
EvoSuite at the SBST 2013 Tool Competition

Gordon Fraser
University of Sheffield

Sheffield, UK
gordon.fraser@sheffield.ac.uk

Andrea Arcuri
Certus Software V&V Center at Simula Research Laboratory

P.O. Box 134, 1325 Lysaker, Norway
arcuri@simula.no

Abstract—EVOSUITE is a mature research prototype that
automatically generates unit tests for Java code. This paper
summarizes the results and experiences in participating at the
unit testing competition held at SBST 2013, where EVOSUITE
ranked first with a score of 156.95.

Keywords-test case generation; search-based testing; testing
classes; search-based software engineering

I. INTRODUCTION

This paper describes the results of applying the EVO-
SUITE test generation tool [4] to the benchmark used
in the tool competition at the International Workshop on
Search-Based Software Testing (SBST) 2013. Details on the
competition and the benchmark can be found in [2]. In this
competition, EVOSUITE ranked first with a score of 156.95.

II. ABOUT EVOSUITE

A. Whole Test Suite Generation

EVOSUITE automatically generates JUnit test cases for a
given class. It requires only the bytecode of the class under
test and its dependencies as input. EVOSUITE is based on
search-based testing, and uses a Genetic Algorithm (GA) to
evolve a population of candidate test suites with respect to
a choice of code coverage criteria.

This whole test suite generation approach [8] is a key nov-
elty of EVOSUITE compared to other tools, and represents
an effective counter-measure to the problem of infeasible
coverage goals. When targeting individual goals one at a
time, any resources spent on an infeasible goal are per
definition wasted, whereas the search in EVOSUITE is not
adversely affected by the number of infeasible goals [8].
Our past experiments have shown that this approach leads to
significantly higher coverage than targeting individual goals.

The search population in EVOSUITE’s GA is initial-
ized with small random test suites, which are successively
evolved using crossover and mutation. The number of tests
and their length is variable, such that the evolution will
automatically lead to a suitable size of test suite for the
criterion at hand. This variability in length requires bloat-
control techniques to counter the problem of population
bloat [5]. EVOSUITE incorporates seeding strategies [6] that
boost coverage, even in the case of string dependencies.

Table I
CLASSIFICATION OF THE EVOSUITE UNIT TEST GENERATION TOOL.

Prerequisites

Static or dynamic Dynamic testing at the Java class level
Software Type Java classes
Lifecycle phase Unit testing for Java programs
Environment All Java development environments
Knowledge required JUnit unit testing for Java
Experience required Basic unit testing knowledge

Input and Output of the tool

Input Bytecode of the target class and dependen-
cies

Output JUnit test cases (version 3 or 4)

Operation

Interaction Through the command line
User guidance manual verification of assertions for func-

tional faults
Source of information http://www.evosuite.org
Maturity Mature research prototype, under develop-

ment
Technology behind the tool Search-based testing / whole test suite gen-

eration

Obtaining the tool and information

License GNU General Public License V3
Cost Open source
Support None

Does there exist empirical evidence about

Effectiveness and Scalability See [7], [8].

The default coverage criterion used by EVOSUITE is
branch coverage, but there is also rudimentary support for
dataflow and mutation testing, and other coverage criteria
could be integrated by encoding them as fitness functions.

Before presenting test cases to the user, EVOSUITE
applies a range of post-processing steps. Test cases are
minimized, constants are inlined, individual values can be
minimized, and assertions can be added to the test cases.

B. Efficient Assertion Generation

A key challenge in automated white-box testing is given
by the human oracle problem: Unless a test case reveals
a generic fault such as an undeclared exception, a tester
manually needs to assess the test outcome to decide whether



a fault has been found. In unit testing of object-oriented
code, the oracle problem amounts to adding test assertions
to the unit tests. Because any given JUnit test case offers a
potentially large choice of assertions, EVOSUITE determines
which of all the possible assertions for a given test case
are good at detecting faults. This is based on mutation
analysis [9]: EVOSUITE first determines which assertions
can reveal mutations of the bytecode, and then uses a
heuristic to calculate a minimal set of assertions to detect all
mutants that the test can reveal. However, these assertions
reflect the currently implemented behaviour. This means that
they can immediately be used for regression testing, but to
determine whether there is a fault in the current version of
the CUT the developer needs to inspect and verify each of
these assertions.

C. Safe Test Execution

To evaluate the fitness of a test suite, the GA in EVOSUITE
executes all tests using instrumentation that collects the
necessary data. The test execution may have undesired side-
effects, for example if the class under test or the sequence of
calls EVOSUITE generated to satisfy the dependencies access
the filesystem. For example, when running experiments on
the 100 randomly selected projects of the SF100 corpus
of classes [7] we observed creation of files with random
filenames and even deletion of entire directories. To prevent
such undesired actions, EVOSUITE uses a custom security
manager to restrict test execution to a sandbox environment.
Furthermore, to restrict execution of GUI related code that
may cause windows and other GUI elements showing up
during the search, EVOSUITE is run in headless mode, such
that no GUI elements will be shown.

