Semi-Automatic Search-based Test Generation

Yury Pavlov
Saarland University
Saarbriicken, Germany
Email: pavlov@st.cs.uni-saarland.de

Abstract—Search-based testing techniques can efficiently
generate test data to achieve high code coverage. However,
when the fitness function does not provide sufficient guidance,
the search will only generate optimal results by chance. Yet,
where the search algorithm struggles, a human tester with
domain knowledge can often produce solutions easily. We
therefore include the tester in the test generation process:
When the search stagnates, the tester is given an opportunity to
improve the current solution, and these improvements are fed
back to the search. In particular, relevant problems occur often
when generating tests for object-oriented languages, where test
cases are sequences of method calls. Constructing complex
objects through sequences of method calls is difficult, and often
the traditional branch distance offers little guidance - yet for
a human tester the same task is often trivial. In this paper, we
present a semi-automatic test generation approach based on
our search-based EVOSUITE tool, and evaluate the usefulness
and potential on a set of example classes.

Keywords-test case generation; search-based testing; manual
testing

I. INTRODUCTION

Software testing is an important technique to improve
software quality, but finding good sets of test cases is
a complex task. Search-based testing has been proposed
as a possible technique to automatically produce test data
for programs, resulting in test sets achieving high code
coverage. Search-based testing uses meta-heuristic search
techniques to find these input data, and as long as a fitness
function provides guidance, this approach can be very effi-
cient. However, the required level of guidance is not always
available, and search operators might inhibit the generation
of important genetic material. When this is the case, the
search degenerates to a random search, and optimal solutions
are only found by chance.

Although computers can be very efficient at tasks that are
tedious for human users, in many cases where the search
stagnates a human user would easily be able to improve the
current solution. For example, Figure 1 shows a code snippet
taken from the ArgsParser class from the DCParseArgs
Sourceforge project. By looking at the code, it can easily
be seen that to cover the target branch we need a string
value for key, such that the command line handed to the
ArgsParser as an array contains this key prepended with
an argument indicator (—-). However, the traditional branch

Gordon Fraser
Saarland University
Saarbriicken, Germany
Email: fraser@cs.uni-saarland.de

public class ArgsParser {

public SwitchArgument parseSwitchArgument(String key) {
boolean isLongKey = (key.length() > 1);

if (isLongKey) {
String searchFor = LONG_ARGUMENT_INDICATOR-+key;
for (int i = 0; i < args.length; ++i) {
if (innerArgs[i] != null) {
if (innerArgs[i].equals(searchFor)) {
< Target branch

return new SwitchArgument(i, key, true);
/.

}
}

innerArgs[i] = null;

Figure 1. Code excerpt of the ArgsParser class: Covering the marked
target branch is difficult for the EVOSUITE tool as it requires generating
an array where one entry matches an input string concatenated with two
dashes (——). EVOSUITE can cover the branch eventually, but needs a very
large search budget to do so.

ArgsParser argsParser0 = new ArgsParser();

String string0 = ”</xml>"; <:

String[] stringArray0) = new String[4];
stringArrayO[1] = string0;
argsParser(.setArgs(stringArray0);

]

Figure 2. Example test case generated by EVOSUITE (the string </xm1>
results from seeding), almost reaching the target branch, yet the last if
statement evaluates to false. For a developer it is easy to spot that all that’s
necessary is to call the method with an option name, where the same name
with two dashes pre-pended is added at any point in the array.

argsParser.parseSwitchArgument(string0);

distance measurement offers little guidance here, and so the
search struggles to cover this branch.

