
Private API Access and Functional Mocking in
Automated Unit Test Generation

Andrea Arcuri
Westerdals Oslo ACT

Oslo, Norway,
and SnT,

University of Luxembourg

Gordon Fraser
University of Sheffield

Sheffield, UK

René Just
University of Massachusetts

Amherst, MA, USA

Abstract—Not all object oriented code is easily testable:
Dependency objects might be difficult or even impossible to
instantiate, and object-oriented encapsulation makes testing po-
tentially simple code difficult if it cannot easily be accessed.
When this happens, then developers can resort to mock objects
that simulate the complex dependencies, or circumvent object-
oriented encapsulation and access private APIs directly through
the use of, for example, Java reflection. Can automated unit test
generation benefit from these techniques as well? In this paper
we investigate this question by extending the EvoSuite unit test
generation tool with the ability to directly access private APIs
and to create mock objects using the popular Mockito framework.
However, care needs to be taken that this does not impact the
usefulness of the generated tests: For example, a test accessing a
private field could later fail if that field is renamed, even if that
renaming is part of a semantics-preserving refactoring. Such a
failure would not be revealing a true regression bug, but is a
false positive, which wastes the developer’s time for investigating
and fixing the test. Our experiments on the SF110 and Defects4J
benchmarks confirm the anticipated improvements in terms of
code coverage and bug finding, but also confirm the existence of
false positives. However, by ensuring the test generator only uses
mocking and reflection if there is no other way to reach some
part of the code, their number remains small.

I. INTRODUCTION

To support developers in the task of producing test suites
for object-oriented code, tests can be generated automatically.
Developers can then keep these tests for regression testing and
execute them during continuous integration after every new
code change, or they can manually inspect the tests to check
if the behavior they capture represents incorrect behavior of
the class under test (CUT). In both use cases, an essential
prerequisite is that the automated test generation tool achieves
sufficient coverage of all parts of the CUT. Although modern
test generation tools can achieve an average code coverage
ratio of 70% or more [13], there remain challenging aspects in
object-oriented code, where even human testers have to resort
to supportive technology when writing their unit tests.

Consider the simple code example in Figure 1: The class
PAFM has one public method example, which takes as input
an instance of the interface AnInterface. This interface
defines one method isOK, which returns a boolean. Although
the example seems very simple and small, it poses two
challenges for testing class PAFM: First, the interface has no
concrete class implementing it. This could happen if none

1public interface AnInterface {
2 boolean isOK();
3}
4

5public class PAFM {
6

7 public void example(AnInterface x) {
8 if(System.getProperty("user.name").equals("root")) {
9 checkIfOK(x);

10 }
11 }
12

13 private boolean checkIfOK(AnInterface x){
14 if(x.isOK()){
15 return true;
16 } else {
17 return false;
18 }
19 }
20}

Fig. 1. Source code example that cannot be tested without the use of mock
objects and reflection.

has been developed yet, or if the interface represents a web
service or RMI object that is not part of the classpath. Second,
the x parameter object is passed to the private checkIfOK
method only if the user executing the code is the root user
(which is an artificial example, of course), which may be out
of control of the tester, resulting in checkIfOK never being
called. These are challenges that many state-of-the-art unit test
generation tools (e.g., all tools participating in recent editions
of a unit testing tool competition for Java [8], [28]) cannot
overcome. The only possible test that these tools generated
for the example above consists of passing a null value to the
method example.

In order to overcome these problems, we consider two ex-
tensions to automated unit test generation, based on techniques
used during manual testing as well as by commercial tools like
Agitar One1: First, we allow the unit test generator to not only
instantiate and manipulate regular objects, but also to generate
mock objects using the Mockito framework, and to determine
what values method calls on the mock objects should return.
Second, we allow the unit test generator to directly access
private methods and fields by using Java reflection. Figure 2

1http://www.agitar.com/solutions/products/automated_junit_generation.
html, accessed September 2016

http://www.agitar.com/solutions/products/automated_junit_generation.html
http://www.agitar.com/solutions/products/automated_junit_generation.html

@Test(timeout = 4000)
public void test0() throws Throwable {
PAFM pAFM_0 = new PAFM();
AnInterface anInterface0 = mock(AnInterface.class, new ViolatedAssumptionAnswer());
doReturn(true).when(anInterface0).isOK();
Boolean boolean0 = (Boolean)PrivateAccess.callMethod((Class<PAFM>) PAFM.class, pAFM_0, "checkIfOK", (Object) anInterface0,

(Class<?>) AnInterface.class);
assertTrue(boolean0);

}

@Test(timeout = 4000)
public void test1() throws Throwable {
PAFM pAFM_0 = new PAFM();
AnInterface anInterface0 = mock(AnInterface.class, new ViolatedAssumptionAnswer());
doReturn(false).when(anInterface0).isOK();
Boolean boolean0 = (Boolean)PrivateAccess.callMethod((Class<PAFM>) PAFM.class, pAFM_0, "checkIfOK", (Object) anInterface0,

(Class<?>) AnInterface.class);
assertFalse(boolean0);

}

Fig. 2. Tests generated by EvoSuite on the target class in Figure 1: Mock objects are created for the AnInterface interface, and reflection is used to access
the private method checkIfOK.

shows two resulting tests cases: test0 covers the true branch
in method checkIfOK, test1 covers the false branch.

However, mock objects and reflection are known to be
susceptible to creating false positives [30]; i.e., tests that fail
erroneously. For example, if a private method is renamed or
removed, then a test accessing that method would fail at run
time as the name of the method would be encoded as a string in
the reflection call. Similarly, a mock object may lead to a false
positive due to an invalid or outdated assumption about the
implementation, which is encoded in the mock object. In order
to avoid these problems, we introduce several optimizations to
reduce the number of false positives, by avoiding known causes
of false positives, and by minimizing the usage of mocking
and reflection.

In detail, the contributions of this paper are as follows:
● A technique to integrate mock object generation in search-

based unit test generation, where the configuration of the
mocks becomes part of the search problem.

● A technique to integrate reflection on private methods and
fields in search-based unit test generation, while ensuring
that API changes do not lead to false positives.

● An exploration study to determine the optimal parameter
settings for these techniques.

● An empirical study on the performance of these techniques
in terms of their effects on code coverage and fault
detection, using the SF110 and Defects4J benchmarks.

● An empirical study on the effects of these techniques on
false positives and code evolution.

II. BACKGROUND

A. Unit Test Generation

Unit tests are an essential part of software development, and
to support developers with their creation various techniques
have been proposed to automatically generate tests. A common
approach is to generate random sequences of method calls, for
example implemented for Java in tools such as Randoop [24],
JTExpert [29], GRT [21] or T3 [26]. To reduce the number of
tests and to increase the code coverage achieved, techniques

based on search-based software testing (SBST) [1], [17] cast
test generation as an optimization problem, which then can
be addressed with techniques like Genetic Algorithms (GAs).
Examples of SBST tools for Java are eToc [34], EvoSuite [12]
and TestFul [7]. Alternatively, approaches based on dynamic
symbolic execution (DSE) (e.g., Pex [32]) use constraint solvers
to generate test data and to explore the possible paths through
a program, although they often require the tester to manually
write test drivers [11].