III. CONFIGURATION FOR THE COMPETITION ENTRY

EVOSUITE supports several coverage criteria, and many
other configuration options. Most of these configuration
options are set to reasonable defaults based on our studies
on parameter tuning [1], and we argue that in most cases
a user should not be required to change low-level parame-
ters that would require an understanding of the underlying
techniques. However, it is reasonable to assume that a user
will know how long he or she is prepared to wait for the
results, and which test criterion the generated test cases
should satisfy. As branch coverage may be a weak criterion,
in particular if classes consist of many small methods with
trivial control flow, we chose weak mutation testing as target
criterion. EVOSUITE uses bytecode instrumentation to create
a meta-mutant for the class under test, and can then activate
individual mutants using a parameter. A mutant is weakly
killed if it leads to an immediate state change. Furthermore,
we arbitrarily chose three minutes as timeout for the search.
This is based on our past experience, where 10 minutes for a
class in all but very complex examples is more than enough
time, whereas two minutes for non-trivial classes with many

mutants may easily be insufficient time. Given more than
three minutes would likely have resulted in higher coverage.

Considering that the score calculation in the SBST compe-
tition does not directly include the test suite size or length
(only in terms of execution time), we deactivated the test
minimization in EVOSUITE, as it will take significantly more
time to minimize a test suite than can be gained during
execution. Furthermore, for the same reason we deactivated
assertion filtering, such that the resulting test cases include
all possible assertions.

IV. BENCHMARK RESULTS

The results of EVOSUITE on the benchmark classes are
listed in Table II. On average, EVOSUITE achieved 61.4%
line coverage, 57.6% branch coverage1, and 13.3% mutation
score. On average, EVOSUITE produced 9 tests per class,
and it took an average of 186 per class to do so (with
EVOSUITE configured to 3 minutes per class).

While the results on code coverage are in line with our
expectations from past experiments (e.g., [7]), the mutation
scores are surprisingly low. A closer inspection of this unex-
pected result revealed several issues in assertion generation,
which are well known in principle. The common problem
is these cases is that the assertions produced by EVOSUITE
do not hold upon test re-execution, and tests with failing
assertions are excluded from mutation analysis.

A. Low Mutation Scores

The first issue becomes apparent when considering the
overall low mutation scores on Joda Time classes, which
are contrary to previous results (e.g., [9]). One reason for
this is that assertions in Joda Time tend to reflect the time
during test generation. For example, an instance of a time
object based on the current system time will include this
time in its toString representation, and any successive
test runs will fail, unless they happen to be executed at
the same time. EVOSUITE in theory overcomes this is-
sue by instrumenting the bytecode such that all calls to
System.currentTimeMillis and related methods are
replaced with custom calls that allow for deterministic test
execution. However, to enable this during JUnit test execu-
tion requires bytecode instrumentation also at runtime. As
this was not supported by the SBST contest infrastructure,
we deactivated this feature in EVOSUITE.

The second issue we observed is related to static initializ-
ers, and is an issue that is long known in test generation [3].
To make sure that test cases are independent, all static
initializers would need to be reset before every single test
execution. As this poses a significant overhead, EVOSUITE
creates executable copies of the static initializer for each
class, removing assignments of final fields. However, we
deactivated this feature in EVOSUITE for the competition for

1Using Cobertura’s definition of branch coverage, which only counts
conditional statements, not edges in the CFG.



performance reasons, which possibly led to higher coverage,
but apparently to lower mutation scores.

B. Classes with Low Coverage

Besides the generally low mutation scores, we see nine
classes on which EVOSUITE achieved 0% coverage in
Table II. The classes XlsSheetIterator and XlsxSheetIterator
both take a URL as input, which EVOSUITE produced using
calls like ClassLoader.getSystemResource(””). However, the
resulting URL encodes the current directory during test
generation and results in assertions like

assertEquals("/home/evosuite/", uRL0.getPath());

These assertions fail when executed during analysis in
a different directory, and consequently all tests for these
classes fail even before an instance of the target class has
been produced, thus leading to 0% coverage. This problem
would not have occurred if we had not deactivated assertion
minimization – the problematic assertions are unrelated to
the class under test, and would have immediately been
removed in normal operation.

