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ABSTRACT

To assess the quality of test suites, mutation analysis seeds
artificial defects (mutations) into programs; a non-detected
mutation indicates a weakness in the test suite. We present
an automated approach to generate unit tests that detect
these mutations for object-oriented classes. This has two ad-
vantages: First, the resulting test suite is optimized towards
finding defects rather than covering code. Second, the state
change caused by mutations induces oracles that precisely
detect the mutants. Evaluated on two open source librari-
es, our µtest prototype generates test suites that find si-
gnificantly more seeded defects than the original manually
written test suites.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms

Algorithms, Experimentation

Keywords

Mutation analysis, test case generation, unit testing, test
oracles, assertions, search based testing

1. INTRODUCTION

How good are my test cases? This question can be ans-
wered by applying mutation analysis: Artificial defects (mu-
tants) are injected into software and test cases are executed
on these fault-injected versions. A mutant that is not detec-
ted shows a deficiency in the test suite and indicates in most
cases that either a new test case should be added, or that
an existing test case needs a better test oracle.

Improving test cases after mutation analysis usually means
that the tester has to go back to the drawing-board and
design new test cases, taking the feedback gained from the
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1public class LocalDate {
2 // The local milliseconds from 1970−01−01T00:00:00

3 private long iLocalMillis;
4 . . .
5 // Construct a LocalDate instance

6 public LocalDate(Object instant, Chronology c) {
7 . . . // convert instant to array values
8 . . . // get iChronology based on c and instant
9 iLocalMillis = iChronology.getDateTimeMillis(

10 values[0], values[1], values[2], 0); ⇐ Change 0 to 1

11 }
12}

Figure 1: Mutating the initialization of iLocalMillis

is not detected by the Joda-Time test suite.

1LocalDate var0 = new org.joda.time.LocalDate()
2DateTime var1 = var0.toDateTimeAtCurrentTime()
3LocalDate var2 = new org.joda.time.LocalDate(var1)
4assertTrue(var2.equals(var0));

Figure 2: Test generated by µtest. The call in Line 3
triggers the mutation; the final assertion detects it.

mutation analysis into account. This process requires a deep
understanding of the source code and is a non-trivial task.
Automated test generation can help in covering code (and
thus hopefully detecting mutants); but even then, the tester
still needs to assess the results of the generated executions—
and has to write hundreds or even thousands of oracles.

In this paper, we present µtest, an approach that au-
tomatically generates unit tests for object-oriented classes
based on mutation analysis. By using mutations rather than
structural properties as coverage criterion, we not only get
guidance in where to test, but also what to test for. This
allows us to generate effective test oracles, a feature raising
automation to a level not offered by traditional tools.

As an example, consider Figure 1, showing a piece of code
from the open source library Joda-Time. This constructor
sets iLocalMillis to the milliseconds represented by day,
month, and year in the values array and 0 milliseconds. It
is called by 12 out of 143 test cases for LocalDate—branches
and statements are all perfectly covered, and each of these
test cases also covers several definition-use pairs of iLocal-
Millis. These test cases, however, only check whether the
day, month, and year are set correctly, which misses the fact
that comparison between LocalDate objects compare the ac-
tual value of iLocalMillis. Consequently, if we mutate the
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Figure 3: The µtest process: Mutation analysis, unit
partitioning, test generation, oracle generation.

last argument of getDateTimeMillis from 0 to 1, thus in-
creasing the value of iLocalMillis by 1, this seeded defect
is not caught.

µtest creates a test case with an oracle that catches this
very mutation, shown in Figure 2. LocalDate object var0 is
initialized to a fixed value (0, in our case). Line 2 generates
a DateTime object with the same day, month, and year as
var0 and the local time (fixed to 0, again). The constructor
call for var2 implicitly calls the constructor from Figure 1,
and therefore var0 and var2 have identical day, month, and
year, but differ by 1 millisecond on the mutant, which the
assertion detects.

By generating oracles in addition to tests, µtest simplifies
the act of testing to checking whether the generated asser-
tions are valid, rather than coming up with assertions and
sequences that are related to these assertions. If a suggested
assertion is not valid, then usually a bug has been found.

Summarizing, the contributions of this paper are:

Mutant-based unit test case generation: µtest uses a
genetic algorithm to breed method/constructor call se-
quences that are effective in detecting mutants.

Mutant-based oracle generation: By comparing execu-
tions of a test case on a program and its mutants, we
generate a reduced set of assertions that is able to dis-
tinguish between a program and its mutants.

Impact-driven test case generation: To minimize assess-
ment effort, µtest optimizes test cases and oracles to-
wards detecting mutations with maximal impact—that
is, changes to program state all across the execution.
Intuitively, greater impact is easier to observe and as-
sess for the tester, and more important for a test suite.

Mutant-based test case minimization: Intuitively, the
shorter a test case, the easier it is to understand. We
minimize test cases by first applying a multi-objective
approach that penalizes long sequences during test ca-
se generation, and then we remove all irrelevant state-
ments in the final test case.

Figure 3 shows the overall µtest process: The first step is
mutation analysis (Section 2) and a partitioning of the soft-
ware under test into test tasks, consisting of a unit under
test with its methods and constructors as well as all clas-
ses and class members relevant for test case generation. For
each unit a genetic algorithm breeds sequences of method
and constructor calls until each mutant of that unit, whe-
re possible, is covered by a test case such that its impact
is maximized (Section 3). We minimize unit tests by remo-
ving all statements that are not relevant for the mutation or

affected by it; finally, we generate and minimize assertions
by comparing the behavior of the test case on the original
software and its mutants (Section 4).