It is easy for the search algorithm to explore large parts
of the program that a tester would consider tedious and dull
work, but on the other hand it is easy for the tester to cover
branches like the one in Figure 1 and very difficult for the
search. Thus, in this paper we explore an approach that
includes the user in the search process. Figure 3 presents
this approach at a high level: First, the search algorithm
aims to cover as much of the software under test as possible.
Once the search stagnates, the best individual is presented to

(a) Software under test

@ . -

(b) Population of test suites

(c) Genetic Algorithm

oW

(d) Editor (e) Tester

J) Fp Fit Selection
: E alne?_s Mutation
< =5 valualion — crossover
E ED V
Figure 3. Our approach in a nutshell. For a given class under test (a) we generate an initial population of random test suites (b), which is successively

evolved using a Genetic Algorithm (c). When the search stagnates, an editor window pops up (d), showing the current best test suite together with
information on the coverage of the class under test. The tester (e) applies changes to this test suite as she/he sees fit, and the result is re-inserted into the

population to let the Genetic Algorithm continue its search.

the user (for example, Figure 2 for the snippet in Figure 1)
together with background information on where the search
has problems. The user then improves the current solution,
and once s/he is finished with this, the search continues with
the solution edited by the user. If the user was helpful in
escaping a difficult area in the search space, then the search
algorithm will be able to cover more code after this manual
editing phase.
Summarizing, the contributions of this paper are:

Semi-automatic unit test generation: We present an ap-
proach that integrates user-feedback into the genetic al-
gorithm applied to generate unit tests for classes.

Tool integration: We have integrated our approach into the
EVOSUITE tool, such that unit tests and the corresponding
source code are presented to the user in a way that makes
it easy to understand how to improve the current solution.

Evaluation: We have evaluated our approach on a set of 20
non-trivial classes selected randomly from the SF100 [4]
Sourceforge project sample.

The evaluation demonstrates that our approach can sig-
nificantly increase the coverage achieved with search-based
testing, while at the same time it requires significantly less
input from the user than during manual testing.

II. BACKGROUND

Software testing is an essential yet expensive activity
in software development, therefore much research effort
has been put into the question of how to automate it as
much as possible. In the area of test data generation for
code coverage, the current state of the art can at a high
level be roughly divided into three main groups: variants of
random testing (e.g., Randoop [9]), dynamic symbolic exe-
cution (e.g., CUTE [10]) and search-based software testing
(e.g., [8]). A recent trend also goes towards combining the
individual techniques (e.g., [7]).

Even though automated generation of test cases for struc-
tural coverage has received particular attention, for example
in the case of object-oriented software (e.g., [11]), such test-
ing techniques are still not widely adopted by practitioners.
This is partially due to current limitations in these techniques

(e.g., in terms of efficiency and applicability), and because
many of the different parameters that influence search-based
software testing (SBST) are not well understood. In order
to identify the limitations of test generation, Xiao et al [12]
described an approach to report problems that a testing tool
encounters during test generation to the user. They identify
external method calls and object creation as the major issues
in test generation based on dynamic symbolic execution.
Fraser and Arcuri [4] conducted a study on an unbiased
sample of 100 open source projects taken from Sourceforge,
showing that in practice environmental dependencies (e.g.,
file access) are a major inhibitor towards high code coverage,
but also object creation and complex string-based calcula-
tions can be problematic for search-based testing.

When aspects of a Genetic Algorithm (GA) are difficult to
compute automatically, human agents can be included in the
search process. In Interactive GAs (e.g., [5]) human agents
are used to evaluate the fitness of individuals where an auto-
matic calculation is difficult, such as for example in fashion
design. In Human GAs [6] all primary genetic operators are
delegated to external human agents. The approach presented
in this paper includes the user in the Genetic Algorithm
to overcome problematic areas in the search space, thus
automatic and manual steps alternate. The results of the
manual editing are fed back into the population of the GA,
where this new genetic material can boost the search. This
is very much related to the idea of seeding, where previous
related knowledge is exploited to help solve the testing
problem at hand. For example, the EVOSUITE tool can seed
the population of the GA using manually written test cases
and constants extracted from the bytecode [3].

III. SEMI-AUTOMATIC SEARCH-BASED TESTING

We consider semi-automatic testing in the context of unit
test generation, where test cases are sequences of method
calls. In a unit testing scenario, there is always one dedicated
target class, whose branches we aim to cover. The method
sequences include calls to constructors and methods of
this class, as well as any objects necessary as parameters.
Consequently, test cases can be arbitrarily complex.

Algorithm 1 A genetic algorithm as used for search-based
testing, extended with user feedback.