We implemented the techniques presented in this paper as
extensions to the search-based EvoSuite unit test generation
tool; a similar integration into random or DSE-based tools
would be possible. The search-based approach to unit test
generation is very flexible and makes it easy to integrate
alternative objectives, such as to limit the application of
mocking and reflection to only cases that cannot be covered
otherwise.

B. Private API Access

In the Java programming language, instance fields and meth-
ods have four different possible kinds of visibility modifiers:
public, protected, private or package-private (the
default if no modifier is specified). A test case that is located
in the same package as the CUT (as is usually the case)
can directly access all public, protected, and package-private
methods and fields. However, it cannot access the private ones.

One goal in test data generation is to maximize coverage
on the CUT, which includes also all of its private methods.
Consider the checkIfOk method in Figure 1. If a test generation
tool fails to generate a test whose execution evaluates the if-
condition in Line 8 to true, then the checkIfOk method might
never be tested. A possible solution to exercise checkIfOK is
to use Java’s reflection API to directly call the private method.

False Positives: Consider, for example, a refactoring
(i.e., a semantics-preserving change) in which the name of
checkIfOK is changed into foo. As the invocation of private
methods with reflection will typically include the method name
explicitly as a string (see Figure 2) it will not be renamed,

even if the developer uses an automated refactoring tool to
perform the method renaming. Unless the developer manually
modifies the strings representing the private method name in
every single generated test, any test case that uses reflection
to access checkIfOK would now fail, even though the CUT
has no regression defect. Such reflection-related changes are
out of scope of current automated refactoring tools, and hence
a developer could end up spending a lot of time investigating
all those failing tests.

C. Functional Mocking

Mocking is a common approach in unit testing to isolate
a class from its dependencies by using a replacement of a
dependency class instead of the original one. Consider the
example and checkIfOK methods in Figure 1. Depending
on the complexity of a class that implements AnInterface,
it might not be possible for a test data generation tool to
configure an instance of that class such that a call to its method
isOK returns true. Even worse, it may even be the case that no
concrete class for AnInterface is available to instantiate.
This could, for example, happen when dealing with remote
method invocations (RMI), or Java Enterprise Edition (JEE)
code that needs to be run in a JEE container (e.g., WildFly2

or GlassFish3). In such a case, a human tester can create a
mock object to allow unit-testing of a method that expects an
argument of type AnInterface.

When manually writing tests, it is common for developers to
use a mocking framework [23] to simplify some of the input
parameters. For example the mocking framework Mockito4 is
among the top-10 most used Java libraries, hosted on GitHub5.
When open-source software has test cases, 23% of the times
a mocking framework is used [23], where the JEE interface
HttpServletRequest is the most mocked class.

There are several different approaches to mocking, depending
on the functionality of the replacement class: A stub is a
replacement with a fixed (usually default) behavior, while a
mock not only replaces the original class, it also has some
partial behavior (mimicking the intended behavior of the class)
that needs to be configured, usually during the preparation
of the test execution. This paper uses the term “mock” as a
synonym for some common terms like fake, dummy, or test
double. Generally, a mock M for a class/interface X can be seen
as an implementation of X, where the return values of each
method invocation can be controlled directly in the test.

Since our implementation uses the Mockito framework to
create mock objects, we provide some background about this
framework. Consider the following example:
public static void foo(X x) {
if(x.isFoo()){
//...

}
}

2http://wildfly.org, accessed January 2016.
3https://glassfish.java.net, accessed January 2016.
4http://mockito.org, accessed January 2016.
5http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-

top-100-libraries-in-java-js-and-ruby, accessed January 2016.

To test the method foo, using Mockito, a tester could write:
X x = mock(X.class);
when(x.isFoo()).thenReturn(true);
foo(x);

In this example, mock and when are static methods of the
class org.mockito.Mockito. The method mock creates
a mocked instance of type X, whereas when specifies what
should happen when its input (and latest method call on the
instance x) is called in the test. In this particular case, it is
specified that x.isFoo() should return the value true.

A mock object can be used even when a method is called
several times, and each time a different value is needed. For
example, consider the following code to test:
public static void doubleCall(X x) {
if(x.next()==5 && x.next()==42){
//...

}
}

Using Mockito, a test case could be written as follows:
X x = mock(X.class);
when(x.next()).thenReturn(5,42);
doubleCall(x);

This specifies that the first time next() is called the value 5
should be returned, whereas the second time (and all successive
times) the value 42 will be returned.

False Positives: Mock objects can be used to verify the
order of calls performed on them. For example, Agitar’s
mocking framework expects calls on mock objects to be
performed in the same order as recorded, and thus swapping the
operands of a commutative operation (e.g., getX()+getY()
⇒ getY()+getX()) leads to a false positive [30], even
though this is a semantics-preserving change. Similarly, mock
objects are often used to verify that only expected methods are
invoked. This can be too restrictive and cause false positives
(e.g., replacing a field access with a call to a corresponding
getter method).

D. False Positives in Unit Test Generation

There are at least two possible scenarios for the use of
automatically generated tests: (1) manually inspecting the tests
to check whether any of them is capturing an incorrect behavior
of the CUTs or (2) using the tests for regression testing (e.g., to
run them at every new code change in a continuous integration
system such as Jenkins6). While there is no precise definition of
when a test failure is a false positive, we can loosely distinguish
two possible reasons for these scenarios: First, a test might
represent an unrealistic execution or use of the CUT. For
example, Gross et al. [16] showed that all 181 failures reported
by a test generator on an example application violated implicit
preconditions, and were thus false positives of this type. Second,
a test that makes wrong or overly restrictive assumptions might
fail later during regression testing, even if a CUT has only
been changed in a semantics-preserving way (e.g., refactoring).
Both types of false positives are harmful: software engineers

6https://jenkins-ci.org/, accessed September 2016.

need to manually inspect them, which represents a waste of
time and resources.

Reflection and mocking can cause both types of false
positives. In particular, in a prior study we showed that 46% of
generated regression tests that involved reflection or mocking
failed due to false positives [30] of the second type. For this
paper, we further analyzed these false positives and identified
that 65% were caused by unexpected method calls on mock
objects, and 35% failed to changes in the private API. Our
goal is to integrate private API access and mocking into unit
test generation; when doing so, we address both types of
false positives by minimizing the occurrences of reflection and
mocking, and we provide techniques to prevent the second
type by construction.

III. PAFM: INTEGRATING PRIVATE API ACCESS AND
FUNCTIONAL MOCKING INTO UNIT TEST GENERATION

We integrated private API access (PA) and functional mock-
ing (FM) into EvoSuite. This section details our implementation
choices and how they reduce false positives.

A. Search-based Test Generation in EvoSuite

The integration of reflection and mocking into EvoSuite’s
search algorithm uses two points of access that influence which
sequences of calls are constructed during the search. First, there
are the search operators that insert new objects and calls into
a test case, and second, there is the static analysis that informs
the modification operators with the possible choices.