We have implemented µtest as an extension to the Ja-
valanche [29] mutation system (Section 5). We demonstrate
its effectiveness by applying it to two open source libraries
that have a reputation of being extensively well-tested. The
results show that our approach can be used to extend (and
theoretically, replace) the manually crafted unit tests (Sec-
tion 6). Section 7 closes with conclusions and future work.

2. BACKGROUND

2.1 Mutation Analysis

Mutation analysis was introduced in the 1970s [11] as a
method to evaluate a test suite in how good it is at detec-
ting faults, and to give insight into how and where a test
suite needs improvement. The idea of mutation analysis is
to seed artificial faults based on what is thought to be re-
al errors commonly made by programmers. The test cases
of an existing test suite are executed on a program version
(mutant) containing one such fault at a time in order to see
if any of the test cases can detect that there is a fault. A
mutant that is detected as such is considered dead, and of no
further use. A live mutant, however, shows a case where the
test suite potentially fails to detect an error and therefore
needs improvement.

There are two main problems of mutation analysis: First,
the sheer number of mutants and the effort of checking all
tests against all mutants can cause significant computational
costs. Second, equivalent mutants do not observably change
the program behavior or are even semantically identical, and
so there is no way to possibly detect them by testing. Since
the introduction of mutation analysis, a number of optimiza-
tions have been proposed to overcome possible performance
problems, and heuristics can identify a small fraction of equi-
valent mutants—at the end of the day, however, detecting
equivalent mutants is still a job to be done manually. A re-
cent survey paper [17] concisely summarizes all applications
and optimizations that have been proposed over the years.

Javalanche [29] is a tool that incorporates many of the
proposed optimizations and made it possible to apply mu-
tation analysis to software of previously unthinkable size. In
addition, Javalanche alleviates the equivalent mutant pro-
blem by ranking mutants by their impact : A mutant with
high impact is less likely to be equivalent, which allows the
tester to focus on those mutants that can really help to im-
prove a test suite. The impact can be measured, for example,
in terms of violated invariants or effects on code coverage.

2.2 Test Case Generation

Research on automated test case generation has resulted
in a great number of different approaches, deriving test cases
from models or source code, using different test objectives
such as coverage criteria, and using many different underly-
ing techniques and algorithms. In this paper, we only consi-
der white-box techniques that require no specifications; na-
turally, an existing specification can help in both generating
test cases and can serve as test oracle.

The majority of systematic white-box testing approaches
consider the control-flow of the program, and try to cover
as many aspects as possible (e.g., all statements or all bran-
ches). Generating test data by solving path constraints gene-



rated with symbolic execution is a popular approach (e.g.,
PathCrawler [37]), and dynamic symbolic execution as an
extension can overcome a number of problems by combining
concrete executions with symbolic execution. This idea has
been implemented in tools like DART [14] and CUTE [31],
and is also applied in Microsoft’s parametrized unit testing
tool PEX [33] or the object-oriented testing framework Sym-
stra [39].

Meta-heuristic search techniques have been used as an al-
ternative to symbolic execution based approaches and can
be applied to stateless and stateful programs [1, 22] as well
as object-oriented container classes [4, 34, 35]. A promising
avenue seems to be the combination of evolutionary methods
with dynamic symbolic execution (e.g., [16, 19]), alleviating
some of the problems both approaches have.

While systematic approaches in general have problems
with scalability, random testing is an approach that scales
with no problems to programs of any size. Besides random
input generation a recent trend is also generation of ran-
dom unit tests, as for example implemented in Randoop [26],
JCrasher [10], AutoTest [9], or RUTE-J [3]. Although the-
re is no guarantee of reaching certain paths, random testing
can achieve relatively good coverage with low computational
needs.

2.3 Test Case Generation for Mutation Tes-
ting

Surprisingly, only little work has been done on genera-
ting test cases dedicated to kill mutants, even though this is
the natural extension of mutation analysis. DeMillo and Of-
futt [12] have adapted constraint based testing to derive test
data that kills mutants. The idea is similar to test generati-
on using symbolic execution and constraint solving, but in
addition to the path constraints (called reachability conditi-

on by DeMillo and Offutt), each mutation adds a condition
that needs to be true (necessity condition) such that the mu-
tant affects the state. Test data is derived using constraint
solving techniques again.

Jones et al. [18] proposed the use of a genetic algorithm to
find mutants in branch predicates, and Bottaci [7] proposed
a fitness function for genetic algorithms based on the cons-
traints defined by DeMillo and Offutt [12]; recently this has
been used for experiments using genetic algorithms and ant
colony optimization to derive test data that kills mutants [5].

Differential test case generation (e.g., [13], [24], [32]) sha-
res similarities with test case generation based on mutation
analysis in that these techniques aim to generate test cases
that show the difference between two versions of a program.
Mutation testing, however, does not require the existence of
two different versions to be checked and is therefore not re-
stricted in its applicability to regression testing. In addition,
the differences in the form of simple mutations are precise-
ly controllable and can therefore be exploited for test case
generation.

