimeZone();

DateTimeZone dateTimeZone0 =
DateTimeZone.forTimeZone(timeZone0);

Interval interval0 =
localDate1.toInterval(dateTimeZone0);

}

Figure 2. The test case generated by RECORE reproduces exactly the
stack trace in Figure 1.

cause a single-threaded program to throw the same exception
and have the same stack trace at the time of throwing the
exception; we refer to this as “reconstructing the failure”.
The generated test case comes as a sequence of method calls
taking only primitives or generated objects as parameters; we
can thus reconstruct the entire history of the failure-inducing
state.

RECORE extends the state of the art in several ways:
1) RECORE1 is the first technique to use evolutionary

search-based test generation to reconstruct failures
from saved core dumps. The basic idea of RECORE
is to use EVOSUITE [11] to produce a test case
that is as similar to the failure as possible. Here,
“similarity” means similarity of the stack trace (the
active methods) as well as of the stack dump (local
variables and method arguments) at the moment of
the failure.

2) RECORE2 goes beyond existing record/replay tools
such as RECRASH [2] or BUGREDUX [15] in that
the approach requires zero runtime overhead.3 That is,
production code can run unchanged, with same time
and space requirements; RECORE kicks in only at the
moment of failure to produce a core dump.

3) Being search-based, RECORE can also produce partial
solutions. Furthermore, it turns out that a new fitness
function and improved argument seeding, which both
strive for similarity, are all it takes to turn a search-
based test generator into a failure reconstructor; if
more events were to be reconstructed, these parts can
be easily extended. Both partial solutions and ex-
tensibility towards reproducing other recorded events
are in contrast to constraint-based approaches such as
execution synthesis [35].

4) Finally, rather than unserializing data and objects from
the core dump, as RECRASH does, RECORE recon-
structs all objects from primitive values. The resulting

1“RECORE” stands for “Reconstructing core dumps”.
2“RECORE” is also one bit beyond “RECORD” (as in record/replay).
3This assumes directly executable binaries. For JAVA programs and other

interpreted languages, we assume support of the virtual machine to produce
core dumps, as discussed in Section IV.

test case thus shows a history of how the failing data
comes to be.

Our experiments are promising: On seven bugs, RECORE
is able to reconstruct the exact failure in five cases, and
partially in another case. The resulting test cases are self-
contained, short, and comprehensible. At the same time, the
RECORE approach incurs no overhead in production code.

The remainder of the paper is organized as follows:
Section II demonstrates RECORE on a motivating example.
Section III discusses the state of the art in reproducing
failures, from recording and replaying values to execution
synthesis. Section IV details how we collect core dumps
from JAVA programs. Section V describes how RECORE
leverages core dumps to systematically generate and evolve
test cases. With this, RECORE is able to reconstruct five out
of seven JAVA failures completely, and one more partially
(Section VI). We close with conclusion and future work
(Section VII).

II. AN EXAMPLE

As an example of how RECORE works, reconsider the core
dump that corresponds to the stack trace in Figure 1. Given
this core dump as input, RECORE automatically produces the
test shown in Figure 2. This test case fails like the original,
reproducing exactly the stack trace from Figure 1. The test
has all the necessary input:

• localDate1 holds a specific instant in JODATIME
format—namely, 1,255,824,000,000 milliseconds after
January 1, 1970. This corresponds to October 18, 2009.

• fixedDateTimeZone2 holds the time zone for this
instant—namely, “America/Sao Paulo”.

• Feeding this date and time zone into toInterval()
raises an exception.

Developers can now load this test case into the debugger
and reproduce the failure at will; as it is self-contained,
no additional context (such as serialized objects from the
original core dump) is required. Better yet, one can feed
the test case as is into an automated debugger. The BUGEX
tool [29], for instance, would pinpoint the failure-inducing
branch, showing that October 18, 2009 is the last day of
daylight savings time (DST) in Brazil, a condition that is
improperly handled by JODATIME due to an inconsistent
mapping between UTC time (the internal intermediate for-
mat) and local time. Applying the official fix for the original
failure also fixes the RECORE test case, indicating that it
indeed triggered the exact defect.

Figure 3 shows the basic steps of RECORE. It starts
with a program and a given core dump, consisting of stack
and heap data. RECORE then uses EVOSUITE as a test
generator, leveraging the core dump as fitness guidance and
source for primitive values. When the original stack trace is
reconstructed, RECORE issues the appropriate test case.

Figure 3. How RECORE works. Given a executable program (a) and a
remote core dump (b), RECORE generates tests (c) whose final state (d)
is then compared to the original core dump (b). The test generator
systematically evolves the test case to increase similarity. The final test
case (e) makes the program fail with the exact same stack trace.

III. BACKGROUND

A. Reproducing Failures

Most approaches to reproducing failures rely on record/re-
play: The idea is to record events first, and to replay them
later. This works well for low-bandwidth event sources;
recording a user’s input into a GUI, for instance, is unlikely
to have a perceptible impact on performance.