EvoSuite uses a GA to evolve sets of candidate unit test cases,
in an optimization process that aims to maximize the code
coverage. Fitness functions based on code coverage determine
which individuals in a population of candidate test suites are
selected for reproduction in the GA. Selected individual are
susceptible to crossover, where tests are exchanged between two
parent test sets, and mutation, whereby tests are added, deleted,
or modified. These modifications are the first entry point for
integrating mocking and reflection: Each unit test is represented
as a sequence of statements, and modifications of such a test
include replacing values or adding and deleting statements.
EvoSuite defines different types of statements, for example for
calls to constructors or methods, to generate primitive objects
and arrays, or to assign values to fields.

The modifications are guided by additional information about
the available calls. In particular, EvoSuite statically collects
information about which method and constructor calls are part
of the SUT, which calls are available to generate dependency
objects, and which methods can alter the state of instances of
these classes; this information is sometimes referred to as the
test cluster. For example, when appending a new statement to
a test, EvoSuite will select one of the methods of the CUT,
and when inserting a call on an existing object, EvoSuite will
select a modifier and insert a call somewhere before a usage
of the object. Any dependencies of the new statement (e.g.,
parameters of the method call, receiver object of the method
call, instance for the field, etc.) are resolved by either selecting

existing values in the test, or by recursively adding calls that
generate appropriate objects.

B. Integrating Private API Access

Using reflection might lead to undesirable boilerplate code
in a test case, but this complexity can be hidden away in
auxiliary libraries, such that in the tests one only gets to see
calls to support methods. For our extension to EvoSuite we have
created a helper class PrivateAccess, which is part of the
runtime library that needs to be available during test execution.
This class provides static methods such as callMethod:
PrivateAccess.callMethod(Bar.class, bar, "aPrivateMethod",

42, int.class);

Here, the private method aPrivateMethod of class Bar
is called on an instance bar, with 42 as input parameter.
For each parameter of the called method the helper method
callMethod also requires the parameter types (int.class
in this case). This is in order to identify the correct method in
the case of overloading. Internally, callMethod uses Java
reflection to retrieve a method object from class Bar.class,
and then directly invokes it. For methods with more parameters,
the PrivateAccess class provides additional overloaded
versions of callMethod, for example to provide all parameter
objects and their declared types in arrays.

To make EvoSuite consider calls to private API, we have
extended its static analysis that creates the test cluster, such
that, for each private method, a call to the callMethod
method of the PrivateAccess class is added, where only
the parameters (receiver object and parameter objects) are
susceptible to mutation. Internally, this is realized by new
types of statements representing access to private methods and
private fields. During regular mutation of tests, for example
when deciding which new statement to add to the test, EvoSuite
will as a consequence also consider all the private API contained
in the test cluster.

Similarly to calling private methods, to set the CUT in a
suitable state, private fields can be accessed in the same way
using reflection and the helper method setVariable, which
again takes a class, the instance object, the field name, and the
value and type to assign to the field.

C. Integrating Functional Mocking

To integrate mocks into test generation, we defined a further
new type of statement (mock statement) in EvoSuite, which
represents the creation and configuration of a specific mock
object. To distinguish this kind of mock object from the
environment mocks [5] used in EvoSuite, we use the term
functional mocks (FM).

During insertion of new statements, EvoSuite tries to resolve
dependencies (e.g., parameter objects) either by re-using objects
declared in earlier statements of the same test, or by recursively
inserting new calls to generate new instances of the required
dependency objects. When EvoSuite needs to instantiate an
input object of type X, with probability PFM a mock object
will be instantiated. This means that a mock statement is
inserted into the test before the call for which dependencies

are resolved. The mock statement assigns the mock object to a
variable, which in turn is then used as the concrete parameter
for the new call.

Initially, the mock statement has no parameters itself, it
simply is responsible to call the mock method with an
appropriate type. Thus, the first time a mock object is created
in a test, it will have no when methods defined, and this means
that when the test is executed as part of fitness evaluation, the
mock object will return default values when its methods are
called (e.g., 0 for methods returning numbers and null for
the ones returning objects). However, each mock is run with
a listener, which keeps track of which methods were called
during a test case execution. After a test is executed, we add to
it a when method for each mock invocation, with one or more
random values in the thenReturn methods based on how
many times the methods were called. To avoid very large test
cases, each thenReturn invocation will have a maximum
of n inputs (e.g., in this paper we used n = 5). Recall that if a
mocked method is called more times than the number of inputs
in the thenReturn method, then the last input is returned.

Although the representation as Java code consists of several
lines for the call to mock and all calls to when/thenReturn,
these are all part of the same mock statement internally in
EvoSuite. Each of the thenReturn entries represents one
additional parameter of the mock statement. Thus, during the
search the search operators that modify the test cases will
be applied as well on the inputs of thenReturn methods.
However, the calls to when will not be modified by the search
operators (e.g., delete, add new ones, or change their inputs),
as they would not bring any benefit. For the same reason, no
search operator will add functional calls to any mock instance,
and a mock instance will not be re-used more than once as
input parameter for the CUT.

During the search, it might happen that a mock object will
be used differently based on how the test is modified. Some of
its methods might not be called any more, and other new ones
might be called. For example, consider the following case:
public static void foo(boolean b, X x){
if(b){
doSomething(x.first());

} else {
doSomething(x.second());
doSomething(x.second());

}
}

For this example, we might have a test like the following:
X x = mock(X.class);
when(x.first()).thenReturn(1);
foo(true, x);

Then, in successive generations EvoSuite might mutate the
true value in foo into false. As a result, the call
when(x.first()) will be redundant, as x.first()
would not be called any more in the test inside foo. In this
case, after a test is run and evaluated, EvoSuite will remove
all when calls that are no longer needed. Furthermore, before
a test will be mutated in the next generations of the search,
any needed when method (e.g., when(x.second())) will
be added with random inputs. Similarly, if a mock method is

called less or more times, the cardinalities of the thenReturn
methods will be modified as well (i.e., remove no longer needed
inputs and add new needed ones at random).

D. Avoiding False Positives

1) Private API Access: A special case is given when PA
injects null values to private fields, which would in many cases
lead to null pointer exceptions (NPEs) when the methods of the
CUT are called. Because EvoSuite explicitly aims to trigger
unexpected exceptions [14], the underlying fitness function
would reward those tests, and so the final generated test suites
could be just rigged of pointless test cases throwing NPEs. To
avoid this issue, during the search we explicitly prevent the
use of PA with null arguments.

Recall that removing an obsolete private method or renaming
a private method inevitably causes a test that reflectively calls
it to fail. Each such failing test represents a false positive that
a developer needs to investigate. To overcome this problem, we
use a simple yet effective approach: our implementation relies
on JUnit’s AssumptionViolatedException7 (AVE). If
a method in our PrivateAccess library tries to access a
field or method that does not exist any more, then it throws an
AssumptionViolatedException. This will not fail the
test (and so it will not become an expensive false positive),
but it will cause JUnit to skip the remainder of the test,
potentially causing lower coverage. However, new tests can be
automatically recreated [9].