2.4 Oracle Generation

In the context of regression testing, automated synthesis
of assertions is a natural extension of test case generation.
Randoop [26] allows annotation of the source code to iden-
tify observer methods to be used for assertion generation.
Orstra [38] generates assertions based on observed return
values and object states and adds assertions to check future
runs against these observations. A similar approach has al-

so been adopted in commercial tools such as Agitar Agita-
tor [6]. While such approaches can be used to derive efficient
oracles, they do not serve to identify which of these asser-
tions are actually useful, and such techniques are therefore
only found in regression testing.

Eclat [25] can generate assertions based on a model lear-
ned from assumed correct executions; in contrast, µtest

does not require any existing executions to start with.
Evans and Savoia [13] generate assertions from runs of two

different versions of a software system and DiffGen [32] ex-
tends the Orstra approach to generate assertions from runs
on two different program versions. This is similar to our
µtest approach, although we do not assume two existing
different versions of the same class but generate many diffe-
rent versions by mutation, and are therefore not restricted
to a regression testing scenario.

3. UNIT TESTS FROM MUTANTS

To generate test cases for mutants, we adopt a genetic ap-
proach in line with previous work on testing classes [4,34]: In
general, genetic algorithms evolve a population of chromo-
somes using genetics-inspired operations such as selection,
crossover, and mutation, and each chromosome represents a
possible problem solution.

To generate unit tests with a genetic algorithm, the first
ingredient is a genetic representation of test cases. A unit
test generally is a sequence of method calls on an object
instance, therefore the main components are method and
constructor calls. These methods and constructors take pa-
rameters which can be of primitive or complex type. This
gives us four main types of statements:

Constructor statements generate a new instance of the
test class or any other class needed as a parameter for ano-
ther statement:

DateTime var0 = new DateTime()

Method statements invoke methods on instances of any
existing objects (or static methods):

int var1 = var0.getSecondOfMinute()

Field statements access public fields of objects:

DurationField var2 = MillisDurationField.INSTANCE

Primitive statements represent numeric data types:

int var3 = 54

Each statement defines a new variable (except void me-
thod calls), and a chromosome is a sequence of such state-
ments. The parameters of method and constructor calls may
only refer to variables occurring earlier in the same chromo-
some. Constructors, methods, and fields are not restricted
to the members of the class under test because complex se-
quences might be necessary to create suitable parameter ob-
jects and reach required object states.

The initial population of test cases is generated random-
ly as shown in Algorithm 1: First, we determine the set of
all method and constructor calls that either contain a mu-
tation or directly or indirectly call a mutated function. We
randomly select one of these calls, and try to generate all
parameters as well as its callee, if applicable. For this, we
recursively either select existing objects or add new calls



Algorithm 1 Random generation used for the initial popu-
lation.
Require: C: Set of all methods and constructors direct-

ly/indirectly calling mutation
t ← ��
s ← random generator for unit under test
for callee and all parameters of s do

GenObject(class of parameter, {}, t)
end for
t ← t.s
while |t| < desired length do

s ← random method using an object from t as either
callee or parameter
for callee and all parameters of s not existing in t do

GenObject(class of parameter, {}, t)
end for
t ← t.s

end while
return t

Algorithm 2 GenObject: Recursive generation of objects.

Require: c: Class of desired object
Require: G: Set of classes already attempting to generate
Require: t: Test case

if t has object of class c then
return existing object with certain probability

end if
s ← random element from all generators
if s = non-static method or field then

G ← G ∪ {c}
Set callee of s to GenObject(Class of callee, G, t)

end if
for all parameters of s do

Set parameter to GenObject(Class of parameter, G,
t)

end for
t ← t.s
return t

that yield the necessary objects (Algorithm 2). During this
search, we keep track of classes we are already trying to in-
itialize. If random generation turns out to be difficult for
a particular class, Algorithm 2 can be turned into an ex-
haustive search by adding backtracking and keeping track
of explored choices. Even though the search space can be
big depending on the size of the software under test, this
is not problematic as one can retain useful sequences that
lead to creation of certain objects and reuse them later. Test
cases are created in this way until the initial population has
reached the required size.

Evolution of this population is performed by repeatedly
selecting individuals from the current generation (for ex-
ample, using tournament or rank selection) and applying
crossover and mutation according to a certain probability.
Figure 4 illustrates single point crossover for unit tests: A
random position in each of the two selected parents is selec-
ted, and offspring is generated by trying to merge the sub-
sequences. As statements can refer to all variables created
earlier in the sequence this means simply attaching a cut-off
sub-sequence will not work. Instead we add the statements
and try to satisfy parameters with the existing variables, or

DateTime var0 = new DateTime()

int var1 = 54

TimeOfDay var2 = var0.toTimeOfDay()

int var3 = var0.getSecondOfMinute()

long var0 = 48

DateTime var1 = new DateTime(var0)

DateTime var2 = var1.plusWeeks(var0)

DateTime var3 = var1.minus(var0)

DateTime var0 = new DateTime()

int var1 = 54

TimeOfDay var2 = var1.toTimeOfDay()

int var3 = var1.getSecondOfMinute()

long var0 = 48

DateTime var1 = new DateTime(var0)

DateTime var2 = var0.plusWeeks(var1)

DateTime var3 = var2.minus(var1)

Figure 4: Crossover between two test cases.

possibly create new objects to satisfy all parameters, simi-
larly to the initial generation (Algorithm 1). By choosing
different points of crossover in the two parent chromosomes
the crossover will result in a variation of the length of test
cases.

After selection and crossover the offspring is mutated with
a given probability. There are numerous ways to mutate
chromosomes:

Delete a statement: Drop one random statement in the
test case. The return value of this statement must not be
used as a parameter or callee in another statement, unless
it can be replaced with another variable.