As larger amounts of data are recorded, overhead becomes
significant. At the system level, record-replay systems such
as ReVirt [9], PRES [27] and ReSpec [21]) and hardware
and/or compiler assisted systems (e.g., Capo [25], Core-
Det [3]) support recording of multi-core, shared-memory
intensive programs. However, these systems either incur high
runtime overhead due to recording, or require specialized
hardware that is not widely available. For data centers,
for instance, making up for a 50% throughput drop re-
quires provisioning twice as many machines. The additional
storage required for recording also matters: record-replay
systems [1] for datacenter applications report significant log
sizes even after applying aggressive logging optimizations.

For general-purpose software, record/replay has been
mainly explored in the context of automated debugging.
ADDA [6] records events at the level of C standard library
and file operation functions. JINSI [4] records the interaction
between individual objects in terms of methods called and
objects passed. The large overhead of such systems, how-
ever, limits data recording to the lab.

If one is willing to suffer execution overhead, one can
record crucial information required to reproduce the error.
The BUGREDUX framework [15] can record execution data
in the field and (like RECORE) use test case generation
to reconstruct the failure. In its evaluation, the authors
found stack traces collected during execution to provide
the greatest benefit compared to the overhead in collecting
the data. Likewise, SherLog [33] uses clues from existing

application logs to reconstruct a partial path to a failure using
static analysis and [34] improves SherLog’s accuracy using
runtime recording, thus introducing runtime overhead.

A little collected information can go a long way. The
RECRASH tool [2] records executions by recording parts
of the program state at each method entry—namely those
objects that are reachable via direct references. When the
program crashes, it thus allows the developer to observe a
run in several states before the actual crash. Even just record-
ing these references results in a 13%–64% performance
overhead. However, it allows the programmer to examine
the last few steps before the failure. If the failure-inducing
state was created outside of the last stack trace, however,
RECRASH will only show that feeding this state caused the
crash, but give no indication on how the state came to be.

For the special domain of concurrency bugs, the work
of Weeratunge at al. [31] analyzes multi-core dumps to
reconstruct the thread schedule that caused a crash. Again,
this assumes the program inputs are recorded, inducing
overhead; however, RECORE does not handle concurrent
programs at this point.

What sets RECORE apart from all these approaches is that
it aims at zero overhead. Furthermore, we not only reproduce
the failure, but reconstruct it—by devising a self-contained
sequence of events that reproduce the stack trace and failure
from the core dump.

B. Execution Synthesis

The development of RECORE was mainly inspired by
recent work on execution synthesis. Execution synthesis [35]
is a technique that automatically reproduces bugs starting
from a bug report, without doing any recording while the
software is running in production. The ability to repro-
duce failures without runtime overhead in production sets
execution synthesis and RECORE apart from record/replay
systems.

Execution synthesis uses the core dump to extract the
program failure condition and the stack trace (but not the
heap). It combines static analysis, symbolic execution [19],
[5] and thread schedule synthesis to find an execution that
matches the stack trace and the failure in the core dump.
This combination of analyses reduces the search space
of possible executions. Execution synthesis uses context-
sensitive proximity heuristic to select the executions that are
more likely to reproduce the failure. Once it finds a path
that reproduces the failure, it uses Klee [5] to compute the
concrete program inputs required to reproduce the failure.

The main challenge of execution synthesis is reducing
the search space. This is especially problematic for deep
execution paths that generate hard-to-solve constraints. In
such cases, the technique will take longer to reproduce a
failure or it will timeout.

RECORE goes beyond execution synthesis in a number of
ways. First, it is more general: While execution synthesis

only uses the final stack trace, RECORE also relies on
method arguments and targets—and can be easily extended
to arbitrary mid-execution events or states. Second, by using
a search-based approach to reconstructing the core dump,
it can produce partial solutions—that is, test cases that
reconstruct as much of the failure as possible, but which
need not satisfy all constraints imposed by a constraint-
based approach such as execution synthesis. On the other
hand, execution synthesis is applicable to multi-threaded
programs and can deduce inputs that would be hard to find
through evolutionary search. In the long run, we expect test
case generation (and thus failure reconstruction) to integrate
evolutionary algorithms with constraint solvers to form a
greater whole.

C. Test Generation

The recently most successful test generation approaches
can roughly be divided into variants of random testing
(e.g., Randoop [26]), dynamic symbolic execution (e.g.,
DART [13], Klee [5], Pex [30]), and search-based testing
(e.g., EVOSUITE [11]). Although random testing can be
effective in triggering faults, systematic approaches are
required to explore more than just “shallow” parts of a
program. Dynamic symbolic execution (DSE) derives path
conditions for concrete runs using symbolic execution, and
then drives exploration by negating individual constraints,
for which solutions represent new inputs that follow different
program paths. DSE can effectively explore all program
paths, but one main advantage of search-based testing [24]
(SBST) is that it is very easy to adapt it to new testing
objectives (such as reconstructing core dumps), and tests can
be optimized towards different functional and non-functional
properties.

One of the most popular search algorithms applied in
SBST is a Genetic Algorithm, where a population of can-
didate solutions is evolved using operators that intend to
imitate natural evolutionary processes. A fitness function
determines how close a candidate solution is to the optimiza-
tion target, and the fitter an individual is, the more likely it
is used during reproduction, which is based on selection,
crossover and mutation.

