
EvoSuite: On The Challenges of Test Case Generation in the Real World

Gordon Fraser
University of Sheffield

Sheffield, UK
gordon.fraser@sheffield.ac.uk

Andrea Arcuri
Certus Software V&V Center at Simula Research Laboratory

P.O. Box 134, 1325 Lysaker, Norway
arcuri@simula.no

Abstract—Test case generation is an important but tedious
task, such that researchers have devised many different proto-
types that aim to automate it. As these are research prototypes,
they are usually only evaluated on a few hand-selected case
studies, such that despite great results there remains the
question of usability in the “real world”. EVOSUITE is such
a research prototype, which automatically generates unit test
suites for classes written in the Java programming language.
In our ongoing endeavour to achieve real-world usability, we
recently passed the milestone success of applying EVOSUITE on
hundred projects randomly selected from the SourceForge open
source platform. This paper discusses the technical challenges
that a testing tool like EVOSUITE needs to address when
handling Java classes coming from real-world open source
projects, and when producing JUnit test suites intended for
real users.

Keywords-test case generation; search-based testing; testing
classes; search-based software engineering

I. INTRODUCTION

Software testing is an essential part of any software
development process. Because it is a difficult and error-prone
task, automation is desirable. Several different techniques to
automatically generate test cases have been proposed and
evaluated, resulting in a wealth of research papers. Even
though in software engineering research it is now common
practice to perform a thorough evaluation of any newly
proposed technique, researchers are seldom fortunate enough
to have the time and resources to develop a full-fledged
tool. Consequently, most empirical studies are performed
using brittle prototypes and small sets of hand-selected case
studies for which these prototypes are optimized [7].

EVOSUITE [4] is a research prototype that uses search-
based techniques to derive unit tests for Java classes. It
has its roots in the µTEST prototype [9], which in the
initial study “survived” an experiment on two open source
libraries – one of the largest studies on mutation testing
at the time. Since then, EVOSUITE has been used to ad-
dress several research questions in software testing, such as
seeding [6], tuning [2], or bloat control [5]. Year after year,
we gradually worked on larger case studies, encountering
new and unexpected problems whenever new code was
used for experiments. Despite the size of later studies (e.g.,
1,741 classes [8]), these case studies still suffered from the

Figure 1. EVOSUITE is mainly used through the command line for large
scale experiments, but it can also be used as an Eclipse plugin.

problem that, because they were hand-selected and the tool
optimized to work on them, results are difficult to generalize.

To overcome this problem, we randomly selected 100
open source projects from Sourceforge, one of the largest
platforms for open source software on the Internet [7]. The
only constraint on projects was for them to be compilable
in order to run test cases. Given the sometimes surprising
behaviour of the Java compiler, weird language constructs,
and unexpected restrictions of the virtual machine, it re-
quired a major engineering effort to simply make EVOSUITE
run on these projects, which we call the SF100 corpus of
classes [7]. The experiments revealed to our surprise that,
despite years of engineering effort, our tool is still missing
essential features in order to work on “real” code. To the best
of our knowledge, those essential features are not discussed
in the literature, such that other prototypes are likely to suffer
from the same problems we face with EVOSUITE.

In this paper, we describe the challenges EVOSUITE had
to take in order to reach its current level of maturity. These
challenges are not only related to the struggle against the
surprises the Java language offers, but also to producing a
tool that is usable for large scale research experiments, yet is
also usable by practitioners. However, the SF100 experience
shows us that there are many further challenges ahead before
our research prototype is finally a completed tool.