Insert an object: Create a new object of a type already
used in the test case.

Insert a method call: Add a random method call for
one of the objects of the test case.

Modify an existing statement: Apply one of the fol-
lowing changes on one of the existing statements:

• Change callee: For a method call or field reference,
change the source object.

• Change parameters: Change one parameter of a method
or constructor call to a different value or create new
value.

• Change method: Replace a method call with a different
one with identical return type.

• Change constructor: Replace constructor call with a
different constructor of the same class.

• Change field: Change a field reference to a different field
of the same type on the same class.

• Change primitive: Replace a primitive value with a dif-
ferent primitive value of the same type.

Which mutations are applicable for a given chromosome at
a certain point is very dependent on the test case represented
by the chromosome and the objects and calls it consists of. A
chromosome is mutated by identifying all possible mutations
and then randomly choosing mutations from this set until a
mutation succeeds.

In order to guide the selection of parents for offspring ge-
neration, all individuals of a population are evaluated with
regard to their fitness. The fitness of a test case with regard
to a mutant is measured with respect to how close it comes
to (1) executing the mutated method, (2) the mutated state-
ment in this method, and (3) how significant the impact of



the mutant on the remaining execution is. Consequently, the
fitness function is a combination of these three components:

Distance to calling function.

If the method/constructor that contains the mutation is
not executed, then the fitness represents the distance to-
wards achieving this, i.e., how many of the necessary para-
meters and callees are generated for a method that directly
or indirectly executes the mutation. Generally, we want the
distance to be as small as possible. This value can be deter-
mined without executing the test case, and is 1 if the mutant
is executed. We define this distance as a function of a test
case t:

d(c, t) := 1 + # Satisfied parameters + Have callee (1)

Df (t) := min{d(c, t) | calls c related to mutation} (2)

We set the value of “Have callee” to 1 if the mutated method
is static or the callee exists, but it would also be feasible to
put more weight on achieving a callee object than on the
parameter objects, because the object will also be useful for
further method calls.

Distance to mutation.

If the mutant method/constructor is executed but the mu-
tated statement itself is not, then the fitness specifies the
distance of the test case to executing the mutation; again,
we want to minimize this distance. This basically is the pre-
vailing approach and branch distance measurement applied
in search-based test data generation [22]. In addition, one
can use the necessity condition [12] to estimate the distance
to an execution of the mutation that infects the state (ne-
cessity distance [7]). To determine this value the test case
has to be executed once on the unmodified software; if the
mutation is properly executed then the value will be 0.

Dm(t) := Approach + Branch/Necessity Distance (3)

Mutation impact.

If the mutation is executed, then we want the test ca-
se to propagate any changes induced by the mutation such
that they can be observed. Traditionally, this consists of two
conditions: First, the mutation needs to infect the state (ne-
cessity condition). This condition can be formalized and in-
tegrated into the fitness function (see above). In addition,
however, the mutation needs to propagate to an observable
state (sufficiency condition) — it is difficult to formalize this
condition [12]. Therefore, we measure the impact of the mu-
tation on the execution; we want this impact to be as large
as possible.

Quantification of the impact of mutations was initially
proposed using dynamic invariants [28]: The more invari-
ants of the original program a mutant program violates, the
less likely it is to be equivalent. A variation of the impact
measurement uses the number of methods with changed co-
verage or return values [30] instead of invariants. We take
a slightly different view on the impact, as strictly speaking
it is not just a function of the mutant itself, but also of the
test case. Consequently, we use the impact as part of the fit-
ness function, and quantify the impact of a mutation as the
unique number of methods for which the coverage changed
and the number of observable differences. An observable dif-
ference is, for example, a changed return value or any other

traceable artifact (cf. Section 4). Using the unique number
of changed methods avoids ending up with long sequences
of the same method call. As short test cases are preferable
from a user perspectice we have a multi-objective optimiza-
tion that aims to maximize impact and minimize test case
length, and we have to combine impact and length in the
fitness function:

Im(t) =
c× |C| + r × |A|

1 + |t| (4)

Here, C is the set of called statements with changed covera-
ge, and A is the set of observable differences between a run
on the original and the mutant program; c and r are con-
stants that allow to put more weight on observable changes.
To determine the impact, a test case has to be executed on
the original unit and on the mutant that is currently consi-
dered.

Overall fitness.

The overall fitness function is a combination of these three
factors; the two distances have to be minimized, while the
impact should be maximized. As long as Df (t) > 1 and
Dm(t) > 0, Im(t) will be 0 per definition. Consequently, a
possible combination as a fitness function that should be
maximized is as follows:

fitness(t) =
1

Df (t) + Dm(t)
+ Im(t) (5)

When generating test cases for structural coverage crite-
ria the stopping criterion is easy: If the entity to be reached
(e.g., a branch) is actually reached, then one is done. In our
scenario this is not so easy: It is not sufficient to stop once
a mutant has resulted in an observable difference as we are
also optimizing with respect to the test case length. Conse-
quently, the genetic algorithm iterates until a maximum time
or number of generations has been reached, and returns the
test case with the highest fitness.

As determining the fitness value of a test case requires it
to be executed, a nice side-effect is that memory violations
and uncaught exceptions are already detected during test
case generation. If such exceptions are not declared to occur,
then they are likely to point to defects (see Section 5).