RECORE is based on the EVOSUITE framework [11].
EVOSUITE applies a Genetic Algorithm to produce unit
test suites for object-oriented software. EVOSUITE has two
modes of operation: In whole test suite generation, individ-
uals of the search are test suites, and the fitness guides these
test suites towards satisfying all coverage goals. The other
mode of operation, which is used in RECORE, optimizes
individual test cases towards satisfying an individual goal.
A test case is a sequence of statements (e.g., constructor and
method calls, primitive value assignments, field assignments,
array assignments), and mutation modifies a sequence by
deleting, adding, and replacing statements. For more details
about the search operators we refer to [11].

While RECORE uses search-based test generation, BUG-
REDUX and execution synthesis (see above) rely on sym-
bolic execution to generate tests. In principle, search-based
and symbolic approaches can also be combined to achieve
better results (e.g., [22]).

IV. COLLECTING CRASH DATA

Operating systems such as Unix or Windows can be set up
to produce a core dump upon abnormal termination of the
program—a file (traditionally named “core”) which would
contain the program counter, stack pointer, memory contents,
and other processor and operating system information. Typ-
ically, the core contains a partial heap image, however, full
core dumps can be collected on demand [12]. Such a core
file can be loaded into a debugger to explore the state at the
moment of failure just as if the program were still running.
As core dumps are only produced in case of failures, they
induce zero overhead in regular runs.

RECORE is set up to work on JAVA programs. In JAVA
programs, the equivalent of abnormal termination is an
unchecked exception—that is, conditions that cannot be
reasonably recovered from, which generally cause abnormal
termination, and which indicate bugs to be fixed. In analogy
to the execution of directly executable binaries, one would
normally set up the JAVA virtual machine to produce a core
dump whenever an unchecked exception is raised—again
only incurring overhead in case of fatal failures.4

Our current RECORE prototype does not extend the JAVA
virtual machine; instead, it instruments the code such that a
raised exception captures the heap, all local variables, and
all method arguments at the time of failure (by employing
std. To do this for every method on the call stack, RECORE
wraps each method in a try-catch block, inducing a potential
overhead on most JAVA virtual machines. This potential
overhead, however, is only due to the current implementa-
tion; if RECORE were written for C programs, or if RECORE
would plug directly into the JAVA virtual machine, any
program would be executed without any change to execution
time or memory—until a fatal failure occurs, which is when
dumping the current state sets in.

V. RECONSTRUCTING FAILURES

A. Fitness Function

The key idea of RECORE is to set up a fitness function
that checks similarity to guide the evolutionary algorithm.
Generally speaking, the better the fitness of a particular test
case, the likelier it is that it will influence the generation
of future test cases. Hence, defining an appropriate fitness
function is the central part of RECORE.

4Generally speaking, unchecked exceptions simply should not occur.
Even if an unchecked exception would be caught and handled during
execution, such that execution resumes, one would still be interested in
reproducing the failure—and also in the resulting core dump.

1) Statement Distance: The first factor that determines
the fitness of a test case is its ability to exactly reproduce
the given stack trace. For this, we need a measure of how
close we are in reaching a stack trace, for which we first
need a measure of how close we are in reaching a specific
location in the code.

For a given test and a location l in the code (in
our case: class, method, and line), we assume a function
StatementDistance(test, l) whose value is higher the further
away the test is from reaching l. A value of zero means zero
distance (i.e. l was reached); a value of one means maximal
distance.

StatementDistance can be based directly on a fitness
function as used in search-based test generation [24]. In our
case, StatementDistance is based on the unchanged fitness
function from EVOSUITE, the platform which RECORE uses
to generate tests. The EVOSUITE fitness function uses two
measures as guidance:
• The approach level [32] determines how close the

generated test is in reaching the target code (typically,
yet uncovered code). It denotes the distance between
the target point in the control dependence graph and
the point at which execution diverged: The higher the
approach level, the more control dependent branches
between test and target.

• The branch distance [20] determines how close the
branch predicate at the point of diversion is to evalu-
ating to the desired value. The branch distance can be
calculated using a simple set of rules [24]: For instance,
given a branch condition if (x < 15), the value x
= 20 implies a higher branch distance than x = 16.

These two measures are combined as follows:

StatementDistance(test, l) =

approach level(test, l) + norm
(
branch distance(test, l)

)
To normalize the branch distance in the range [0, 1), we use
norm(x) = x/(x+ 1).

2) Stack Trace Distance: Based on StatementDistance,
we can now define stack trace distance. We denote a stack
trace S = 〈l1, . . . , ln〉 as a sequence of source code loca-
tions li, where l1 is the outermost frame, ln the innermost
frame, and each frame li is invoked from the frame li−1.