II. WHOLE TEST SUITE GENERATION

EVOSUITE is a search-based testing (SBST) tool that uses
a Genetic Algorithm (GA) to produce test suites (sets of test
cases) achieving highest possible code coverage. The GA
starts with an initial population of randomly generated test
suites, and successively evolves these test suites by applying
selection, crossover and mutation, until a solution has been
found (100% coverage) or a stopping condition is reached
(e.g., timeout). A key novelty of EVOSUITE over previous
SBST tools is that it does not attempt to produce one test
case at a time for distinct coverage goals, but that it evolves
entire test suites targeting all coverage goals at the same
time. This has several advantages: Infeasible coverage goals
do not impair the search, there is no coincidental coverage,
and there is no question on the order in which coverage goals
should be addressed. We have shown [8] that this approach
can outperform the classical approach of targeting individual
coverage goals. During the search, the number of test cases
in a test suite and the length of the individual test cases can
vary, creating additional challenges such as bloat [5].

III. ASSERTION GENERATION

Automatically generated test cases can be used to find
violations of partial specification. For example, the most
generic specification of correct behaviour would be that a
program should not crash, and so undeclared exceptions
thrown by a test case likely indicate faults. However, if a
class under test does not crash, there remain two important
questions: 1) Is the class functionally correct? 2) What do
the test cases need to check in order to ensure that future
versions of the class preserve the current behaviour? To
solve these questions, EVOSUITE produces test cases with
assertions. A test assertion is a predicate that compares
some aspect of the observed behaviour against the intended
behaviour. In the absence of a complete specification the
intended behaviour is not known. However, EVOSUITE can
pinpoint those assertions that check important variables, and
the locations where to check these variables; this is achieved
using mutation testing. Details of this approach can be found
in [9]. To find faults in the current version of the class under
test the developer needs to inspect and verify each of these
assertions.

IV. USABILITY CHALLENGES

When test cases are generated, even if failures are auto-
matically found, the user still need to actually look at the
generated JUnit files. This is done not only to check if the
failures are indeed symptoms of real faults (and not maybe
just some null pointer exception due to a violated implicit
precondition), but also to check if the captured behavior
(e.g., the test assertions in the JUnit files generated by
EVOSUITE) is correct. Even if one would accept a test case
and its assertions without questioning, e.g., when building
a regression test suite, then there still remains the problem

that once a test case fails, the user will need to step through
the JUnit test during debugging. Therefore, it is extremely
important that the JUnit files generated by EVOSUITE are
easy to read and understand.

Such a readability goal could be considered as a further
objective to optimize besides the usual system under test
(SUT) code coverage criteria. Unfortunately, as it is difficult
to numerically quantify how readable a JUnit test case is, it
is not possible yet to cast this problem as a search problem.
In this section, we discuss some of the approaches we
employed in EVOSUITE to address the readability problem,
although we have not yet carried out a empirical study with
human subjects to assess and quantify their effectiveness.

A. Test Minimization

The first step to improve readability is to generate test
suites that are small. EVOSUITE includes the total length
of a test suite as secondary optimization goal, such that the
search prefers smaller test suites. However, as the stopping
conditions are based on resources (e.g., number of fitness
evaluations or maximum time) or coverage (stop as soon
as 100% coverage is achieved) the resulting test suites are
not optimal with respect to their size. EVOSUITE therefore
minimizes test suites as a post-processing step.

In our initial experiments [3] EVOSUITE tried to achieve
a globally minimal test suite by removing all unnecessary
statements. Although this turned out to be very effective,
the minimal number of statements in a test suite is often
achieved with a small number of fairly long test cases. How-
ever, this does not match the intention of unit tests, which
are supposed to be small and fast. EVOSUITE therefore now
applies a different minimization strategy: Given the resulting
test suite, EVOSUITE iterates over all individual coverage
goals. For each coverage goal, it randomly selects one test
out of the resulting test suite that covers this goal, and then
minimizes this test case with respect to the coverage goal.
If a goal is already covered by a previous minimized test
case, then no new test case is added for it. This strategy
may not achieve the minimal number of statements in total,
but results in much more readable test cases.

During the minimization EVOSUITE iterates over the
coverage goals sorted in order of appearance in the source
code. This way, the order of the test cases in the JUnit test
suite matches the order of methods in the class under test.