1 current_population < generate random population
> repeat

s Z < elite of current_population

+ while |Z| # current_population do

5 Py, P, < select parents from current_population
6 if crossover probability then

7 01,04 < crossover P;, P>

8 else

9 017 02 +— P 1, P. 2

10 end if

1 mutate Oy and O,

2 fp = min(fitness(Py), fitness(Ps))
13 fo = min(fitness(O1), fitness(O2))
14 if fo < fp then

15 Z(—ZU{Ol,OQ}
16 else

17 Z(—ZU{Pl,PQ}
18 end if

v end while
0 current_population <— Z
a if search stagnated then

» S’ < copy best individual

2 Let user edit .S

24 Z +—ZUS !

25 Remove worst individual from Z
26 end if

» until solution found or maximum resources spent

A. Technique

A popular meta-heuristic search technique often applied
in search-based technique is a Genetic Algorithm (GA).
Algorithm 1 shows a typical GA: First, an initial popu-
lation of candidate solutions is produced randomly. Then,
selection, crossover, and mutation are applied successively,
until the next generation is finished. This process is iterated
until either an optimal solution has been found, or another
stopping condition has been met (e.g., out of time). The
probability of an individual being selected for reproduction
is related to its fitness with respect to the optimization
problem, such that gradually the population improves.

Our aim is to produce test sets that achieve high code
coverage. For this, we apply the whole test suite generation
approach used in our EVOSUITE [1], [2] tool. In this
approach, a chromosome of the search is a set of test
cases, where each test case is a sequence of method calls.
Crossover exchanges tests between two parent sets, while
mutation inserts, deletes, or changes individual test cases.
Mutating test cases involves insertion, change, and deletion
of statements. The fitness function measures the minimal

branch distances for each branch in the target class, and
basically calculates the sum. If the sum of branch distances
is 0, this means that all branches have been covered. For
more details about this approach, we refer to [1].

As long as the fitness improves, there is no need to ask
the user for input. However, once the search stagnates on
a sub-optimal solution, we ask the user to improve the best
solution. There are different ways to decide when the search
has stagnated. We use two parameters to determine this:
Number of iterations I, and minimal fitness improvement
0. If over I generations the fitness improvement is smaller
than § then we request user input.

As it is not feasible to request the user to treat the whole
population, we only present the current best individual; i.e.,
the user gets to see the best test suite To prevent that the
user adversely influences the integrity of the population, the
user modifies only a copy of this individual. Once the user is
finished with his modifications, the resulting individual is re-
inserted into the population, and to keep the population size
constant the worst individual is removed instead. If the user
does not make many changes, then this might slightly reduce
the diversity in the population; however, as user interaction
should occur as infrequently as possible this should not be
a problem.

B. Tool Implementation

We have implemented this technique as an extension to
our EVOSUITE tool. EVOSUITE considers individual classes,
and candidate solutions are sets of test cases. The number of
tests in a set as well as their length are variable. EVOSUITE
uses a secondary objective that favors smaller test sets
over longer ones, yet when taking individuals out of the
population during the search it is likely that they contain a lot
of noise (e.g., unnecessary test cases, unnecessary statements
in the test cases). As the user has to make sense of these
test cases in order to modify them, we apply an optimization
to the test set that is intended to improve the readability of
the test cases: For each covered branch in the class under
test we select on test case out of the test set that covers this
branch, and generate a minimized sequence of method calls
that still covers the branch. Typically, the resulting test cases
are very short, in the order of 2-3 statements.

Figure 5 shows the editor window that the user gets to
see: The editor allows modification of all tests just like a
regular IDE, and uses standard editing features like syntax
highlighting. Tests can be edited directly or duplicated, such
that the modifications can be done on copies, new tests can
be inserted, and existing tests can be deleted.