4. GENERATING ASSERTIONS TO KILL

MUTANTS

The job of generating test cases for mutants is not finis-
hed once a mutation is executed: A mutant is only detected
if there is an oracle that can identify the misbehavior that
distinguishes the mutant from the original program. Conse-
quently, mutation-based unit tests need to add assertions as
test oracles such that the mutants are detected.

Some types of assertions (e.g., assertions on primitive re-
turn values) can be easily generated, as demonstrated by
existing testing tools (cf. Section 2.4). This, however, is not
so easy for all types of assertions, and the number of possi-
ble assertions in a test case typically exceeds the number of
statements in the test case by far. Mutation testing helps in
precisely this matter by suggesting not only where to test,
but also what to check for. This is a very important aspect
of mutation testing, and has hitherto not received attention
for automated testing.

After the test case generation process we run each test
case on the unmodified software and all mutants that are



covered by the test case, while recording traces with infor-
mation necessary to derive assertions. We use the following
types of assertions, all illustrated with examples of actually
generated test cases:

Primitive assertions make assumptions on primitive (i.e.,
numeric or Boolean) return values of method calls:

DurationField var0 =
MillisDurationField.INSTANCE;

long var1 = 43;
long var2 = var0.subtract(var1, var1);
assertEquals(var2, 0);

Comparison assertions compare objects of the same
class with each other. Comparison of objects across different
execution traces is not safe because it might be influenced by
different memory addresses, which in turn would influence
assertions; therefore we compare objects within the same
test case. For classes implementing the Java Comparable in-
terface we call compareTo; otherwise, we apply comparison
to all objects of compatible type in terms of the Java equals

method:

DateTime var0 = new DateTime();
Chronology var1 = Chronology.getCopticUTC();
DateTime var2 = var0.toDateTime(var1);
assertFalse(var2.equals(var0));

Inspector assertions call inspector methods on objects
to identify their states. An inspector method is a method
that takes no parameters, has no side-effects, and returns a
primitive data type. Inspectors can, for example, be identi-
fied by purity analysis [27]. As an example:

long var0 = 38;
Instant var1 = new Instant(var0);
Instant var2 = var1.plus(var0);
assertEquals(var2.getMillis(), 76);

Field assertions are a variant of inspector assertions and
compare the public primitive fields of classes among each
other directly. (As Joda-Time has no classes with public
fields, there is no example from this library).

String assertions compare the string representation of
objects by calling the toString method. For example, the
following assertion checks the ISO 8601 representation of a
period in Joda-Time:

int var0 = 7;
Period var1 = Period.weeks(var0);
assertEquals(”P7W”, var1.toString());

String assertions are not useful in all cases: First, they are
only usable if the class implements this method itself, as the
java.lang.Object.toString method inherited by all clas-
ses includes the memory location of the reference—which
does not serve as a valid oracle. Second, the toString me-
thod is often used to produce debug output which accesses
many internals that might else not be observable via the pu-
blic interface. Oracles depending on internal details are not
proof to changes in the code, and we therefore only use these
assertions if no memory locations are included in the string
and if no other assertions can be generated.

To generate assertions for a test case we run it against the
original program and all mutants using observers to record

the necessary information: An observer for primitive values
records all observed return and field values, while an inspec-
tor observer calls all inspector methods on existing objects
and stores the outcome, and a comparison observer com-
pares all existing objects of equal type and again stores the
outcome. After the execution the traces generated by the ob-
servers are analyzed for differences between the runs on the
original program and its mutants, and for each difference an
assertion is added. At the end of this process, the number of
assertions is minimized by tracing for each assertion which
mutation it kills, and then finding a subset for each test case
that is sufficient to detect all mutations that can be detec-
ted with this test case. This is an instance of the NP-hard
minimum set covering problem, and we therefore use a sim-
ple greedy heuristic [8]. The heuristic starts by selecting the
best assertion, and then repeatedly adds the assertion that
detects the most undetected mutants. To give preference to
other types of assertions, string assertions are only added at
the end of this procedure to cover those mutants that can
only be covered by string assertions.

5. GENERATING JAVA UNIT TEST SUITES

Being able to generate unit tests and assertions gives us
the tools necessary to create or extend entire test suites.
We have implemented the described µtest approach as an
extension to the Javalanche [29] mutation system.

5.1 Mutation Analysis

The first step of a mutation based approach is to perform
classic mutation analysis, which Javalanche does efficiently:
Javalanche instruments Java bytecode with mutation code
and runs JUnit test cases against the instrumented (muta-
ted) version. The result of this process is (a) a classification
of mutants into dead or live with respect to the JUnit test
suite, as well as (b) an impact analysis on live mutants that
have been executed but not detected.

5.2 Setup

The second step on the way to a test suite is to extract
testable units with all necessary information:

• Mutations of the unit under test (UUT)

• Testable constructors and methods of the UUT

• Classes and their members necessary to execute all me-
thods and constructors of the UUT

• Inspector methods of the UUT

During test case generation, µtest accesses the UUT via
Java reflection, but at the end of the test case generation
process the test cases are output as regular JUnit test cases.
Therefore, an important factor for the testability of a Java
class is its accessibility. This means that all public classes
can be tested, including public member classes. Private or
anonymous classes, on the other hand, cannot be explicit-
ly tested but only indirectly via other classes that access
them. Of the accessible classes, all constructors, methods,
and fields declared public can be accessed. As abstract clas-
ses cannot be instantiated directly, we consider all derived
subclasses when deriving information about testable mem-
bers for a class.