B. Value Minimization

The second minimization strategy applied by EVOSUITE
does not involve the test case lengths, but rather the val-
ues contained in these test cases. Because of its inherent
randomness, test cases produced by EVOSUITE will contain
random numbers and random strings, as long as they achieve
the goal of satisfying coverage. However, large random
numbers might distract from the actual purpose of a test
case. Therefore, EVOSUITE applies a binary search for each



declared number x between x and 0, as is also done by
Pex [10]. Furthermore, EVOSUITE tries to simplify strings
by attempting to remove every character. After this mini-
mization, all values are either 0/“”, or they represent a value
that is necessary in order to achieve a coverage goal.

C. Constant Inlining

Internally, EVOSUITE uses a representation where each
statement in a sequence defines one variable. This means
that each constant value is defined in a separate statement,
and if a primitive value is needed as a parameter then
such a variable is used; potentially the same variable is
used at different places. To further shorten tests and to
avoid confusion through variable reuse, EVOSUITE inlines
all constants before writing JUnit test code.

D. Variable Naming

Finally, the choice of variable names in the JUnit test
code has an important effect on the readability. EVOSUITE
originally used a simple naming convention where each
statement defined a variable varn with successive values
of n. However, to make it more apparent what type a
variable has and how variables interact, EVOSUITE now uses
a naming convention where variables are named using the
classname in camel case and lower caps first letter, following
by the number of the variable. For example, integers are
named int0, int1, etc., while an instance of the class
DateTime would for example be dateTime0.

V. ENGINEERING CHALLENGES

Generating and executing test cases for real world soft-
ware is challenging. Furthermore, as probably anyone who
has developed a research tool targeting the Java language
can confirm, the language, compiler, and virtual machine
sometimes offer unexpected and surprising behaviour which
needs to be accepted when trying to develop a universal tool.
In this section, we summarize some of our efforts to handle
the challenges faced when developing EVOSUITE for Java.

A. Environment Problem

Real-world software often interacts with its environment.
For example, the SUT can read and write files, open TCP
connections with remote hosts, start GUI windows, react to
mouse/keyboard events, etc. If those cases are not properly
taken care of, the user might receive unwelcome surprises,
like the testing tool calling the SUT with inputs that delete
files randomly from the file system! An often observed
behaviour, when running EVOSUITE on classes with I/O,
is that the search leads to creation of files with random
strings as filenames; after a couple of minutes of running
EVOSUITE there can be thousands of such files.

To run EVOSUITE on SF100, using a Java “security
manager” is thus simply compulsory. When performing
potentially unsafe actions, Java code automatically asks the

currently active security manager for permission. EVOSUITE
uses a custom security manager, which is activated during
test execution. This security manager allows all permissions
to the threads spawned by EVOSUITE, whereas the thread
running the test cases, and any thread spawned by the SUT,
are treated specially. In the default configuration, the custom
security manager only allows I/O for classloaders (identified
by inspecting the stack trace), as well as a number of
selected safe or essential operations (e.g., reading properties,
loading libraries, reflection, and handling charsets and fonts).
As the security framework in Java was designed to handle
applets (programs downloaded from Internet and run inside
a browser), there are several operations that are potentially
malicious for an applet (e.g., stealing user information),
but that would be harmless when a program is tested with
EVOSUITE. Therefore, the security manager in EVOSUITE
likely is overprotective, but identifying which operations are
safe for testing tools is still an open research question [7].

B. Non-determinism and Undesired Behaviour

There are several operations allowed in Java with un-
wanted side-effects for test generation. An important call
that should never be allowed in client code is a call
to System.exit, which would potentially shut down
EVOSUITE. Calls to System.exit are therefore replaced
during class loading with calls to a static helper method that
raises a custom exception, which allows EVOSUITE to detect
when a test case has attempted to call System.exit.