As a user might not immediately be aware of the conse-
quences of each of his/her actions, the modifications might
result in an individual of worse fitness than the current best
individual of the search, even if new branches are covered.
If this would happen, the new genetic material introduced by
the user might be lost within a few generations. To prevent

4] Source Code [=][a][x]
. =
64 package com.werken.saxpath; 1
B85
66 class XPathLexer
67 { ¥ |
58 private String xpath; L
[=i=] private int currentPosition;
el private int endPosition; m
71
72 private Token previousToken;

73

74 public XPathLexer(String xpath)

75 {

75 setXPath(xpath);

77 v

78

79 XPathLexer ()

=lcl

81 }

82

83 void setXPath(String xpath)

84 {

85 this.xpath = xpath;

a5 this.currentPosition = 0;

a7 this.endPosition = xpath.length();

aa i

89

[=lc] public String getXPath()

o1 {

oz return this.xpath;

93 1

S4

o5 public Token nextToken()

o5 {

o7 Token token = null;

98

g9 do

100 {

101 token = null;

102

103 switch { LA(1))

104

105 case '$':

106 {

107 token = dollar();

108 break;

109 ¥

1llo

T case '"':

112 case '\'':

113 {

114 token = literal();

115 break;

116 i -

4] Il |]

Figure 4. Source code GUI: Coverage of the test suite as well as the

coverage of the currently edited test case are highlighted.

this from happening, we therefore check the resulting test
set before re-insertion in the population: For each branch
that was covered before the modifications but is no longer
covered we insert a test from the original test set that covers
this branch. This way, after re-insertion, the best individual
is guaranteed to be the modified test set.

To support the user further in his/her modifications, EVO-
SUITE displays an editor window showing the source code
of the class under test (see Figure 4). In this editor window,
lines and branches covered by the test set that is edited
and those covered by the currently edited test case are both
highlighted separately. This allows the user to quickly spot
which branches need to be covered, and what effects the
current test has.

IV. EVALUATION

In order to determine whether semi-automatic testing is
useful in practice, we performed an experiment to answer

the following two research questions:
RQI1: How much can semi-automatic testing increase

coverage over fully-automatic test generation?

[MA Editor
TestSuite Editor
Test Editor 1037113

¥PathLexer xPathlLexer® = new XPathLexer();
String stringd = "</test=";
xPathLexer@.setXPath(stringo);
xPathLexero.minus();

xPathlLexerd.pipel);

xPathLexero.slashes();
xPathLexero.nextToken();

BEIE

Coverage: 84%

0o~ & Bk

Prev test | | MNext test ‘ | New test

| Clone test

Figure 5. Text editor GUI: The editor parses user input, and converts it
to EVOSUITE’s internal format.

RQ2: How much does semi-automatic testing reduce the
effort over manual testing?

A. Experimental Setup

Ideally, RQ1 and RQ2 need to be answered by a con-
trolled experiment, such that variations in the qualification,
background knowledge, programming skills, etc. can be
factored out, while measuring effectiveness through time.
As an initial experiment, we approximated the human effort
by counting the statements in manually written test sets and
comparing them to the edits that need to be done during
semi-automatic testing. This measurement avoids the threat
to validity that would be caused by measuring the time, as
a significant share of the time is always spent for program
comprehension, yet only needs to be done once for manual
and semi-automatic testing. In both cases we continued
testing until all feasible branches were covered.

In our experimental setup, we applied semi-automatic test-
ing to a set of classes ourselves. We configured EVOSUITE
with a maximum number of 1,000, 000 executed statements
or a maximum of 10 minutes of computation time for fitness
evaluations; the time for manual editing is not included in
the 10 minute count. / was set to 300, and & was set to
0,01. For all other parameters, we used the default values
provided by EVOSUITE. For each class, we analyzed the
existing JUnit test cases, and improved them until no further
coverage could be achieved — this also involved determining
the infeasible branches of the classes under test.

The selection of case study classes needs to be non-trivial,
such that EVOSUITE does not achieve 100% coverage within
the given search budget. On the other hand, we did not want
to include classes that have environmental dependencies
(e.g., they might need to read from files or access the
network). Although it would be possible to treat these cases
also with semi-automatic test generation, in this study we

Table T
STUDY SUBJECTS

want to focus on providing user input only of a type that
can also be represented by EVOSUITE’s test representation,
such that EVOSUITE could in theory also derive the same
solution, if given enough time.

To avoid a bias in our case study class selection, we
therefore randomly chose 20 classes out of the SF100 corpus
of Java projects randomly selected from Sourceforge [4].
We considered all classes that had caused no unsafe actions
during test generation initially, and for which EVOSUITE
achieved more than 15% but less than 100% branch cov-
erage. This resulted in the selection of classes shown in
Table I.