2) Functional Mocking: In open-source software, the most
used Mockito method is verify [23]. This is used to
check if a mocked method was indeed called with a given
input, and throws an exception if not (thus failing the
test). For example, after foo(true, x) a tester could add
verify(x).first() to check if the method first()
was called inside foo(). However, we have decided to not use
any verify calls in EvoSuite. The reason is to avoid “brittle”
tests, i.e., tests that could fail in successive modifications of
the CUT even though no regression bug is introduced, and so
become false positives. To find bugs, we rely on assertions
on the return values of the CUT methods, and not on their
interactions with the input parameters, as these could change
without altering the external behavior of the CUT.

Even when no verify is used, mocking frameworks can
still lead to manually written tests that are brittle. For example,
if a class X is mocked, and in an updated version of the
CUT new calls to X are added/changed (without modifying
the semantic of the CUT), then those will just return default
values (e.g., 0 for integers and null for objects). This could well
lead to the tests failing, although the new CUT is semantically
equivalent (e.g., it was just a refactoring). This is a major issue
in manually written tests, where care needs to be taken when
using Mockito (e.g., do not use it on classes/interfaces that
likely will go through few updates in the future).

Similarly to the case of PA, an option to avoid this
problem is to change the behavior of Mockito to throw

7http://junit.org/junit4/javadoc/4.12/org/junit/
AssumptionViolatedException.html, accessed September 2016.

http://junit.org/junit4/javadoc/4.12/org/junit/AssumptionViolatedException.html
http://junit.org/junit4/javadoc/4.12/org/junit/AssumptionViolatedException.html

a AssumptionViolatedException by default. This is
usually not done in manually written tests, as it would force the
developer to set the mocks (e.g., add when calls with default
values) for every single mocked method that is called in the
CUT, even when their return value is of no interest for the
tests. This would be tedious, and thus likely not very practical.
On the other hand, in automatically generated tests we can
automatically add all those mock setup calls, and therefore use
AssumptionViolatedException as default behavior
(except for void methods) to guard against future changes.
However, a minor side effect is that the recommended pattern
when(X.foo()).thenReturn(...) cannot be used (as
the call to X.foo() would throw the AVE), and we need
to rather rewrite it as doReturn(...).when(X).foo(),
which is arguably less readable.

E. Minimizing Private API Access and Functional Mocking

Both, private access and functional mocking may lead to
false positives. Consequently, it is desirable to minimize the
usage of these techniques, and only retain resulting tests if there
are no alternative tests that achieve the same coverage without
using reflection or mocking. We integrated this objective into
the search algorithm in two complementary ways.

First, search-based test generation techniques usually main-
tain an archive of test cases during the search [25], [27]. This
archive retains one test for each coverage goal that has been
covered during the search, and it allows the search to focus
on those coverage goals not yet covered. EvoSuite maintains
the archive as a map, where for each testing target EvoSuite
keeps track of the best test seen for this target. At the end
of the search, the contents of this archive represent the final
test suite, and typically some post-processing steps such as
minimization are applied to improve the readability of the tests.
We modified this archive such that if a new test covers a target
without using PA or FM, then it will replace a previous test
using PA or FM, regardless of their size (by default, EvoSuite
retains the smaller of two tests that cover the same target).

Second, in order to make sure that the use of PA and FM
is a last resort for the search space exploration, we integrated
a number of parameters into the search operators. These
parameters define how likely the search can resort to PA or
FM rather than standard API calls and real objects, and when
during the search PA and FM should be activated — from the
very beginning of the search, or rather later on (e.g., after 50%
of generations have already been evaluated)? The latter could
be for example more preferable (i.e., more efficient) if most
tests using PA will be be superseded in the archive:

● The SPA parameter specifies the percentage of the search
budget that should be evaluated before starting to use PA.

● The PPA parameter decides how often reflection on a
private field or method is used, rather than using a public
one. It thus represents the probability of activating PA.

● The SFM parameter specifies the percentage of the search
budget that should be evaluated before functional mocking
is activated.

● The PFM parameter specifies the probability of using a
mock object instead of a real instance. Note that if an
interface has no concrete class, then a mock object will
be instantiated regardless of PFM .

IV. EVALUATION

We aimed at evaluating how the use of Private API Access
(PA) and Functional Mocking (FM) together (PAFM) during
test generation affects the effectiveness and brittleness of the
tests. In particular, the four addressed research questions are:
RQ1: What PAFM configuration maximizes code coverage?
RQ2: Does PAFM improve code coverage?
RQ3: Does PAFM improve fault detection?
RQ4: Does PAFM affect test brittleness?

A. Subject Programs

To answer our research questions, we used two different
datasets: the SF110 corpus [13] and Defects4J [19]. SF110 is a
collection of 100 open source projects randomly chosen from
SourceForge, plus the top 10 most popular ones at the time
in which the corpus was defined. In total, the SF110 corpus
consists of 23,886 Java CUTs, totalling more than 6.6 million
lines of code. The Defects4J [19] dataset consists of 357 real
faults from five open source projects: JFreeChart (26 faults),
Google Closure compiler (133 faults), Apache Commons Lang
(65 faults), Apache Commons Math (106 faults), and Joda Time
(27 faults). For each fault, Defects4J provides a buggy and
fixed program version with a minimized change that represents
the isolated bug fix. It further provides information about the
classes relevant to the fault (e.g., classes modified by the bug
fix, classes loaded by the fault-revealing test, etc.).

B. Experimental Setup

For the experiments carried out in this paper, we used the
default configuration of EvoSuite, which is supposed to show
good results on average [4]. In each experiment, the search
phase for EvoSuite was executed until either a timeout of two
minutes or 100% code coverage was reached. For each run
we collected data on the achieved branch coverage as reported
by EvoSuite. Statistics on the number of mock objects and
reflection calls were collected by parsing and analyzing the
generated tests. For experiments on Defects4J we collected
bug detection data using Defects4J’s infrastructure.

Because EvoSuite is based on randomized algorithms, each
experiment was repeated several times with different random
seeds, to obtain reliable results from which to draw sound
conclusions. The results were then analyzed following standard
guidelines [3]. In particular, to assess statistical difference we
used the non-parametric Mann–Whitney–Wilcoxon U-test, and
the Vargha-Delaney Â12 effect size.

C. RQ1: What PAFM configuration maximizes code coverage?

To answer RQ1, we investigated different settings for the
probability PPA of applying private access, and when starting
to apply it (SPA; recall Section III-E). We did the same for the
probability PFM of using functional mocking, and its starting
time SFM . This gave us four different parameters to tune.

TABLE I
BRANCH COVERAGE COMPARISON OF Base WITH BEST CONFIGURATION

FOR PA, FM AND PAFM ON 110 CLASSES.