A less obvious problem is presented by calls to
System.currentTimeMillis or Random.nextInt:
Such functions are not unsafe, but they may cause non-
deterministic behaviour. In particular, if EVOSUITE adds an
assertion based on a value that is influenced by a random
number of the current system time, then such an assertion
would fail on re-execution of the test. Therefore, EVOSUITE
replaces these functions with custom helper methods which
return incrementing integer numbers.

C. Java Peculiarities

In Java, there is a limit (64 kilobytes) to the size a
method in a class can have. A class which does not satisfy
those limits will simply fail to be loaded in the JVM. This
is a problem for tools that instrument the source/bytecode
of the SUT (e.g., to monitor the test case executions), as
such instrumentation could exceed those limits. This is a
particularly dire issue for testability transformations and
mutation testing, as they often add a lot of extra branches in
the SUT. This is a problem we actually faced for quite a few
of the classes in the SF100 corpus. EVOSUITE therefore uses
a configurable upper bound on the number of mutations that
can be applied in a single method during mutation testing
(with an empirically determined default value of 800).



D. Master/Slave Architecture

For a range of reasons, EVOSUITE uses a master/slave
architecture. A master process is responsible to spawn one
or more slave processes, where the actual search for test
data is done. Communication is carried out through TCP
to avoid having EVOSUITE depending on specific operating
system signal messages (EVOSUITE is meant to run on all
the major operating systems, like Linux, Windows, Mac
and Solaris) and to make it possible to run EVOSUITE
in parallel on several machines. Search algorithms can be
easily parallelized (e.g., fitness function evaluations of a GA
population done in parallel on several cores), and that leads
to better results within the same amount of time. However,
in the future such TCP communications will be replaced
with RMI to make EVOSUITE easier to code and maintain.

On one hand, if one is only interested in obtaining paral-
lelism on the same multi-core machine, then the slaves could
be simply run as threads in the same master process. On
the other hand, in EVOSUITE, and likely in any testing tool
addressing real-world software, having the slaves running on
separated processes was a necessity. One reason is that the
code executed by the SUT could interfere with the master
and the other slaves in many unexpected ways. Another
reason is that, in this way, it was easier to address several
complications of handling real-world software, as we will
show throughout the rest of the paper, as for example muting
the SUT output, spawning and stopping threads, memory
consumption, etc.

E. Silencing the SUT

The SUT might print text, e.g., by direct calls to
System.out or logging frameworks. This is a major issue,
as such printings will end up mixed in the EVOSUITE
logs and console outputs, if not properly taken care of. In
some extreme cases, this could even exhaust the available
disk space on the host computer by generating extremely
large log files, which would also lead to high computational
overhead due to the I/O operations (this actually happened
when we started experiments on SF100).

All the EVOSUITE logging is done on the master
process. All the printing in the slave processes is
not redirected to any file/console, and this solves
the problem. As further optimization, we replace
the objects System.out and System.err with a
ByteArrayOutputStream which is flushed after each
test case execution. However, in the slave processes,
we still want to get logging information from the
EVOSUITE framework. This is essential for debugging
reasons. To achieve this goal, we used the Logback1

logging framework. In particular, we made use of the
ch.qos.logback.classic.net.SocketAppender.
In other words, we configured the master process as a

1http://logback.qos.ch, accessed 16.09.2012

server opening a TCP port, and print logs when receiving
log events from the slaves.

Interestingly, such solution was not enough. For example,
the SUT could use the Logback framework itself, and so
we would receive log events from the SUT as well! This
is actually the case in some of the SF100 projects, which
is a further argument to stress out the importance of large
empirical studies on unbiased case studies. This issue was
addressed by muting the root logger (i.e., level=“OFF”),
and then enabling loggers just for the org.evosuite
package. In other words, the master process prints only the
log events generated by a org.evosuite logger, whereas
all the other events received by the slave processes are
simply discarded.