B. Results

Table II lists the coverage achieved by EVOSUITE by
itself, the intervals of improvement after manual editing, and
the final coverage. The column on semi-automatic testing
lists ranges, where x —y means that manual editing increased
the coverage from EVOSUITE’s result up to 2% coverage,
and then EVOSUITE managed to increase the coverage
further up to y%. If there is more than one range listed
in this column, this means that there was more than one
manual editing phase. The last column shows the final level
of coverage achieved through semi-automatic and through
manual testing (in both cases we continued testing until
all feasible branches were covered). For purely manual
testing, we used the existing JUnit test suites as a starting
point, and wrote additional tests until all remaining branches
were either covered, or revealed as infeasible. Note that
this column does not show how much coverage is actually
achieved by the developers of the individual classes, as our

lNon—commenting lines of source code, calculated with CLOC
(http://cloc.sourceforge.net)

Id Project Class #Lines' #Branches
1 Tullibee Order 191 135
2 OMIState StringMatchesGuardCondition 27 5
3 Tullibee EWrapperMsgGenerator 366 67
4 SaxPath XPathLexer 784 484
5 OpenHRE SAXEvents2HL7Impl 181 70
6 Tullibee Util 50 33
7 WheelWebTool Validations 44 18
8 GAE App Manager Main 47 6
9 ‘WheelWebTool ProjectCreator 60 5
10 Heal UserInfoBean 63 66
11 Celwars2009 BezierSpline 51 15
12 JCVI JavaCommon FollowData 34 6
13 Asphodel SimpleAnalyzer 41 7
14 DCParseArgs ArgsParser 139 80
15 Corina Raw2Pack 57 4
16 TemplateIT FormulaUtil 65 28
17 Jiggler GDilate 95 27
18 TemplateIT OpMatcher 121 45
19 JIPA Label 33 11
20 OMIJState IntegerGreaterThanGuardCondition 24 4
Table 11

BRANCH COVERAGE ACHIEVED

Id EVOSUITE EVOSUITE after Manual

Manual Editing / Final
1 77% 80%-82%, 84%-85% 100%
2 60% 90%-100% 100%
3 79% 949%-98% 100%
4 85% 89%-92% 100%
5 60% 74%-87%, 90%-91% 97%
6 63% 86%-96% 100%
7 72% - 94%
8 16% - 33%
9 20% - 100%
10 80% 90%-100% 100%
11 66% - 100%
12 33% 33%-100% 100%
13 57% 85%-100% 100%
14 86% 93%-96% 97%
15 25% - 50%
16 82% 82%-85%, 96%-100% 100%
17 96% - 100%
18 73% 84%-86% 86%
19 45% - 100%
20 50% - 100%

experiment setup does not aim at comparing the coverage
achieved by manual testing with other approaches.

Table III summarizes the coverage increase achieved
over fully automatic EVOSUITE. In all cases there is a
clear increase in coverage, which demonstrates that semi-
automatic testing is suitable to improve coverage when
search-based test generation cannot achieve optimal results
due to constraints on the search budget, or limitations of the
search operators.

In our experiments, semi-automatic test generation
increased branch coverage by 34.63%.

Table IV lists details of the edits that were performed
during the manual modification steps. The column labeled

Table III
BRANCHES COVERED BY EVOSUITE WITHOUT AND WITH
SEMI-AUTOMATIC TESTING.