Select 
Mutant

Generate 
Test Case

Check live 
mutants

Assert +
Minimize

Mutants

Test 
tasks

Figure 5: The process of generating test cases for
one unit.

A basic requirement to test methods and constructors is
the ability to create objects of all parameter types; there-
fore each parameter type is analyzed whether it offers all
necessary generators to be applicable to Algorithm 2. Alter-
natively, the user can add helper functions that create usable
objects, or theoretically one could also keep a pool of created
objects [9]. A further requirement for a method to be testa-
ble is that it can be executed repeatedly during the search,
and that calling the same method with identical parameters
always returns the same result (i.e., it is deterministic).

For each unit, we only consider the mutants derived at
this level in the type hierarchy, i.e., for an abstract class
only mutants of that class are used although members of
subclasses are necessary to derive test cases. The intuition
of this is that it will be easier for the tester to understand
test cases and assertions if she only has to focus on a single
source file at a time.

The information about test methods and mutations is out-
put to files such that the tester can modify them at will, for
example to exclude certain methods or add external helper
functions.

In addition to the test methods, each unit is analyzed with
respect to its inspector methods. An inspector method is a
method that does not change the system state but only re-
ports some information about it, and is therefore very useful
for assertion generation. For Java, one has to resort to purity
analysis [27] or manual input to identify inspectors.

5.3 Test Case Generation

Once the setup is finished, the actual test case generation
can be started, possibly in parallel for different units. µtest

selects a target mutant and generates a test case for it (see
Figure 5). To measure the fitness of individuals, µtest exe-
cutes test cases using Java reflection. The resulting test case
is checked against all remaining live mutants to see if it al-
so kills other mutants. For all killed mutants, we derive a
minimized version of the test case, enhanced with asserti-
ons, and add it to the test suite. The aim of minimization
is to make the test case simpler and remove any unnecessa-
ry statements. For this we use a rigorous approach and try
to remove each statement from the test case and check the
test case’s validity and fitness afterward. Although this is
basically a costly approach, it is not problematic in prac-
tice, as the fitness function penalizes long test cases and
they are therefore usually short to begin with. Alternative-
ly, one could for example apply delta-debugging [20] or a

combination of slicing and delta-debugging [21] to speed up
minimization. This process is repeated until all mutants are
killed or at least test case generation has been attempted on
each of them.

5.4 Output

At the end of the process, the tester receives a JUnit test
file for each unit, containing test cases with assertions and
information about which test case is related to which mu-
tant. Unless the test cases are used for regression testing,
the assertions need to be analyzed and confirmed by the
tester, and any assertion that is not valid reveals a bug in
the software, or an invalid test input due to an implicit cons-
traint that needs to be declared. To aid the developer, the
number of assertions is minimized by only including enough
assertions to kill all possible mutants.

Besides test cases, the developer also receives information
about the mutants considered during test case generation:
If one or more assertions could be generated, the mutant is
considered to be killed. If the mutant was executed but no
assertions could be found, then the impact is returned, such
that mutations can be ranked according to their probability
of being inequivalent. Some mutants cannot be tested (such
as mutations in private methods that are not used in pu-
blic methods), and some mutants are not supported by the
tool itself (for example, mutations in static class construc-
tors, as this would require un-loading the class at each test
run). Finally, a mutant might simply not have been executed
because the tool failed to find a suitable sequence.

In addition to bugs revealed by checking assertions, the
search for test cases itself exercises the UUT in random
ways, thus possibly detecting defects commonly found with
random testing (e.g., null pointer references and other un-
caught exceptions.) Only undeclared exceptions are reported
to the user, as an exception that is declared to occur in the
source code is acceptable behavior. An undeclared excepti-
on, on the other hand, is either caused by a real bug in the
UUT, or by implicit assumptions on method parameters or
call sequences.

If the developer decides that an exception is not caused by
a bug in the implementation, the test case generation tool
can be told to ignore exceptions of this kind in the future,
or write a partial specification for the offending method,
e.g., constraints on value ranges for numeric parameters, or
constraints on the types of classes used, and so on.

6. EXPERIMENTS

To learn about the applicability and feasibility of the pre-
sented approach, we applied µtest to two open source libra-
ries. Test case generation only requires Java bytecode, and
we used the prototype“out of the box”as far as possible, i.e.,
without writing test helper functions and adding as few as
possible constraints. Minor adaptations were only necessary
to avoid calling methods with nondeterministic results like
random number generators; these methods are easily detec-
table as a test case calling such a method will achieve an
unrealistically high mutation score, and assertions are not
guaranteed to hold on the original program either. For both
libraries we generated complete test suites with µtest, and
compared them with the already existing unit tests. The po-
pulation size of the genetic algorithm was set to 100, with
an initial test case length of 20 statements, and evolution
was performed for 50 generations for each run.



6.1 Case Study Subjects

Joda-Time

As first subject for experimentation we chose the Java libra-
ry Joda-Time1, which provides a quality replacement for the
Java date and time classes. The design allows for multiple
calendar systems, while still providing a simple API and an
extensive set of utility functions. Joda-Time is known for
its comprehensive set of developer tests, providing assuran-
ce of the library’s quality, which makes it well suited as a
benchmark to compare automatically generated tests with.