Let R = 〈r1, . . . , rn〉 be the reference stack trace from
the core dump, and S = 〈s1, . . . , sm〉 be the stack trace
from the generated test. Let

lcp = max
{
j · (∀i ∈ {1, . . . ,min(j, n,m)} · ri = si)

}
be the longest common prefix between R and S, start-
ing from the outermost caller. We define the function
StackTraceDistance(R,S) as follows. If lcp = |R| =
|S| holds, then the stack traces are identical, and
StackTraceDistance(R,S) = 0 holds. Otherwise, we define
it to depend on the number of stack frames yet to reach

(expressed by the value of |R| − lcp) and the distance
between the test and the first diverging stack frame rlcp:

StackTraceDistance(R,S) =

|R| − lcp−
(
1− norm(StatementDistance(test, rlcp))

)
By using StackDistance as guidance in the fitness function,
test case generation will thus strive to maximize stack trace
similarity, starting from the outermost frames.

3) Stack Dump Distance: The second factor that deter-
mines the fitness of a stack trace is its ability to reconstruct
variable values as found in the core dump. In principle,
we could guide RECORE to reconstruct all variables from
the heap and from the stack. However, such an attempt is
likely to be misleading. First, we would have to reconstruct
thousands of individual values, which is unlikely to be
feasible. Second, few of these values actually matter for
reproducing and fixing the failure. We thus decided to focus
on those values which we also require to reconstruct a given
stack trace, namely those values found in the stack.

We assume a function ObjectDistance(x, y) ∈ [0, 1) which
compares two objects x and y and again returns a normalized
value between zero and one. We obtain this value by relying
on the EVOSUITE object distance, which is based on the
comparison of primitive values:
• If x and y contain numbers, the normalized absolute

difference is added to the total difference.
• If x and y contain strings, the normalized Levenshtein

distance is added to the total difference.
• If x and y contain complex objects, these are compared

recursively, adding the result to the total difference.
• If either field value is null, 1 is added to the total

difference.
The total difference is then divided by the number of fields.

Based on ObjectDistance, we can now define the stack
dump distance across all objects as found on the stack.
Let obj(s) denote the set of object identifiers in local
scope at a location s (i.e., the currently active object, all
method parameters and all local variables). Let s(o) denote
the object identified by o. We then define the stack dump
distance as the sum over all object distances as found on
the common stack frames:

StackDumpDistance(R,S) =
lcp∑
i=0

∑
o∈obj(ri)

ObjectDistance
(
ri(o), si(o)

)
Again, the larger the distance, the more object differences.

4) Total Fitness: During the execution of a generated test,
we obtain several stack traces, each with its own stack dump
distance. To measure the fitness of a test, we go for the
minimum of all traces obtained. Let S1, . . . , Sn denote the
stack traces obtained during the execution of a test test. We

can then define test trace and dump distances as follows:

TestStackTraceDistance(R, test) =

min
{
S ∈ {S1, . . . Sn} · StackTraceDistance(R,S)

}
as well as

TestStackDumpDistance(R, test) =

min
{
S ∈ {S1, . . . Sn} · StackDumpDistance(R,S)

}
Again, the higher the similarity, the lower the fitness value.

We give the highest priority to reconstruct the stack trace,
whereas reconstructing the local variables is a lesser goal.
Hence, the stack trace distance determines the overall fitness,
whereas the stack dump distance is in [0, 1). This is also
helpful in guiding test generation while no progress is made
reconstructing the stack.

Finally, we impose a penalty for runs were the target
exception is not thrown and thus install some lock-in effect:
once the exception was thrown by a test, other factors (i.e.
stack dump distance) cannot guide test case generation away
from the exception again.

ExceptionPenalty(test) =

{
0 if same exception is thrown
1 otherwise

The sum of these three gives the fitness function whose
value RECORE strives to minimize:

Fitness(R, test) = TestStackTraceDistance(R, test)

+ TestStackDumpDistance(R, test)

+ ExceptionPenalty(test)

RECORE extends EVOSUITE with the fitness function
above, thus guiding test case generation towards reconstruct-
ing the given core dump. The genetic algorithm stops once
the best known fitness remains unchanged for 1,000 gener-
ations.

B. Seeding Primitive Values

A core dump is not only helpful for guiding the search.
It also contains all the primitive values found on the heap
at the point of failure. These values can be used to seed the
search—that is, provide useful starting points rather than
values taken at random.

In evolutionary search, seeding refers to any technique
that exploits previous related knowledge to help solve the
problem at hand. Although in general seeding should not be
a requirement to solve the problem at hand, it can boost the
search such that a solution is found with a limited search
budget, where this would be impossible without. Seeding
is also an important component of EVOSUITE [10]; for
example, EVOSUITE re-uses primitive values and strings
found in the bytecode.

RECORE sets up EVOSUITE seeding to take advantage of
the core dump as follows:

1) Seeding values. To seed values, RECORE only uses
values from the heap dump (as the dump also contains
all constants from the source code).
• With a probability of p = 1

3 , RECORE uses the
feedback it receives from the distance function
(Section V-A3): If a primitive P in the reference
stack dump is different from the current best test
case, then P is directly fed back to be used.

• With p = 2
3 , RECORE uses a value from the

heap dump: If the value is to be used in a
method or constructor that occurs in the stack
trace, then it reuses the parameters for that method
or constructor from the stack dump. If the method
or constructor stems from a class that is found
somewhere on the stack dump, RECORE reuses
the primitive values it finds as the field variables
of that class. Otherwise, it uses an arbitrary value
from the heap dump.