Id EVOSUITE Semi-Automatic Coverage Increase
1 104 135 22.96%
2 3 5 40.00%
3 53 67 20.90%
4 411 484 15.08%
5 42 68 38.24%
6 21 33 36.36%
7 13 17 23.53%
8 1 2 50.00%
9 1 5 80.00%
10 53 66 19.70%
11 10 15 33.33%
12 2 6 66.67%
13 4 7 42.86%
14 69 78 11.54%
15 1 2 50.00%
16 23 28 17.86%
17 26 27 3.70%
18 33 39 15.38%
19 5 11 54.55%
20 2 4 50.00%
Average 34.63%
Table IV
NUMBER OF EDITED STATEMENTS

Id Added Modified Manual Reduction

1 4 28 212 84.91%

2 4 0 10 60.00%

3 7 2 53 83.02%

4 1 52 93 43.01%

5 8 3 55 80.00%

6 5 3 32 75.00%

7 0 3 16 81.25%

8 1 0 2 50.00%

9 4 1 10 50.00%

10 0 5 36 86.11%

11 0 2 4 50.00%

12 4 0 6 33.33%

13 0 1 4 75.00%

14 4 1 69 92.75%

15 1 0 2 50.00%

16 0 2 11 81.82%

17 0 1 9 88.89%

18 0 3 35 91.43%

19 2 1 4 25.00%

20 6 1 9 22.22%

Average 65.10%

“Added” lists the number of statements that were newly
added to the test set, while “Modified” shows how often
existing statements produced by EVOSUITE were simply
modified. For example, this is often the case when EvO-
SUITE produces a random string that needs to be adapted
to some particular expected values. To compare these edits
with the effort involved in manual testing, we measure the
number of statements in the manual test sets, which is shown
in the fourth column. Finally, the last column shows the
reduction compared to the numbers of instructions written
in the manual test suites for the same level of coverage. For
this comparison, we also count each modification of a value
during semi-automatic testing like a new line insertion. In
all cases the effort is greatly reduced.

public boolean evaluate(Object o) {
boolean rc = false;
try {
Vector params = ((Event)o).getParameters();
String str = (String)params.elementAt(0);
if (Value.equals(str)) {

< Target branch

} catch(ClassCastException ex) {
ex.printStackTrace();

}

return rc;

}

Figure 6. Excerpt of the StringMatchesGuardCondition class.
EVOSUITE has problems reaching the target branch, as it just tries to match
the method signature when calling evaluate, and thus an Event object
is only passed in by chance. The tests produced by EVOSUITE thus mostly
raise a ClassCastException.

rc = true;

9995,

String sO0 = 7
StringMatchesGuardCondition smgcO = new
StringMatchesGuardCondition(s0);
smgc0.getValue();
smgc0.evaluate(s0);

Figure 7. A test case produced by EVOSUITE to exercise evaluate. As
a String object is passed in, the ClassCastException is triggered.

In our experiments, semi-automatic test generation
reduced the number of test code statements written for
the same coverage by 65.10% over manual testing.

C. Problems in Object-Oriented Test Generation

A closer look at the branches that EVOSUITE was not able
to cover without human intervention demonstrates where
search-based testing currently has problems, and illustrates
how semi-automatic testing works in practice. For example,
consider the code excerpt in Figure 6: The signature of the
method describes that an instance of Object is requested.
EVOSUITE will blindly try to match this method with any
object that is assignable to Object — which, alas, all objects
are. The chances of selecting a required Event class are
very small. In fact, this problem is quite common in Java,
as the Java compiler strips away all type information from
Java Generics, such that any generic parameters or return

String sO = “test”;
StringMatchesGuardCondition smgcO = new
StringMatchesGuardCondition(s0);

smgc0.getValue();

Vector v = new Vector();

v.add(s0);

Event ¢ = new Event(s0, v, new Object());
smgc0.evaluate(e);

Figure 8. Manual editing of the test case in Figure 7 resulted in this test
case. Seeing the source code, it is obvious we need to create an Event
object that contains the string s0.

/s
p(0, 0, controlPoints_, spline, 0);

Y/
}
private void p(int i, double t, double cp[], double spline[], int
index) {
double x = 0.0;
double y = 0.0;
double z = 0.0;
int k =1i;

for(int j = 0; j <=3; j++) {
double b = blend(j, t);
X +=b * cplk++];
y +=b * cplk++];
z += b *x cp[k++];

spline[index + 0] = x;
spline[index + 1] = y;
spline[index + 2] = z;

}

{ T

Y/
private static void offsetRelativePtg(Ptg ptg, int roff, int coff)
{
V/am

else if (ptg instanceof AreaPtg) {
AreaPtg aptg = (AreaPtg) ptg; <:
if (roff !=0) {
if (aptg.isFirstRowRelative()) {
aptg.setFirstRow(aptg.getFirstRow() + roff);

if (aptg.isLastRowRelative()) {
aptg.setLastRow(aptg.getLastRow() + roff);

Vs

}
"o

Figure 12. Excerpt of the FormulaUtil class. In order to cover these
branches, EVOSUITE needs to create string inputs that represent row and
column ranges in a spreadsheet (e.g. A1:A10), such that a AreaPtg object
is constructed from it.