Name Configuration Coverage

Base PFM = 0,PPA = 0 72.1%
PA PFM = 0,PPA = 0.50,SPA = 80% 74.1%
FM PFM = 0.50,SFM = 30%,PPA = 0 74.8%
PAFM PFM = 0.80,SFM = 50%,PPA = 0.50,SPA = 80% 76.8%

For the two probabilities PPA and PFM , we considered the
four different values [0.0, 0.3, 0.5, 0.8]. For the starting point
percentages SPA and SFM , we used [0.3, 0.5, 0.8, 1], where 1
means “never start”, i.e., deactivate PA or FM. The combination
of four different parameters with four different values did not
lead to 44 = 256 combinations, as some of them are redundant.
For example, if PPA = 0, then the value of SPA becomes
irrelevant, and vice-versa if SPA = 1. So, to study PA we had
all 32 = 9 combinations of PPA,SPA ∈ [0.3, 0.5, 0.8], with a
further PPA = 0,SPA = 1 to study when PA is not used. Similarly,
for FM we had 9 combinations in which it is used and 1 in
which it is not. All together, this led to (9+ 1)× (9+ 1) = 100
different configuration settings.

Due to the large number of configurations to tune, we did not
use the whole SF110 as case study. For each of the 110 projects
in SF110, we selected one CUT at random. Then, on each CUT
we executed EvoSuite with the 100 different configurations,
and collected data on the resulting branch coverage. Each
experiments was repeated 3 times, giving 110 × 3 = 330 data
points per configuration. In total, this led to 330×100 = 33,000
runs of EvoSuite.

Table I shows the results for the Base configuration (no
PA and no FM), the best configuration in which PA is used
but not FM, then the other way around, and finally the best
configuration for when both are used at the same time (PAFM).
The results in Table I show that both PA and FM improve upon
the Base configuration, and this improvement is even higher
when they are combined.

The best configuration improved branch coverage from
72.1% to 76.8%, i.e., a +4.7% improvement. It is interesting
to analyze which configuration values maximized the coverage:
For example, PA is best used only near the end of the search, as
SPA = 80%. This is not unexpected: Adding private fields and
methods to the search increases the search space considerably.
The search might end up spending a lot time modifying private
fields, when for a given CUT it could be easier to just do it
through its public methods. However, after 80% of the search,
it might well be that EvoSuite covered everything possible with
the public methods, and so introducing PA does not hinder the
coverage. The best probability of applying PA at that point
is PPA = 0.5; higher values inhibit the search, as focusing
on only private methods would prevent coverage on any non-
private methods in the CUT. FM might have side effects on
the search landscape, and the creation of mock objects with
Mockito causes a considerable overhead, and as such its starting
percentage is SFM = 0.5 and not the lowest 0.3.

1

2

3

4

0% 25% 50% 75% 100%
Branch coverage ratio

D
en

si
ty

Configuration Base PAFM

Fig. 3. Branch coverage comparison of Base configuration with PAFM.

The best configuration for PAFM is: PPA = 0.5,
SPA = 80%, PFM = 0.8 and SFM = 50%.

These settings are the ones used for all successive experi-
ments with PAFM.

D. RQ2: Does PAFM improve code coverage?

The results of RQ1 identify the best configuration for
PAFM in terms of coverage. However, the +4.7% coverage
improvement needs to interpreted with care, as it might well be
an overestimation. Even though we used repetitions to minimize
the threat of noise in the data influencing the result, the exper-
iment focused more on a breadth of different configurations
rather than reducing noise on individual classes/configurations.
To reduce this threat to validity, when answering RQ2 we
therefore conducted a new experiment on a stratified sample
of 1,000 classes from SF110, trying to sample uniformly from
each project (i.e., about 9 classes per project were used). On
these 1,000 CUTs, we ran both Base and the best PAFM
configuration 10 times. This led to 1,000 × 2 × 10 = 20,000
runs of EvoSuite.

The results of this experiment confirm the results of RQ1: the
Base configuration obtained a 70.5% average branch coverage,
whereas PAFM obtained 73.8%. This is a +3.3% improvement.
This improvement on the total means that PAFM achieves
coverage of +11.2% of the coverage goals missed by Base.

Figure 3 compares the distribution of coverage values for
the Base and PAFM configurations. There is a clear spike in
density to the far right of the plots, showing that EvoSuite
obtains very high branch coverage already without PAFM.
In these cases PAFM cannot make any further improvement,
and this influences the magnitude of the observed increase in
coverage. However, the plot shows a clear reduction of the
cases where coverage is low (0%–25%), and a clear increase in
the number of cases where coverage is very high (90%–100%)
when using PAFM. A paired U-test (1,000 average coverage
values for Base paired with 1,000 values of PAFM on the same
CUTs) confirms this observation with a p-value very close to

TABLE II
NUMBER OF FAILURE-TRIGGERING TEST SUITES FOR THE BUGS IN

DEFECTS4J FOR Base AND PAFM. Triggering total GIVES THE TOTAL
NUMBER OF BUGS FOR WHICH AT LEAST ONE FAILURE-TRIGGERING TEST
SUITE WAS GENERATED ACROSS ALL 30 RUNS. Triggering average GIVES

THE AVERAGE NUMBER OF BUGS FOR WHICH A FAILURE-TRIGGERING TEST
SUITE WAS GENERATED IN A SINGLE RUN.

Project Bugs Triggering total Triggering average p-value
Base PAFM Base PAFM

Chart 26 23 25 15.4 14.7 0.346
Closure 133 25 32 10.7 12.2 0.030
Lang 65 42 46 23.7 26.4 0.286
Math 106 65 81 42.9 50.5 0.002
Time 27 18 18 11.3 11.2 0.913

Total: 357 173 202 103.9 115.0 0.002

TABLE III
PAFM STATISTICS ON THE FAILURE-TRIGGERING TESTS: PERCENTAGE OF
TESTS THAT USED PAFM, AND AVERAGE NUMBER OF PA OR FM RELATED

STATEMENTS.

Project Test % PA Methods PA Fields FM Objects FM Calls

Chart 11.8% 0.0 0.0 0.1 0.1
Closure 11.0% 0.1 0.0 0.1 0.1
Lang 9.0% 0.1 0.0 0.1 0.1
Math 14.8% 0.0 0.0 0.2 0.2
Time 10.6% 0.0 0.0 0.1 0.1

All 12.8% 0.0 0.0 0.1 0.2

0, which means there are more cases in which PAFM leads to
an improvement than the other way round.

Using PAFM covers +11.2% of the uncovered branches,
thus increasing branch coverage by +3.3%.

E. RQ3: Does PAFM improve fault detection?

We used Defects4J to analyze the fault detection capability
of PAFM. Although mutation analysis is a viable alternative
for this kind of experiment [20], we preferred to use the 357
real faults provided by the Defects4J benchmark. For each of
the 357 faults in Defects4J, we executed EvoSuite with the
configurations Base and PAFM 30 times on the bug-free CUTs.
Once the test suites were generated, we executed each of them
on the buggy version of the CUT to check if any tests fail.
Table II shows the results of this analysis. Because EvoSuite
uses a randomized algorithm it may happen that, for a particular
CUT, a failure-triggering test suite was generated only in a
subset of the 30 runs. Therefore, we make a distinction between
the total number of bugs for which a failure-triggering test
suite was generated in all 30 runs and the average number of
bugs for which a failure-triggering test suite was generated in
a single run.

The results in Table II show that PAFM led to 11 more
failure-triggering test suites on average—a 115−103.9

103.9
= 10.6%

improvement. However, this does not mean that these tests are
revealing the bugs, as they could be false positives.