2) Creating method calls. When inserting or replacing
method calls or constructors in a test case, EVOSUITE
choses randomly from the set of known calls.
• With p = 3

7 , RECORE makes EVOSUITE use one
of the calls on the stack trace. This way, we give
preference to the methods that need to be on the
stack trace in the end.

• With p = 2
7 , RECORE uses any method or con-

structor of the classes on the stack trace.
• With p = 1

7 , RECORE uses the feedback it receives
from the distance function (Section V-A3): If an
object in the reference stack dump is different
from the current best test case (i.e. different class
or non-null), then a method or constructor from
the class of that object is used.

• Eventually, with p = 1
7 , an arbitrary method from

any class (of the target project) that can be found
on the heap is used.

Both the above measures dramatically speed up failure
reconstruction; RECORE thus makes the same use of core
dumps as a human debugger doing a post-mortem analysis.5

C. Limitations

As a test generator, RECORE suffers from the general
limitations of such tools. To start with, there is no general
constructive way of reaching a specific program state—this
is an instance of the halting problem. Test generation tools
such as RECORE will thus fail to reconstruct a failure if
the search space is ill-formed or the conditions are very

5Rather than just seeding values, the core dump would of course also
allow us to simply bypass most of test case generation by taking objects
from the core dump and feeding these into the failing methods. As discussed
in Section III-A, this can result in very precise reconstruction of the failure
per se; however, the history of how the objects got into their final state
is lost. As we are interested in reconstructing the failure history from the
beginning, RECORE only uses primitive values from the core dump.

Table I
RECORE EVALUATION SUBJECTS

ID Section Subject Lines of code
JOD1 VI-A Brazilian Date bug 62,326
VM1 VI-B Vending Machine bug 68
MAT1 VI-C Sparse Iterator bug 53,496
JOD2 VI-D Western Hemisphere bug 62,326
JOD3 VI-E Parse French Date bug 53,845
COD1 VI-F Base64 Decoder bug 8,147
COD2 VI-G Base64 Lookup bug 6,154

complex. In a situation in which only few specific inputs
lead to the desired state (such as passwords in cryptographic
checks, for instance), RECORE is unlikely to construct
helpful inputs.

These general concerns are offset by the fact that test
case generation achieves high coverage in practical settings.
In our specific setting of reconstructing core dumps, we
even know that the specific state we search is reachable.
In principle, we can therefore reconstruct any state simply
by having RECORE search long enough—but this is only a
theoretical option. Additionally, the core dump may contain
precisely those specific inputs we are looking for—but they
may just as well have been overwritten by later computations
before the failure occurs.

For all these reasons, it is unrealistic to assume that
RECORE will always be successful. It may be useful and
effective in practice in a number of situations, though.
Whether this is the case on real-life programs with real-life
failures will be explored in the next section.

VI. CASE STUDIES

To evaluate the potential of RECORE, we applied it to a
set of seven bugs used previously for evaluating the BUGEX
automated debugger [29], summarized in Table I. Each of
these bugs is produced by a single test case which we
set up such that a core dump would be produced upon
failure (Section IV). We then fed RECORE with the original
program as well as the core dump. What we wanted to know
were the answers to three questions:

• Can RECORE produce test cases that produce the
exact same stack trace? Note that this is one of
RECORE’s success criteria, so this question may also
be posed as “Does RECORE produce a result?”

• Does the generated test case pass after applying the
original fix? This question asks “Is the test case useful
in debugging the original failure?” It should actually
run the other way round: If we fix the error based on
the produced test case, would we also fix the original
failure? For the original failure, however, we have the
single official fix, so we use this one as ground truth.

• Are the test cases readable and easy to understand?
The answer to this question is best left to the reader.
For this purpose, we provide a detailed analysis of
each failure and test case; this is also the reason why

we prefer seven in-depth case studies to statistical
summaries over bug collections.

Table II provides the running time of RECORE for the
seven subjects.6 Note that the great variance of the runtime is
due to the randomness of the underlying test case generation.
In the remaining sections, we present the seven reconstructed
failures.

A. JODATIME Brazilian Date Bug

Our first bug is the Brazilian Date Bug discussed in
Section II, namely bug report 2487417 for JODATIME [17].
It takes RECORE 40 minutes to reconstruct this failure.
The stack trace matches exactly, and the official fix also
makes the test case pass. This is a poster example for the
capabilities of RECORE—reconstructing the exact time and
time zone in which the error occurs.

B. Vending Machine Bug

Vending Machine is a small artificial example used for
earlier studies on automated debugging [4], [29]. A vending
operation that can cause the credit to fall below zero is
erroneously enabled, raising an exception when invoked.
RECORE reproduces the precise failure:

VendingMachine vendingMachine0 =
new VendingMachine();

String string0 = "SILVERDOLLAR";
Coin coin0 = Coin.create(string0);
vendingMachine0.insert(coin0);
vendingMachine0.vend();
vendingMachine0.vend();

Again, the stack trace matches exactly, and applying the
official fix makes the test case pass.