Figure 9. Excerpt of the BezierSpline class. EVOSUITE has problems
reaching the target branch, as the array cp needs to match the number of
elements represented by i, and i needs to be positive. For this, branch
coverage does not provide sufficient guidance. Note also that the target
branch is contained in a private method, and cannot be directly called during
testing.

double[] doubleAO = new double[9];

int int0 = —21;

BezierSpline bezierSpline0 = new BezierSpline(double A0, int0);
bezierSpline(.generate();

Figure 10. A test case produced by EVOSUITE for the BezierSpline
class. Method p is called indirectly by generate with an i of -21, which
causes an exception, and an array of length 9.

values in bytecode are seen as Object. Manual editing
can overcome this problem very easily: Figure 7 shows an
example test case produced by EVOSUITE which can be
extended to cover the target branch, by simply creating a
suitable Event object, as shown in Figure 8. Once this
object is in the population, EVOSUITE can easily cover all
dependent branches. In theory, this problem could also be
overcome by considering type constraints caused by casts,
and we are working to extend EVOSUITE in this direction.

Figure 9 shows another example where EVOSUITE has
problems reaching a target branch. The target is contained in
a private method, which takes several parameters, including
an array and an index into this array. The target branch

double[] doubleAO = new double[12];

int int0 = 1;

BezierSpline bezierSpline0 = new BezierSpline(doubleA0, int0);
bezierSpline0.generate();

Figure 11. Manual editing of the test case from Figure 10 fixing the array
size and the index can easily achieve full coverage of p.

HSSFWorkbook wb0 = null;

String string0 = "9”;

int int0 = 20;

FormulaUtil.offsetRelativeReferences(wb0, string0, int0, int0);

Figure 13. A test case produced by EVOSUITE for the FormulaUtil
class. The string does not represent a valid cell range.

can only be covered if EVOSUITE produces a combination
of an array of size greater 11 and a positive index, and if
this combination is set accordingly through the constructor
of the BezierSpline class. Figure 10 shows a test case
produced by EVOSUITE: As the index is negative, the target
method throws an exception before the target branch is
covered. This can be easily fixed, and does not even require
addition of new statements. As shown in Figure 11, we
simply need to change the array size and the index in order
to cover the target branch.

Finally, Figure 12 shows an example where a branch
in a private method indirectly depends on a string value
passed and processed at other places in the code: The string
needs to represent a cell range, such that an AreaPtg
object is constructed. To cover this branches, EVOSUITE
usually needs to be run for a very long time as the branch
using instanceof offers no guidance. Yet, fixing the tests
produced by EVOSUITE (Figure 13) is a matter of changing
a simple string (Figure 14). Once the branch is covered,
EVOSUITE can cover all branches control dependent on it
easily by itself.

V. THREATS TO VALIDITY

This paper presents a preliminary study on semi-automatic
testing, and is thus suspect to a number of threats to validity.
Threats to construct validity exist because we measured the
increase in branch coverage compared to purely automatic

HSSFWorkbook wb0 = null;

String string0 = ”A9:B9”;

int int0 = 20;

FormulaUtil.offsetRelativeReferences(wb0, string0, int0, int0);

Figure 14. To cover more branches in FormulaUtil the manual editing
of this test case simply changes the string to a valid cell range.

testing, as well as the reduction in the number of statements
written by a tester. This measurement does not take into
account how familiarity with the unit under test, experience,
or program comprehension affect the overall usability of the
approach. This might be better reflected by measuring the
time; for example, tests produced by EVOSUITE might be
confusing, slowing down the tester during manual testing
phases. Such effects can only be observed with user studies.
Threats to internal validity might come from how the
empirical study was carried out. To reduce the probability of
having faults in our testing framework, it has been carefully
tested. Threats to external validity regard the generalization
to other types of software, and are common to any empirical
analysis. To avoid a bias in the selection of classes, we
selected them randomly out of the SF100 corpus [4], filtering
out by several criteria (minimum and maximum coverage).
Yet, larger experiments will be required in the future.