Table III summarizes statistics on the amount of PAFM in
the failure-triggering tests: On average, 12.8% of the failing

tests use some kind of mocking or reflection. The PA Methods
and PA Fields columns show the average number of reflection
statements per test, and only Closure and Lang use at least
some reflection on methods. Mock objects are used in all
projects; i.e., on average there are 0.1 mock objects per failing
test, and 0.2 doReturn calls per failing test. These numbers
suggest that the mechanisms to reduce PAFM to only the
absolutely necessary cases are effective. We also note that the
AVE mechanism is effective, as on average over all bugs and
random seeds there are 0.4 AVEs per test suite; these AVEs
would otherwise lead to false positives.

To investigate the effects of PAFM on false positives, we
thus focus on the 36 bugs for which only PAFM generated a
failure-triggering test suite. (Note that the 202 − 173 = 29 in
Table II is due to Base finding 7 bugs that PAFM did not.) In
order to determine whether PAFM leads to false positives, we
manually investigated the test suites that triggered these failure.
As manually investigating 36 program versions of a complex
application with 30 test suites each is a time-consuming task,
we sampled the bugs whose detection is most likely related
to PAFM as follows: To avoid looking at spurious results, we
only analyzed the bugs that, being revealed by chance at least
once in the 30 runs of PAFM, have less than 1% probability
of never being triggered in any of the 30 runs by Base. Given
p being the most likely estimation of fault detection based on
s successful runs with PAFM (i.e., p = s

n
), we looked at the

probability k < 0.01 that no run in Base found the bug while
p is independent from whether PAFM is used or not. In other
words, we look at the lowest value for s for which we can have
enough confidence that the bug was found due to PAFM and not
just by chance. This means solving mins(1 − (

s
30

))
30

< 0.01,
which leads to s = 5. Overall, 15 out of 36 bugs were found
at least 5 out of 30 times (Chart-25, Closure-1, Closure-68,
Closure-76, Lang-17, Math-9, Math-34, Math-39, Math-64,
Math-67, Math-71, Math-76, Math-84, Math-86, Math-100).

Each author of the paper independently analyzed all failing
tests for all 15 and classified them as either fault revealing or
false positive. Each discrepancy in the classification was then
analyzed and discussed until a consensus was reached.

There were 4 cases that were clearly true positives: Chart-
25, Closure-68, Closure-76 and Math-100. In these cases a
numerical value was computed, and then an assertion on the
returned value failed in the JUnit tests. On the other hand,
there were 4 bugs for which we identified both true and false
positives among the failing tests, and another 4 bugs only had
false positives. For these 8 bugs, there were several different
reasons for which a test resulted in a false positive.

Invalid mock objects. In two cases (Math-76 and Math-86),
the false positive was due to a mocked object with inconsistent
state, e.g., a matrix/vector where the size method returns an
invalid negative value, which could never happen on the original
non-mocked class. Because the object is invalid, the generated
tests throw an exception of type X (e.g., a null pointer or array
out of bounds exception), and that is caught in a try/catch.
However, when those tests are run on the buggy version of the
CUT, a different exception is thrown of type Y due to different

code being executed, making the test fail (the tests generated
by EvoSuite check for the type of expected exceptions that
should be thrown). A possible mitigation for this type of false
positive might be to not check for exception types when a test
is using any FM calls.

Loop counters and timeouts. To avoid that test cases
execute too long or end up in an infinite loop, EvoSuite uses
(a) bytecode instrumentation to count loop executions, and (b)
timeouts on unit tests. If a loop is executed too many times
(e.g., 10,000 times), EvoSuite throws a dedicated exception.
In the cases of Math-39 and Math-71, the bug made the CUT
execute fewer or more iterations, causing either an unexpected
exception of this type, or the absence of an expected exception,
both of which cause the JUnit test to fail. This, however, is
not directly related to the bug, and is thus a false positive. A
possible mitigation for this issue would be to never fail a test
when an exception is thrown by the loop check, which can be
implemented with a JUnit @Rule. Timeouts, implemented with
the @Test(timeout=4000) annotation seen in Figure 2),
caused a false positive for Lang-17, where the failure was due
to a non-functional property and not on the actual bug we
investigated. Neither of these 3 cases (Lang-17, Math-39 and
Math-71) is directly related to the use of PAFM, as they could
happen for Base as well. However, PAFM leads to higher code
coverage, and so it is more likely that these cases occur.

Null values in reflection. For Math-9 and Math-34, PA set
some private fields to null values, and thus put the CUT in an
inconsistent state. These particular tests threw an exception that
is of a different type than the one thrown in the buggy version,
as different code is executed. Similarly to Math-76 and Math-
86, this leads to false positives. However, this kind of problem
should have been prevented in the first place, as EvoSuite does
not use null values in PA for fields during the test generation
(see Section III-D1). However, in this case it happened in the
successive phases that can modify the generated tests, like test
minimization. This problem can be fixed by enforcing such
constraints throughout all the phases of test generation.

Bugs in EvoSuite. The last out of these 8 false positives
was due to an AVE, which should have caused the test to
be ignored rather than counting it as a failure. However, the
try/catch block in the generated test caught this exception, then
compared it with an expected exception type, and declared it a
failure because the type did not match. This problem could be
easily solved by never catching an AVE in a generated JUnit
test (or re-throwing it if caught).

Controversial cases. While the 12 bugs discussed so far
were relatively easy to analyse, the remaining 3 were not. In
Math-67, there was one failing test that reveals an actual bug,
but not the specific Defects4J bug. Still, we count it as a true
positive. The case of Math-84 was similar to the one of Math-
39 and Math-71, i.e., EvoSuite throws an exception due to a
loop that is executed too often. However, here the bug was
indeed related to performance, and the original manual tests
for that bug also checked for loop executions. As such, we
did not consider it as a false positive. Finally, Closure-1 calls
a method with a null parameter using PA, which causes an

exception only in the buggy version of the CUT. However,
in practice this method cannot be executed with a null value
through its public API, so even though the test reveals the
difference, it could arguably be counted as a false positive.

In summary, out of the 15 analysed bugs, we identified 10
types of true failures, and 9 types of false positives. However,
in most cases the manual analysis led to the identification of
ways to avoid these types of false positives to some extent. The
degree to which this mitigates the problem of false positives
and the degree to which this counters the coverage benefits
remains to be investigated as future work.

On average, test suites generated using PAFM triggered
10.6% more failures in Defects4J, but there is a trade-off

with false positives.

F. RQ4: Does PAFM affect test brittleness?

While PAFM improves test suite effectiveness in terms of
code coverage and number of failure-triggering tests, it might
also increase test brittleness—that is, it might increase the
likelihood of a test failing in the future, and thus increasing
the effort for test maintainability. We therefore conducted an
experiment on code evolution, using the programs version
control systems, to answer the question of whether PA and
FM affect the test maintainability of the generated tests. In
particular, we applied the following methodology for each
generated test suite:

1) Determine the commit of the program version for which
the test suite was generated.

2) Determine and enumerate all future commits in the version
conrol system that affect the source code of the program.