C. Commons Math Sparse Iterator Bug

Apache Commons Math is a library of lightweight, self-
contained mathematics and statistics components. Defect
number 367 [23] is a NullPointerException raised
by a sparse iterator, which should iterate over the non-
zero values in a vector. The test case generated by RECORE
reconstructs the failure:

6All times were measured on a non-dedicated quad-core 2.67 GHz Intel
x86 CPU with 8 GB RAM; RECORE and EVOSUITE are single-threaded.

Table II
SUMMARY OF RESULTS

Reproduces Passes
ID Section Duration stack? after fix?
JOD1 VI-A 35 m ± 17 m yes yes
VM1 VI-B 9 m ± 2 m yes yes
MAT1 VI-C 17 m ± 18 m yes yes
JOD2 VI-D 22 m ± 14 m no no
JOD3 VI-E 18 m ± 12 m yes no
COD1 VI-F 149 m ± 108 m yes yes
COD2 VI-G 6 m ± 1 m yes yes

ArrayRealVector arrayRealVector0 =
new ArrayRealVector();

double double0 =
-1832.3093176108437;

ArrayRealVector arrayRealVector1 =
(ArrayRealVector)
arrayRealVector0.append(double0);

ComposableFunction composableFunction0 =
ComposableFunction.SIGNUM;

RealVector realVector0 =
arrayRealVector1.map(composableFunction0);

Interestingly, this test case produces a stack trace that
extends the original—that is, it has more callers on the
outside. Rather than calling the failing iterator functions
directly, RECORE reproduces the failure indirectly as it finds
that the method map() by itself invokes the iterator and
triggers the failure. Again, the generated test case passes as
the official fix is applied.

D. JODATIME Western Hemisphere Bug

In JODATIME bug report 2889499 [18], selecting a time
zone at the border of the Western hemisphere and calling
toDateTimeZone() can cause an arithmetic exception
after a long chain of subsequent time/date calculations. Due
to the complex dependencies, RECORE fails to reach the
statement at which the error was raised, and thus cannot
reconstruct the issue.

With this test case, we have met the limitations discussed
in Section V-C; a better test case generator may be able to
address this issue. Note, though, that this failure comes at
virtually no cost: The attempt to reproduce the error is fully
automatic, and the production code has no runtime overhead.

E. JODATIME Parse French Date Bug

An IllegalArgumentException is raised when
parsing a legal french date in the JODATIME bug re-
port 1788282 [16]. The test generated by RECORE repro-
duces the exact stack trace:

DateTimeFormatter dateTimeFormatter0 =
ISODateTimeFormat.time();

Locale locale0 = Locale.FRENCH;
DateTimeFormatter dateTimeFormatter1 =

dateTimeFormatter0.withLocale(locale0);
String string0 = "11.sept..2007";
DateTime dateTime0 =

dateTimeFormatter1.parseDateTime(string0);

With this, however, RECORE has not recreated the original
failure. The input "11.sept..2007" is correctly recon-
structed, and the stack trace is the same. However, the failure
is different:
• In the original run, "dd.MMM.yyyy" is the date for-

mat. Here, "MMM" stands for the possibly abbreviated
month, which in French can include a dot (i.e., the
"sept." in "11.sept..2007").

• The test case generated by RECORE uses an ISO date
format, which is "yyyy-MM-dd". The provided input

"11.sept..2007" obviously does not match the
ISO format; hence parsing fails.

The difference in failure manifests itself in a different
state; the original run fails to parse the month, whereas the
generated run fails at the first dot. This also results in dif-
ferent exception messages, which instructs the programmer
to proceed with caution.

Why can’t RECORE reproduce the original failure? The
actual DateTimeFormatter object in the core dump
takes a string in its constructor. To recreate the object,
RECORE must pass the original string "dd.MMM.yyyy".
However, the fact that this string was used in the constructor
is lost in history, and reverse-executing the parser to re-
construct it is beyond RECORE’s capabilities (and actually,
beyond the capabilities of any of today’s test generators).

With this test case, we thus again have met the limitations
discussed in Section V-C. It should be noted, though, that
half of the input (namely, the french date) is correctly
reconstructed, which may speed up manual debugging.

F. Commons Codec Base64 Decoder Bug

The Apache Commons Codec library provides implemen-
tations of common encoders and decoders such as Base64,
Hex, Phonetic and URLs. Issue 98 [8] reports that “certain
(malformed?) input to Base64InputStream causes a
NullPointerException in Base64.decode().”

The test case generated by RECORE reconstructs this
failure as follows:

String string1 = CharEncoding.US_ASCII;
byte[] byteArray0 =

Base64.decodeBase64(string1);
ByteArrayInputStream byteArrayInputStream0 =

new ByteArrayInputStream(byteArray0);
Base64InputStream base64InputStream0 =

new Base64InputStream(
byteArrayInputStream0);

byte[] byteArray1 =
Base64TestData.streamToBytes(

base64InputStream0, byteArray0);

The input in this test case (US_ASCII) differs from the
test case which triggered the original failure; in particular,
a character encoding ("US-ASCII") would normally not
be used as a string to encode. However, this generated
input (8 characters) is much smaller than the reported input
(1190 characters). The test case produces the exact same
stack trace; and again, applying the original fix also makes
this test case pass.