VI. CONCLUSIONS

In this paper, we have presented an approach to include
the tester during search-based test generation in a unit testing
scenario for object-oriented software. We have extended our
EVOSUITE tool to show an editor window presenting to the
user a preprocessed version of the current best individual
in the search population if the search stagnates. The user
can modify this test suite in any desirable way, and the
resulting test suite is fed back into the population of the
Genetic Algorithm.

Our initial set of experiments demonstrated the usefulness
of this approach; coverage is clearly higher than in fully
automatic testing, yet the effort is significantly smaller than
in manual testing. However, there is much potential for
future work:

o We used default values for the parameters I and ¢, but
a sensitivity analysis of these parameters is necessary to
find out the best values.

« Evaluation needs to be done in terms of user studies to
find out how developers and testers can cope with semi-
automatic testing in practice.

e Many of the problems that semi-automatic testing can
solve are due to limitations in the search operators or
fitness function. When such problems are identified, it
may in many cases be possible to improve the search
such that higher coverage can be achieved automatically,
further reducing the manual input necessary.

o If the limitations of the tool are precisely known, the
search might not want to wait until stagnatation, but could

ask questions much earlier (“How do I produce a value
for this method such that we can reach this branch?”).

« Semi-automatic testing may be very well suited to over-
come the problem of environmental dependencies [4].
In fact, three of the classes selected in our experiments
contained unexpected dependencies on files, which were
easily overcome with semi-automatic testing.

More information about EVOSUITE is available at
http://www.evosuite.org/

Acknowledgments. This work was supported by grant
Ze509/4-1 from Deutsche Forschungsgemeinschaft and a
Google Focused Research Award on “Test Amplification”.

REFERENCES

[1] G. Fraser and A. Arcuri. Evolutionary generation of whole
test suites. In International Conference On Quality Software
(QSIC), pages 31-40, Los Alamitos, CA, USA, 2011. IEEE
Computer Society.

[2] G. Fraser and A. Arcuri. Evosuite: Automatic test suite
generation for object-oriented software. In ACM Symposium
on the Foundations of Software Engineering (FSE), 2011.

[3] G. Fraser and A. Arcuri. The seed is strong: Seeding strategies
in search-based software testing. In IEEE International
Conference on Software Testing, Verification and Validation
(ICST), 2012. To appear.

[4] G. Fraser and A. Arcuri. Sound empirical evidence in
software testing. In ACM/IEEE International Conference on
Software Engineering (ICSE), 2012. To appear.

[5] H.-S. Kim and S.-B. Cho. Application of interactive genetic
algorithm to fashion design. Engineering Applications of
Artificial Intelligence, 13(6):635 — 644, 2000.

[6] A. Kosorukoff. Human based genetic algorithm. volume 5,
pages 3464-3469, 2001.

[7] J. Malburg and G. Fraser. Combining search-based and
constraint-based testing. In IEEE/ACM Int. Conference on
Automated Software Engineering (ASE), 2011.

[8] P. McMinn. Search-based software test data generation:
A survey. Software Testing, Verification and Reliability,
14(2):105-156, 2004.

[9] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-
directed random test generation. In ACM/IEEE Int. Confer-
ence on Software Engineering (ICSE), pages 75-84, 2007.

[10] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. In ESEC/FSE-13: Proc. of the 10th
European Software Engineering Conf. held jointly with 13th
ACM SIGSOFT Int. Symposium on Foundations of Software
Engineering, pages 263-272. ACM, 2005.

[11] P. Tonella. Evolutionary testing of classes. In ACM Int.
Symposium on Software Testing and Analysis (ISSTA), pages
119-128, 2004.

[12] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Precise
identification of problems for structural test generation. In
Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, pages 611-620, New York, NY, USA,
2011. ACM.