3) For each of the future commits, evolve the source code one
commit at a time (i.e., incrementally apply the committed
changes to the source code). We call such an incremental
step an evolution step.

4) For each evolution step, determine whether the test suite
still compiles and passes, and if so, determine the number
of AssumptionViolatedExceptions.

5) If the test suite fails or passes all future commits,
determine the number of successful evolution steps.

In addition to evaluating the generated test suites, we applied
the same methodology to the developer-written test suites,
provided by Defects4J. Note that to ensure comparability, we
only consider the developer-written tests that are related to
the classes for which the generated test suites were created.
Figure 4 shows the code evolution results for Base, PAFM,
and the developer-written test suites.

The results of this experiment show that, on average, PAFM
test suites pass on fewer evolution steps than Base test suites,
but the differences in terms of the number of evolution steps
are small and not significant (p = 0.63). PAFM and Base test
suites pass on all evolution steps for 7 program versions and
fail after the same number of evolution steps for 162 program
versions. PAFM test suites fail earlier for 131 and later for 51
program versions. Moreover, both PAFM and Base test suites

0.00

0.25

0.50

0.75

1.00

Base PAFM Developer

Fig. 4. Ratio of successful code evolution steps for Base, PAFM, and the
developer-written test suites.

pass on more evolution steps than the developer-written test
suites on average.

The question of whether these earlier failures are true or
false positives cannot be answered without further manual
analysis. However, interestingly we did not observe any
AssumptionViolatedExceptions for the PAFM test
suites throughout the entire evolution experiment. The likely
explanation for this is that the amount of PAFM is very
moderate, by design: Table IV shows statistics about the average
amount of mocking and reflection related statements per test
suite. On average, the test suites have 74.1 tests, but only
2.9 calls to private methods and 1 access of a private field.
There are 5.7 mock objects on average per test suite, and 7.6
doReturn calls. To put these numbers into perspective, we
calculated the same statistics on the test suites generated with
Agitar One for a previous study [30] by counting invocations
to Agitar’s reflection and mocking helper functions. Table V
shows that there is substantially more use of PAFM, which
explains the high number of false positives observed for the
Agitar test suites in that study.

PAFM test suites tend to fail slightly earlier than their
Base counterparts, but the absence of AVEs suggests that
the reason is increased code coverage and not PAFM.

G. Threats to Validity

Internal: The techniques presented in this paper have all
been implemented as part of the EvoSuite tool, which is used
by many practitioners, but may still contain bugs. Because
EvoSuite is based on randomized algorithms, each experiment
was repeated several times, and the results have been evaluated
with rigorous statistical methods. To ensure reproducibility [10],
we released the implementation of all the techniques presented
in this paper as open-source (LGPL license), and we made
it available on a public repository8. Similarly, SF110 and
Defects4J are freely available.
Construct: We used branch coverage, which is a common
coverage criterion in the software testing literature, and we
also considered fault detection based on real faults. However, it
is hard to quantify the tradeoff between improved coverage/fault
detection and the presence of false positives. If PAFM improves

8 www.github.com/EvoSuite/evosuite

TABLE IV
AVERAGE NUMBER OF PA AND FM USES IN EVOSUITE TEST SUITES.

Project Tests PA FM

Methods Fields Objects Calls

Chart 100.8 0.8 4.4 15.3 15.6
Closure 43.1 4.8 0.3 2.6 2.3
Lang 145.0 3.2 0.3 1.9 2.3
Math 61.8 1.5 1.5 6.2 9.4
Time 95.4 1.4 1.4 16.3 27.2

All 74.1 2.9 1.0 5.7 7.6

TABLE V
AVERAGE NUMBER OF PA AND FM USES IN AGITAR TEST SUITES [30].

Project Tests PA FM

Methods Fields Objects Calls

Chart 117.4 32.5 317.8 1.1 430.3
Closure 142.0 69.8 303.4 9.0 633.8
Lang 164.5 71.5 47.1 12.0 154.5
Math 90.5 13.6 62.0 0.7 117.4
Time 157.6 78.6 122.6 3.2 303.8

All 129.0 51.5 188.9 6.0 385.3

coverage by X%, but at the same time it increases the number
of false positives by Y%, how to determine if the X% increase
is worthwhile? As the effects of false positives on software
development is a little investigated topic in the literature, more
studies are necessary to shed light on this issue.
External: We used the SF110 corpus, which is a statistically
valid random sample of 100 projects from SourceForge, plus
its 10 most downloaded ones. Although we selected stratified
samples (110 and 1,000 CUTs), this still led to a large variety
among the employed classes on which EvoSuite was applied,
which increases our confidence that the results generalise.
Regarding fault detection, we based our experiments on 357
real faults from Defects4J. However, those faults come only
from five different systems.

V. RELATED WORK

A. Private API Access

A study of Ma et al. [22] on the effects of private methods on
the code coverage of unit tests showed that, while developers
seem to be able to cope well, automated tools (in this study
Randoop and EvoSuite) are negatively affected. In the same
study, Ma et al. demonstrated that a customized version
of Randoop, in which private methods were called through
reflection, achieved higher code coverage than without this
extension. However, they also acknowledged that accessing
private methods, without knowing if their preconditions are
valid, could have undesired side-effects.

In a study of the state-of-the-art in unit test generation [30],
we observed that the commercial Agitar One makes use
of reflection to access private members. However, we also
observed a substantial number of false positives related to
these tests, which motivated the integration as described in this
paper, with the aim to minimize the number of false positives.

B. Functional Mocking

In the context of automated test generation, the most common
use of mocking is to handle interactions of the CUT with its
environment. Interactions could be, for example, reading/writing
files, opening TCP connections to remote servers, etc. To have
a full, deterministic control over the environment, an approach
is to use environment mocks, which are classes that mimic
the behavior of the environment. In the code under test, all
calls to classes dealing with the environment can be replaced
with mocks, which then can be configured directly in the tests.
This approach was used to deal with the file system [5] and
networking [6], and similar approaches have been used to deal
with interactions with databases [31] and cloud services [35].

There have been some discussions about automatically gen-
erating more generic mock objects to improve test generation
([2], [15], [33]), and Islam and Csallner [18] presented a
technique where mock objects were generated for classes that
depend on interfaces with no concrete implementations. For
those interfaces, mock objects were generated, where the return
values of method calls on these mock objects were determined
with a constraint solver. Promising results were achieved on
34 static methods, for a total of 320 lines of code. However,
the presented technique only worked on the testing of static
methods, and was limited by the type of inputs the constraint
solver could handle (e.g, integers but not objects).

VI. CONCLUSIONS

In this paper, we introduced techniques to integrate private
API access (PA) and functional mocking (FM) together (PAFM)
into search-based unit test generation. A large empirical study
showed that PAFM improves not only branch coverage (on
average by +3.3%), but also fault detection on the real faults
of the Defects4J data set.

The use of PAFM leads to false positives, i.e., tests that
misleadingly fail although they detect no actual fault. We
presented techniques to reduce these negative effects, showing
that the number of false positives is low. A manual analysis
nevertheless revealed that false positives may still happen, even
with these counter measures.