F. Killing Threads

Unfortunate combinations of method calls or errors in
the SUT can easily lead to long test execution times or
even infinite loops. EVOSUITE therefore uses a timeout
(default value: 5000ms) after which it tries to terminate a test
execution. However, there are situations where the SUT does
not react to such termination requests. Furthermore, when
we run a test case during the search, the SUT might spawn
several extra threads. When a test case execution is finished
(i.e., the EVOSUITE driver has called the last method in the
test case sequence), then we would like that all the spawn
threads should be stopped as well. Otherwise, such threads
could interfere with the following test cases that are going
to be executed next. Furthermore, only a pre-defined number
of threads can be present in a JVM at any given time (which
usually depends on the operating system).

Unfortunately, Java does not support a reliable approach
to stop threads. For example, the method Thread.stop
is deprecated. The “recommended” approach is to signal
the thread to be interrupted (e.g., by calling the method
Thread.interrupt), but then it is up to the thread to
check whether it was interrupted and stop if so. Unfortu-
nately, threads spawn by the SUT could simple ignore those
interrupt requests coming from EVOSUITE.

EVOSUITE instruments the SUT as well as all loaded
classes such that, whenever execution passes a new line
in the source code or enters a new method, it checks
if the test execution should be terminated. If this is the
case, then execution is yielded by throwing a custom
timeout exception. However, this may not be sufficient:
the execution can be stuck outside the instrumentable
range of classes. Frequently occurring examples are calls
to java.lang.BigInteger, which easily end up in
extremely long lasting calculations of gcd, or new threads
spawned by GUI components (e.g., the AWT event handler).
As these classes are loaded by the Java bootclass-loader, they
cannot be instrumented and will thus ignore EVOSUITE’s
attempts to yield execution. If EVOSUITE fails to join all
spawned threads, it creates a new test execution thread in its



thread pool, sets the execution priority of the old execution
thread to low, and informs the execution tracer mechanism
to ignore calls from this thread. The number of such threads
EVOSUITE allows to exist can be configured, and if that
number is exceeded, then EVOSUITE stops the search.

G. Resource Limits

When running a Java application, there are limits to the
amount of heap space the JVM will use. This can be for
example set with the -Xmx option when a Java application
is started. If this option is not set, a default value that can
vary depending on the JVM version and operating system is
used. The SUT might require a large amount of memory, but
that information is not directly accessible in the bytecode of
the SUT. As precaution, EVOSUITE allocates a large amount
of heap space, even if that is not going to be fully used.

When generating test cases, it is possible that extremely
large amounts of memory are allocated, which may kill the
EVOSUITE slave processes due to out of memory exceptions.
For example, assume that the SUT has a method that
allocates an array whose size is based on an integer input
parameter (e.g., a variable size vector whose buffer size is
given as input in the constructor). If a testing tool generates
the value two billions as input data (which is a valid input
value), then just for that single method call the JVM would
require two gigabytes of heap space! It is not only a matter
of arrays, but any data structure that can grow in size. Even if
one constrains the search to only small integer values (which
would lead to several side effects, as for example making
some feasible branches impossible to cover), that would not
solve the problem as there can be many different reasons for
which the SUT can increase its size.

In Java, it is possible to query how much heap
space is free (e.g., there are several methods in the
java.lang.Runtime class to query the state of the
heap). A “brute force” approach to the memory problem
in the SUT could be to instrument its bytecode such that,
after each instruction, the memory is checked and the test
case execution stopped if close to run out of memory.
Unfortunately, such an approach would introduce a very
large computational overhead to the execution of the test
cases, which could severely hamper the search (i.e., less
test cases will be evaluated). EVOSUITE therefore checks
the available memory after each fitness evaluation (i.e.,
test execution). If the available memory shrinks beneath a
configurable threshold, then EVOSUITE calls the garbage
collector. If the garbage collector is not able to reclaim
sufficient memory, then EVOSUITE stops the search and
gracefully shuts down, preserving the current result of the
search.