Joda-Time has a number of aspects that are problematic
with respect to testability:

Access rights are problematic at several points, gran-
ting only default (package) access. Such classes can be tested
by unit tests residing in the same package—the test gene-
ration tool, however, will not be part of this package. To
overcome this problem, we modify the bytecode during class
loading, changing all default access modifiers to public ac-
cess modifiers. When writing out the JUnit test cases at the
end of the test case generation process they can be put in-
to the appropriate package, giving them proper access to
classes with package access restrictions.

Polymorphism is applied in a way that is problematic
with respect to testability. For example, many classes of the
“field”sub-package have private constructors and can only be
generated via static getter methods. Many such getter me-
thods, for example public static DateTimeField getIn-

stance(DateTimeField field) of the class StrictDateTi-

meField, do not declare the actual return type (StrictDate-
TimeField) but the type of the superclass. In some cases this
means there is no direct way to generate classes of this type,
as dynamic type information is not available when test cases
are constructed. We overcome this problem by adding casts
as a new statement type, and restricting casts to superclas-
ses only in those cases where no constructors are available.

Unspecified assumptions on the input parameters are
quite common in Joda-Time: For example, in the constructor
public BaseDateTime(int year, int monthOfYear, ...)

the value of monthOfYear has to be in the range 0–11, or else
an undeclared IllegalArgumentException is raised. Simi-
larly, polymorphic parameters of type Object, for example
in public BaseDateTime(Object instant, ...), are quite
common. The test case generation approach will try to put
any object as parameter instant, as there are no restrictions
on the type (every class is a subclass of Object). Unsuppor-
ted classes, however, result in an undeclared exception.
We have overcome this problem with two workarounds: The
first one is to allow specification of constraints on the para-
meter classes and value ranges, which is essentially a pos-
sibility to support contracts. The second option we used is
to list exceptions that should not be reported as faults but
ignored, with a penalty given to the fitness of individuals
that raise such exceptions.

Determinism is not guaranteed, as a date and time li-
brary often accesses the current system time. This would
render any assertions based on these values unusable, but
fortunately Joda-Time offers a possibility to overcome this
problem: There is a global SystemMillisProvider which re-
turns the current time in milliseconds, and this can be con-
figured in a test setup method to return a constant value.

1http://joda-time.sourceforge.net/

Table 1: Case study subjects (testable/total)

Case Study Classes Unit Tests Mutants

Joda-Time 123/220 3,493 14,778/23,145
Commons-Math 220/413 1,739 25,226/43,273

Table 2: Manual vs. generated test cases

Average per test case
Case Study Test cases Lines Assert. Mut.

Joda-Time (man.) 3,493 4.89 4.55 3.14
Joda-Time (µtest) 1,268 8.48 3.30 9.67
Commons-Math (man.) 1,739 7.97 3.41 5.98
Commons-Math (µtest) 2,706 13.29 2.93 5.46

String parameters are currently generated by µtest

only by calling methods that return String objects, which
reduces the success ratio for methods requiring such para-
meters.

Commons-Math

The second case study subject is Commons-Math2, a li-
brary of lightweight, self-contained mathematics and stati-
stics components addressing the most common problems not
available in the Java programming language. Again there is
a certain degree of randomness in the library (for example in
the sub-package that implements a genetic algorithm) which
we excluded. Another problem with Commons-Math is the
use of Java Generics, which allow to parametrize classes and
methods with types. Unfortunately, this type information is
removed from instances of generic classes by the compiler
and therefore not accessible at runtime by reflection, and so
in most cases a type parameter is just as difficult to treat as
a parameter of type Object.

Common-Maths contains classes for matrix and vector
operations. Often, methods of these classes take arrays as
parameters, e.g. in the FieldMatrix class:

void copySubMatrix(int[] selectedRows, int[]
selectedColumns, T[][] destination)

We currently generate arrays of primitive and non-primitive
types (and thus also character strings) only via return va-
lues of other methods and fields. For Commons-Math this
means that a certain share of the mutants (for example tho-
se in methods using FieldMatrix objects) currently cannot
be tested properly.

6.2 Results

Table 1 lists the numbers of testable classes and mutants
for the case study subjects, and Table 2 gives more detai-
led statistics on the test suites provided by the case study
subjects as well as those generated by µtest: The average
number of non-commenting statements excluding assertions,
the average number of assertions per test, and the average
number of mutants (out of the set of testable units) killed
per test. The default behavior of µtest is to only return a
test case if it results in a non-zero impact for the considered

2http://commons.apache.org/math/
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Figure 6: Average distribution of assertion types.

Table 3: Manual vs. generated tests: Mutation scores
(ratio of detected mutations)

Case Study Manual µtest Σ

Total
Joda-Time 74.26% 82.95% 90.34%
Commons-Math 41.25% 58.61% 61.15%

Avg./Unit
Joda-Time 70.36% 80.36% 88.35%
Commons-Math 44.50% 65.87% 67.72%

mutant, i.e., the test cases in Table 2 do not include cases
where the mutation was executed without impact.

Figure 6 illustrates the distribution of the different types
of assertions. Finally, Table 3 summarizes the ratio of killed
mutants (the mutation score) for the existing test suites,
the automatically generated test suites, and the combination
of the two test suites, calculated from the total number of
mutants for a project and on average per unit. A mutant is
counted as killed if there is an assertion that detects it or it
leads to an unexpected exception.