G. Commons Codec Base64 Lookup Bug

In issue number 22 in the Apache Commons Codec
library [7], an ArrayIndexOutOfBoundsException
is thrown. To reconstruct the failure, RECORE produces an
array with one negative element as input, which is also the
case in the original failure:

byte byte0 = -125;
byte[] byteArray0 = new byte[3];
byteArray0[0] = byte0;
byte byte1 = 64;
byteArray0[2] = byte1;
boolean boolean0 =

Base64.isArrayByteBase64(byteArray0);

Again, the stack trace is identical and the original fix also
fixes the generated test case.

H. Summary

Our results are summarized in Table II. In five out of seven
issues, RECORE is able to recreate the precise failure: The
generated tests reproduce the stack trace, and the original
fix also fixes the test. Even when failure reconstruction is
not complete (Section VI-E), the generated test still partially
reconstructs the input.

All generated test cases reconstruct the failure from
scratch, using primitive values only, and are all short enough
to not only ease comprehension, but also debugging in itself.
All this is achieved with zero overhead at runtime, and in
an all-automatic run after the failure. If integrated in a bug
reporting system, RECORE could try to construct a test case
before any developer even looks at the report.

I. Threats to Validity

As any empirical study, our evaluation is subject to threats
to validity.

Threats to construct validity have to do with how we
measured the effectiveness of our technique. We assume a
failure to be reconstructed if the stack trace is the same, and
if the original fix makes the generated test case pass. For a
full evaluation of effectiveness, we would have developers
design fixes based on the RECORE results, and see how
effective these fixes are in addressing the original issues.
This is part of our future work (Section VII); for now,
assessing the usefulness and readability of the generated tests
is left to the reader.

Threats to internal validity might come from how the
study was performed. We carefully tested RECORE to reduce
the likelihood of defects. To counter the issue of randomized
algorithms being affected by chance, we ran each experiment
at least three times; all reported results are representative.
The running time is the average over all runs.

Threats to external validity concern the generalization to
software and faults other than the ones we studied, which
is a common issue in empirical analysis. Our sample size is
small; only seven different programs and bugs were used in
the study. The reason for this is that it is time consuming
to find and reproduce real bugs by manually analyzing bug
reports. This produces a bias towards well documented and
easy to reproduce issues; given the general limitations of
test case generation (Section V-C), there will be a number
of failures which RECORE will not be able to reproduce.

RECORE and its underlying EVOSUITE test case generator
have several parameters such as weights, timeouts, and
thresholds which all may influence the result. Wherever
possible, we picked default values as used in other studies.
Given the apparent effectiveness of search-based test gen-
eration in reconstructing failures, we believe that changing
these parameters may affect the time it takes to search for
these results, but not necessarily the result quality.

VII. CONCLUSION AND FUTURE WORK

Search-based test case generation is useful not only for
exploring unknown behavior, but also for reproducing known
behavior. Provided with only the data contained in a core
dump, modern search-based frameworks can effectively re-
construct executions that reproduce the failure. Applied on
seven JAVA bugs, RECORE was able to reconstruct the failure
exactly in five cases, and partially in another case. The
RECORE approach incurs zero overhead in production code;
the resulting test cases capture the essence of the failure,
are easy to understand, and easy to run through a debugger.
RECORE could even be deployed at user’s sites, limiting the
information sent to developers to the exact amount required
to reproduce the failure.

Despite these advances, there is still much to do. Be-
sides general improvements such as scalability, stability, and
speed, our future work will focus on the following topics:
• User study. To fully evaluate the effectiveness of

RECORE, we are currently setting up a large-scale study
with hundreds of users [28]. This study will tell how
useful RECORE is in reproducing, and how well it
integrates with other debugging tools.

• System test generation. A new generation of test
generators [14] applies search-based testing at the sys-
tem level, synthesizing GUI events as inputs. Such
generation techniques could also be integrated into
RECORE, resulting in real inputs leading to real failures.

• Capture more events. As illustrated in Section VI-E,
the lack of history can effectively prevent failure re-
construction. We are following the BUGREDUX way by
investigating which events can be captured during exe-
cution to maximize the effectiveness of reconstructing
failures, while minimizing the overhead on executions.

• More language features. We plan to extend RECORE
such that it supports features of C/C++ programs such
as indirect calls through function pointers or corrupt
memory. We are adapting techniques from execu-
tion synthesis [35] to control and reconstruct failure-
inducing thread schedules.

• Symbolic execution. BUGREDUX and execution syn-
thesis use symbolic execution and constraint solving to
generate runs that recreate the failure. We are work-
ing on integrating search-based test generation (as in
RECORE) with dynamic symbolic execution to combine
the best of both worlds.

RECORE is part of the BUGEX framework. For details on
RECORE, see

http://www.st.cs.uni-saarland.de/bugex/

Acknowledgments. Juan Pablo Galeotti, Alessandra Gorla,
Kim Herzig, Kevin Streit, and the anonymous reviewers gave
helpful comments on earlier revisions of this paper. This
work was supported by DFG grant Ze509/4-1.