For array allocations, EVOSUITE uses additional instru-
mentation to prevent memory exhaustion: Before an array
in the SUT is allocated, we check its size. If the size is
above a configurable threshold (e.g., 10,000), then we stop

that particular test case execution, and its fitness value will
be penalized. This strategy is not free of possible negative
side effects, but, for the time being, it is a good compromise
that was necessary when using EVOSUITE on SF100.

Not only the SUT can lead to memory issues, but also
EVOSUITE itself can lead to them. For example, the search
might lead to generate test suite populations with many
(long) test cases, and so consume all available memory. This
is a problem that in Evolutionary Computation is generally
known as bloat. We have implemented several techniques to
handle such issue, and those are described in details in [5].

VI. RESEARCH CHALLENGES

For a practitioner, likely the best way to run a test
case generation tool is to have a plug-in to the IDE used
to develop the SUT, as for example Eclipse, IntelJ and
NetBeans. At the current moment, we are developing an
EVOSUITE plug-in to support Eclipse2. However, to run
empirical studies on large case studies such as SF100 an
IDE plug-in interface might be cumbersome. For this reason,
EVOSUITE can be run directly from the command line.

A. Parameters

Through the years, several new features have been added
to EVOSUITE, and each time we needed to evaluate whether
those new features do indeed improve performance. All
features/settings can be changed by command line using
Java environment variables. For example, the crossover rate
can be set with -Dcrossover_rate=x, where x is some
numerical constant (e.g., 0.7). To prevent variables being
ignored due to typos, all console inputs are validated (i.e.,
EVOSUITE checks if those variable names point to existing
variables) when EVOSUITE starts.

A complex tool like EVOSUITE has hundreds of parame-
ters that can be set (i.e., “configuration” properties). Tuning
them can be seen as a major challenge, although reasonable
“default” values are often sufficient [2]. To study whether
some features improve performance, we first need to define
how performance is measured. Depending on the study, there
are several “runtime” properties that can be considered, as
for example branch coverage, test suite size, mutation score,
number of executed statements, etc. When we carry out
experiments, to analyze the results, we need to know which
configuration property had non-default settings, and what
were the outputs of the runtime properties of interest.

B. Data Collection

To help analyze the results of the empirical studies,
EVOSUITE can generate comma separated variable (CSV)
files. There is a column for each configuration/runtime
property of interest, and each row contains the results of a
run of EVOSUITE on the SUT, i.e. the properties of the best

2Please refer to the EVOSUITE website at http://www.evosuite.org for
the current status of the plug-in



final test suite given as output to the users. When running
EVOSUITE on an entire project, there is a row for each class.
Although earlier versions of EVOSUITE dumped all available
information in these CSV files, at some point with increasing
case study size the memory footprint and I/O overhead
became too big. Therefore, EVOSUITE has a configuration
property that is used to define which configuration/runtime
properties to save in the CSV files.

The choice of using CSV was to simplify data collection
and analysis. Another option could had been to use a
database, but that could make the installation of EVOSUITE
more cumbersome. Furthermore, CSV can be directly read
in R3, which we use for all the statistical analyses and
generation of tables/graphs. As EVOSUITE is based on
randomized algorithms, the use of statistical tests is essential
to properly analyze the results of the empirical studies [1].

C. Running EVOSUITE Experiments on a Cluster

To achieve sound empirical evidence, large case studies
need to be used, and each experiment needs to be repeated
several times with different seeds to take into account the
randomness of EVOSUITE. Therefore, for all our empirical
studies, we had to use a cluster of computers. Each run of
EVOSUITE on a SUT is independent from the others, so it
is pretty easy to parallelize the empirical analyses.