6.3 Discussion

Table 3 shows that in terms of the mutation score the
results are better than the manually generated test suites. As
both Joda-Time and Commons-Math are quite extensively
tested (cf. Table 1), this is a very good result: The total
number of mutants killed on the considered units is larger for
both Joda-Time and Commons-Math, and also when viewed
on average per unit µtest can improve over both test suites.
The difference is statistically significant according to a two-
tailed Mann-Whitney test (α = 0.05).

µtest generates test suites and oracles

that find significantly more seeded defects

than manually written test suites.

Keep in mind, though, as shown in Table 1, that not all
units are testable with µtest as discussed in Sections 5.2
and 6.1; Table 3 only counts mutants of testable units. In
both libraries, µtest increases the mutation score when
combining the manually and automatically generated unit
tests, which shows that the manual tests find some mutants
that µtest misses.

Although µtest applies minimization to keep the test ca-
ses as short as possible and the number of assertions small,
automatically generated test case are mostly not as easy to

understand as manually written test cases, which is not sur-
prising as the search algorithm can combine arbitrary state-
ments. In our future work, we shall leverage actual usage

patterns [36] to make test cases more similar to client code.
Table 2 shows that on average automatically generated

test cases are longer than manually generated test cases,
despite the minimization. However, the manually generated
test cases build on a significant code base of shared setup
methods: Joda-Time has 3856 non-commenting source code
statements of general test code, and Commons-Math has
6579 statements. This code is re-used in many test cases
thus comparison with the automatically generated test cases
is difficult.

In terms of numbers, the vast majority (98.4%) of all test
cases have at least one assertion; Table 2 shows that the
number of assertions typically is around 3, which due to the
assertion minimization is slightly less than for manually ge-
nerated test cases. As shown in Figure 6, inspector assertions
are the most common assertions, followed by comparison as-
sertions. Surprisingly, primitive assertions only make a small
share of all assertions. String assertions are more common in
Joda-Time than in Commons-Math, as Joda-Time involves
a number of string operations. Inspector assertions are pre-
ferable over other types of assertions, as they are a means to
talk about the state of an object without revealing its inter-
nals. Comparing string representations, on the other hand,
might reveal internal details and would thus result in asser-
tions that are not proof to future change of the class.

Although the achieved mutation score is already quite
high, the search based approach offers potential for optimi-
zation. While the coverage based impact measurement nicely
guides the search towards assertions, the construction of call
sequences to reach and execute mutations has a very rough
fitness landscape. This could, for example, be improved by
applying a chaining approach to identify relevant method
calls [23], and taking object states into account.

The generalization to other programming languages than
used in our experiments (Java) depends on the testability—
for example, a search based approach as used by µtest

would be quite hopeless on an untyped language such as Py-
thon, unless putting in a major effort in type analysis. The
results should, however, generalize to comparable languages
such as C# or C++.

6.4 Threats to Validity

The results of our experiments are subject to the following
threats to validity:

• As our 353 classes investigated come from two pro-
jects only, we cannot claim that the results of our ex-
perimental evaluation are generalizable; the evaluati-
on should be seen as investigating the potential of the
technique rather than providing a statement of general
effectiveness. The unit tests against which we compa-
red might not be representative for all types of tests
(in particular we did not compare against automatical-
ly derived tests), but we chose projects known to be
well tested. The units investigated had to be testable
automatically as discussed in Sections 5.2 and 6.1.

• Another possible threat is that the tools we have used
or implemented could be defective. To counter this
threat, we have run several manual assessments and
counter-checks.



• We evaluated the quality of unit tests in terms of their
mutation score (Table 2). Potentially, the generated
oracles might be overfitted to the mutants for which
they are constructed, but studies (e.g., [2]) have shown
that mutation analysis is well suited to evaluate tes-
ting techniques. In practice other factors such as un-
derstandability or maintainability have to be conside-
red as well. To this extent, we try to maximize impact
and minimize the length of test cases.

7. CONCLUSIONS

Mutation analysis is known to be effective in evaluating
existing test suites. In this paper, we have shown that muta-
tion analysis can also drive automated test case generation.

The main difference between using structural coverage and
mutation analysis to guide test case generation is that a
mutation does not only show where to test, but also helps
in identifying what should be checked for. In our experi-
ments, this results in test suites that are significantly better
in finding defects than the (already high-quality) manually
written test suites.

The advent of automatic generation of effective test suites
has an impact on the entire unit testing process: Instead
of laboriously thinking of sequences that lead to observable
features and creating oracles to check these observations, the
tester lets a tool create unit tests for her automatically, and
receives two test sets: One revealing general faults detectable
by random testing, the other one consisting of regular unit
tests. In the long run, finding bugs could thus be reduced to
the task of checking whether the generated assertions match
the intended behavior.

Although our µtest experiences are already very promi-
sing, there is ample opportunity to improve the results fur-
ther: For example, previously generated test cases, manual
unit tests, or test cases satisfying a coverage criterion could
serve as a better starting point for the genetic algorithm.
The search based algorithm can be much optimized, for ex-
ample by applying testability transformation [15], or impro-
ving the fitness function. If a mutated method is executed
but the mutant is not executed, then a local optimization
on the parameters of that method call could possibly lead
to a result much quicker than the global search (for example,
if the input parameters are numeric). It is even conceivable
to use a hybrid approach with dynamic symbolic executi-
on for this task. Finally, adding intelligent string handling
will immediately increase the applicability to a wide range
of additional libraries.

To learn more about our work on mutation testing, visit
our Web site:

http://www.st.cs.uni-saarland.de/mutation/
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