The use of PAFM is thus a trade-off between increased
coverage and increased risk of false positives. However, note
that the problem of false positives does not go away by
deactivating PAFM: We observed several cases of false positives
independent of PAFM. As the role of false positives is a little
investigated topic in automated test generation, future work will
need to focus on studying those false positives and developing
techniques to detect or avoid them.

All techniques discussed in this paper have been implemented
as part of the EvoSuite test data generation tool. EvoSuite is
open-source (LGPL license) and freely available to download.
To learn more about EvoSuite and to access all artefacts
of the experiments in this paper please visit our website at:
http://www.evosuite.org.

ACKNOWLEDGMENTS

This project has been funded by the EPSRC project “GREAT-
EST” (EP/N023978/1), and by the National Research Fund,
Luxembourg (FNR/P10/03).

REFERENCES

[1] S. Ali, L. Briand, H. Hemmati, and R. Panesar-Walawege. A systematic
review of the application and empirical investigation of search-based
test-case generation. IEEE Transactions on Software Engineering (TSE),
36(6):742–762, 2010.

[2] N. Alshahwan, Y. Jia, K. Lakhotia, G. Fraser, D. Schuler, P. Tonella,
M. Harman, H. Muccini, W. Schulte, and T. Xie. Automock: Automated
synthesis of a mock environment for test case generation. Practical
Software Testing: Tool Automation and Human Factors, 2010.

[3] A. Arcuri and L. Briand. A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability, 24(3):219–250, 2014.

[4] A. Arcuri and G. Fraser. Parameter tuning or default values? an empirical
investigation in search-based software engineering. Empirical Software
Engineering, 18(3):594–623, 2013.

[5] A. Arcuri, G. Fraser, and J. P. Galeotti. Automated unit test generation
for classes with environment dependencies. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 79–90,
2014.

[6] A. Arcuri, G. Fraser, and J. P. Galeotti. Generating TCP/UDP network
data for automated unit test generation. In ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE), pages
155–165. ACM, 2015.

[7] L. Baresi, P. L. Lanzi, and M. Miraz. TestFul: an evolutionary test
approach for Java. In IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 185–194, 2010.

[8] S. Bauersfeld, T. Vos, K. Lakhotia, S. Poulding, and N. Condori. Unit
testing tool competition. In International Workshop on Search-Based
Software Testing (SBST), pages 414–420, 2013.

[9] J. Campos, A. Arcuri, G. Fraser, and R. Abreu. Continuous test genera-
tion: enhancing continuous integration with automated test generation.
In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, pages 55–66. ACM, 2014.

[10] C. Collberg and T. A. Proebsting. Repeatability in computer systems
research. Communications of the ACM, 59(3):62–69, 2016.

[11] L. Cseppento and Z. Micskei. Evaluating symbolic execution-based test
tools. In IEEE International Conference on Software Testing, Verification
and Validation (ICST), pages 1–10. IEEE, 2015.

[12] G. Fraser and A. Arcuri. EvoSuite: Automatic test suite generation for
object-oriented software. In ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (FSE), pages 416–419, 2011.

[13] G. Fraser and A. Arcuri. A large-scale evaluation of automated unit test
generation using evosuite. ACM Transactions on Software Engineering
and Methodology (TOSEM), 24(2):8, 2014.

[14] G. Fraser and A. Arcuri. 1600 faults in 100 projects: Automatically
finding faults while achieving high coverage with evosuite. Empirical
Software Engineering, 20(3):611–639, 2015.

[15] S. J. Galler, A. Maller, and F. Wotawa. Automatically extracting mock
object behavior from design by contract™ specification for test data
generation. In Proceedings of the 5th Workshop on Automation of
Software Test, pages 43–50. ACM, 2010.

[16] F. Gross, G. Fraser, and A. Zeller. Search-based system testing: high
coverage, no false alarms. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, pages 67–77. ACM, 2012.

[17] M. Harman, Y. Jia, and Y. Zhang. Achievements, open problems and
challenges for search based software testing. In IEEE International
Conference on Software Testing, Verification and Validation (ICST),
pages 1–12. IEEE, 2015.

[18] M. Islam and C. Csallner. Generating test cases for programs that are
coded against interfaces and annotations. ACM Transactions on Software
Engineering and Methodology (TOSEM), 23(3):21, 2014.

[19] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing faults
to enable controlled testing studies for java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis,
pages 437–440. ACM, 2014.

[20] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser. Are mutants a valid substitute for real faults in software
testing? In Proceedings of the Symposium on the Foundations of Software
Engineering (FSE), pages 654–665, Hong Kong, November 18–20 2014.

[21] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler. Grt:
Program-analysis-guided random testing. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2015.

[22] L. Ma, C. Zhang, B. Yu, and H. Sato. An empirical study on effects of
code visibility on code coverage of software testing. In Automation of
Software Test (AST), 2015 IEEE/ACM 10th International Workshop on,
pages 80–84. IEEE, 2015.

[23] S. Mostafa and X. Wang. An empirical study on the usage of mocking
frameworks in software testing. In 14th International Conference on
Quality Software (QSIC), pages 127–132. IEEE, 2014.

[24] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed
random test generation. In ACM/IEEE Int. Conference on Software
Engineering (ICSE), pages 75–84, 2007.

[25] A. Panichella, F. M. Kifetew, and P. Tonella. Reformulating branch
coverage as a many-objective optimization problem. In Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th International
Conference on, pages 1–10. IEEE, 2015.

[26] I. S. W. B. Prasetya. T3i: A Tool for Generating and Querying Test
Suites for Java. In ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), 2015.

[27] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser. A detailed investigation
of the effectiveness of whole test suite generation. Empirical Software
Engineering, 2016.

[28] U. Rueda, R. Just, J. P. Galeotti, and T. E. Vos. Unit testing tool
competition - round four. In International Workshop on Search-Based
Software Testing (SBST), 2016.

[29] A. Sakti, G. Pesant, and Y.-G. Gueheneuc. Instance generator and
problem representation to improve object oriented code coverage. IEEE
Transactions on Software Engineering (TSE), 2015.

[30] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri.
Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges (t). In 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE’15), pages 201–
211. IEEE, 2015.

[31] K. Taneja, Y. Zhang, and T. Xie. Moda: Automated test generation for
database applications via mock objects. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 289–292.
ACM, 2010.

[32] N. Tillmann and J. N. de Halleux. Pex — white box test generation for
.NET. In Int. Conference on Tests And Proofs (TAP), volume 4966 of
LNCS, pages 134 – 253. Springer, 2008.

[33] N. Tillmann and W. Schulte. Mock-object generation with behavior.
In Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM
International Conference on, pages 365–368. IEEE, 2006.

[34] P. Tonella. Evolutionary testing of classes. In ACM International
Symposium on Software Testing and Analysis (ISSTA), pages 119–128,
2004.

[35] L. Zhang, X. Ma, J. Lu, T. Xie, N. Tillmann, and P. De Halleux.
Environmental modeling for automated cloud application testing. IEEE
Software, 29(2):30–35, 2012.