Whenever we prepare a new empirical study, we create
a Python script that generates n shell scripts. Each shell
script contains a sequence of calls to EVOSUITE with the
different parameter settings and on different SUTs. Those
shell scripts are the “jobs” that will be run on the cluster
(e.g., on a IBM cluster, by using the command qsub).
For example, if we want to run experiments on different
settings of the crossover rate (e.g., three values, 0.2, 0.5
and 0.8) on the SF100 corpus, and we want 10 repetitions
with different seeds per run, the Python script could generate
n = 10 × 3 × (9000/100) = 2700 shell scripts, assuming
a case study of roughly 9,000 classes (e.g., the SF100
corpus) and 100 SUTs per job. Note, as we mostly use
time as stopping criterion for the search, each job will run
for roughly the same amount of time, regardless of the
complexity of the SUT.

Depending on the number of configurations to experiment
with, one might want to subdivide the empirical study in a
different number n of jobs. As a rule of thumb, we found it
very useful to have different seeds in different jobs, and a
number of jobs per seed that is roughly equivalent to the
number of cores available in the cluster. Applied to the
previous example, that would mean that those n = 2700
jobs would be fine for a cluster with roughly 270 available
nodes. The reason for such a rule of thumb is simple: This
way it is possible to run a “single seed” (i.e., all the different
EVOSUITE configurations using the same random seed) by

3http://www.r-project.org, accessed 16.09.2012

using all the available nodes. This was useful for debugging
(e.g., running a single seed on entire case study to check
for crashes and violations of EVOSUITE assertions) and
when we needed to run more experiments (e.g., when time
is available, it is usually good to have more repetitions to
improve the power of the statistical tests [1]).

VII. CONCLUSIONS

Producing a research prototype that works on a fixed set
of case study examples is hard work; producing a research
prototype that works on a large number of case studies that
are not manually selected is even harder. In this paper, we
have summarized our efforts in making the EVOSUITE test
generation tool usable on any real code, by real users. As
our experiments on the SF100 corpus of classes show the
engineering effort that has gone into EVOSUITE does pay
off, yet there remain many challenges. First and foremost,
the environmental dependencies are the primary reason for
low code coverage on real code, and we are working on
solutions for this and other problems.

To learn more about EVOSUITE, visit our Web site:

http://www.evosuite.org

Acknowledgments. This project has been funded a Google
Focused Research Award on “Test Amplification”. Andrea
Arcuri is funded by the Norwegian Research Council.

REFERENCES

[1] A. Arcuri and L. Briand, “A practical guide for using statis-
tical tests to assess randomized algorithms in software engi-
neering,” in ACM/IEEE International Conference on Software
Engineering (ICSE), 2011, pp. 1–10.

[2] A. Arcuri and G. Fraser, “On parameter tuning in search based
software engineering,” in International Symposium on Search
Based Software Engineering (SSBSE), 2011, pp. 33–47.

[3] G. Fraser and A. Arcuri, “Evolutionary generation of whole
test suites,” in International Conference On Quality Software
(QSIC). IEEE Computer Society, 2011, pp. 31–40.

[4] ——, “EvoSuite: Automatic test suite generation for object-
oriented software.” in ACM Symposium on the Foundations
of Software Engineering (FSE), 2011, pp. 416–419.

[5] ——, “It is not the length that matters, it is how you control
it,” in IEEE International Conference on Software Testing,
Verification and Validation (ICST), 2011, pp. 150 – 159.

[6] ——, “The seed is strong: Seeding strategies in search-
based software testing,” in IEEE International Conference on
Software Testing, Verification and Validation (ICST), 2012,
pp. 121–130.

[7] ——, “Sound empirical evidence in software testing,” in
ACM/IEEE International Conference on Software Engineer-
ing (ICSE), 2012, pp. 178–188.

[8] ——, “Whole test suite generation,” IEEE Transactions on
Software Engineering (TSE), 2012.

[9] G. Fraser and A. Zeller, “Mutation-driven generation of unit
tests and oracles,” IEEE Transactions on Software Engineer-
ing (TSE), vol. 28, no. 2, pp. 278–292, 2012.

[10] N. Tillmann and N. J. de Halleux, “Pex — white box test
generation for .NET,” in International Conference on Tests
And Proofs (TAP), 2008, pp. 134–253.