REFERENCES

[1] G. Altekar, C. Zamfir, G. Candea, and I. Stoica. Automat-
ing the debugging of datacenter applications with ADDA.
Technical Report UCB/EECS-2011-22, EECS Department,
University of California, Berkeley, Apr 2011.

[2] S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making
software failures reproducible by preserving object states.
In ECOOP ’08, pages 542–565, Berlin, Heidelberg, 2008.
Springer-Verlag.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Gross-
man. CoreDet: A compiler and runtime system for determin-
istic multithreaded execution. In ASPLOS, 2010.

[4] M. Burger and A. Zeller. Minimizing reproduction of software
failures. In Proceedings of the 2011 International Symposium
on Software Testing and Analysis, ISSTA ’11, pages 221–231,
New York, NY, USA, July 2011. ACM.

[5] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In Symp. on Operating Systems Design
and Implementation, 2008.

[6] J. Clause and A. Orso. A technique for enabling and support-
ing debugging of field failures. In ICSE ’07, pages 261–270,
Washington, DC, USA, 2007. IEEE Computer Society.

[7] Codec-22. https://issues.apache.org/jira/browse/CODEC-22.
[8] Codec-98. https://issues.apache.org/jira/browse/CODEC-98.
[9] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M.

Chen. ReVirt: Enabling intrusion analysis through virtual-
machine logging and replay. In Symp. on Operating Systems
Design and Implementation, 2002.

[10] G. Fraser and A. Arcuri. The seed is strong: Seeding
strategies in search-based software testing. In Proceedings of
the International Conference on Software Testing, Verification
and Validation (ICST 2012), pages 121–130, 2012.

[11] G. Fraser and A. Arcuri. Whole test suite generation. IEEE
Transactions on Software Engineering, 2012. To appear.

[12] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgo-
van, G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging
in the (very) large: ten years of implementation and experi-
ence. In Symp. on Operating Systems Principles, 2009.

[13] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation (PLDI 2005), pages 213–223, June 2005.

[14] F. Gross, G. Fraser, and A. Zeller. Search-based system
testing: High coverage, no false alarms. In Proceedings of
the 2012 International Symposium on Software Testing and
Analysis, ISSTA 2012, pages 67–77, New York, NY, USA,
2012. ACM.

[15] W. Jin and A. Orso. BugRedux: Reproducing field failures for
in-house debugging. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages 474–
484, Piscataway, NJ, USA, 2012. IEEE Press.

[16] JodaTime-1788282. http://sourceforge.net/tracker/?func=
detail&aid=1788282&group id=97367&atid=617889.

[17] JodaTime-2487417. http://sourceforge.net/tracker/?func=
detail&aid=2487417&group id=97367&atid=617889.

[18] JodaTime-2889499. http://sourceforge.net/tracker/?func=
detail&aid=2889499&group id=97367&atid=617889.

[19] J. C. King. Symbolic execution and program testing. Com-
munications of the ACM, 1976.

[20] B. Korel. Automated software test data generation. IEEE
Transactions on Software Engineering, pages 870–879, 1990.

[21] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy,
P. M. Chen, and J. Flinn. Online multiprocessor replay
via speculation and external determinism. In Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems, 2010.

[22] J. Malburg and G. Fraser. Combining search-based and
constraint-based testing. In ASE, 2011.

[23] Math-367. https://issues.apache.org/jira/browse/MATH-367.
[24] P. McMinn. Search-based software test data generation:

A survey. Software Testing, Verification and Reliability,
14(2):105–156, 2004.

[25] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo:
A software-hardware interface for practical deterministic mul-
tiprocessor replay. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, 2009.

[26] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-
directed random test generation. In ACM/IEEE International
Conference on Software Engineering (ICSE), pages 75–84,
2007.

[27] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.
Lee, and S. Lu. PRES: Probabilistic replay with execution
sketching on multiprocessors. In Symp. on Operating Systems
Principles, 2009.

[28] J. Rößler. How helpful are automated debugging tools?
In USER ’12: Proceedings of the first Workshop on User
evaluation for Software Engineering Researchers, June 2012.

[29] J. Rößler, G. Fraser, A. Zeller, and A. Orso. Isolating
failure causes through test case generation. In International
Symposium on Software Testing and Analysis, Jul 2012.

[30] N. Tillmann and N. J. de Halleux. Pex — white box test
generation for .NET. In International Conference on Tests
And Proofs (TAP), pages 134–253, 2008.

[31] D. Weeratunge, X. Zhang, and S. Jagannathan. Analyzing
multicore dumps to facilitate concurrency bug reproduction.
In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2010.

[32] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test
environment for automatic structural testing. Information and
Software Technology, 43(14):841–854, 2001.

[33] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupa-
thy. SherLog: Error diagnosis by connecting clues from run-
time logs. In Proceedings of the International Conference
on Architecture Support for Programming Languages and
Operating Systems, March 2010.

[34] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Im-
proving software diagnosability via log enhancement. In
Proceedings of the International Conference on Architecture
Support for Programming Languages and Operating Systems,
March 2011.

[35] C. Zamfir and G. Candea. Execution synthesis: A technique
for automated debugging. In ACM SIGOPS/EuroSys Euro-
pean Conf. on Computer Systems, 2010.