The classes net.sourceforge.barbecue.Barcode and
LinearBarcode are both GUI components extending
java.awt.Component and cannot be initialised in EVOSUITE
in headless mode and with activated sandbox.

org.apache.commons.lang3.BooleanUtils revealed a bug
in EVOSUITE related to multi-dimensional arrays, which
unfortunately led to EVOSUITE crashing on this class
in all runs, even though the class itself would be eas-
ily covered by EVOSUITE. Similarly, the problem on
org.joda.time.DurationField is related to a bug in EVOSUITE
in how it handles test generation for abstract classes.

org.joda.time.field.MillisDurationField is a tricky case:
The class has only a private constructor and thus cannot
be constructed by EVOSUITE directly. There is one public
static instance of the class, but it is declared as its supertype:

public static final DurationField INSTANCE = new
MillisDurationField();

If EVOSUITE would be left running long enough, then
eventually it would also try and assign this INSTANCE
object, discovering that it actually is a MillisDurationField
instance. However, this did not happen in the three minutes
given for the competition.

Finally, the classes BuddhistChronology, Gregori-
anChronology, and DateTimeFormatterBuilder are working
fine in our own experiments, so the reason for the 0%
coverage in the competition is currently not clear to us;
possibly this is related to compile errors or failures in the
produced JUnit tests. A further possible contributing factor
is that tests requiring the EVOSUITE security manager
(e.g., when trying to access a file), then the resulting JUnit
test case spawns a new thread to execute the code using
the EVOSUITE security manager. As this construct is not

supported by Javalanche, we automatically removed all
such tests, thus potentially reducing the coverage.

We also note that org.joda.time.Chronology achieves low
coverage (only 10.5% line coverage). This is an interesting
case, as much of this class is contained in methods tagged
as deprecated. By default, EVOSUITE does not attempt to
cover deprecated code, although deprecated code seems to
be considered for coverage and mutation analysis. However,
EVOSUITE can be configured to also cover deprecated code.

V. CONCLUSIONS

The road to practically usable unit test generators is long,
and we are by far not there yet. The SBST competition has
provided an invaluable incentive to work on the robustness of
EVOSUITE, which in writing research papers is usually not
rewarded. The participation in this competition has brought
EVOSUITE a big step closer to being useful in practice,
and it has helped us to identify areas where future work
is necessary to improve EVOSUITE further.

To learn more about EVOSUITE, visit our Web site:

http://www.evosuite.org

Acknowledgments. This project has been funded a Google
Focused Research Award on “Test Amplification”. Andrea
Arcuri is funded by the Norwegian Research Council.

REFERENCES

[1] A. Arcuri and G. Fraser, “On parameter tuning in search based
software engineering,” in International Symposium on Search
Based Software Engineering (SSBSE), 2011, pp. 33–47.

[2] S. Bauersfeld, T. Vos, K. Lakhotiay, S. Poulding, and N. Con-
dori, “Unit testing tool competition,” in International Workshop
on Search-Based Software Testing (SBST), 2013.

[3] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic
robustness tester for Java,” Softw. Pract. Exper., vol. 34, pp.
1025–1050, 2004.

[4] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite
generation for object-oriented software.” in ACM Symposium
on the Foundations of Software Engineering (FSE), 2011, pp.
416–419.

[5] ——, “It is not the length that matters, it is how you control
it,” in IEEE International Conference on Software Testing,
Verification and Validation (ICST), 2011, pp. 150 – 159.

[6] ——, “The seed is strong: Seeding strategies in search-based
software testing,” in IEEE International Conference on Soft-
ware Testing, Verification and Validation (ICST), 2012, pp.
121–130.

[7] ——, “Sound empirical evidence in software testing,” in
ACM/IEEE International Conference on Software Engineering
(ICSE), 2012, pp. 178–188.

[8] ——, “Whole test suite generation,” IEEE Transactions on
Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[9] G. Fraser and A. Zeller, “Mutation-driven generation of unit
tests and oracles,” IEEE Transactions on Software Engineering
(TSE), vol. 28, no. 2, pp. 278–292, 2012.



Table II
DETAILED RESULTS OF EVOSUITE ON THE SBST BENCHMARK CLASSES.

Class Generation Time Execution Time Tests Line Coverage Branch Coverage Mutation Score

com.googlecode.sqlsheet.stream.XlsSheetIterator 217.65 0.00 1.00 0.0000 0.0000 0.0000
com.googlecode.sqlsheet.stream.XlsxSheetIterator 216.29 0.00 1.00 0.0000 0.0000 0.0000
net.sourceforge.barbecue.Barcode 195.05 0.00 1.00 0.0000 0.0000 0.0000
net.sourceforge.barbecue.BlankModule 193.12 0.26 1.00 1.0000 1.0000 0.1825
net.sourceforge.barbecue.CompositeModule 194.58 0.08 2.17 1.0000 1.0000 0.3527
net.sourceforge.barbecue.Module 192.90 0.03 3.67 0.8762 0.8611 0.2885
net.sourceforge.barbecue.Modulo10 186.83 0.00 1.33 0.8667 1.0000 0.7971
net.sourceforge.barbecue.SeparatorModule 194.15 0.05 1.33 1.0000 1.0000 0.2012
net.sourceforge.barbecue.env.DefaultEnvironment 188.56 0.14 1.00 1.0000 1.0000 1.0000
net.sourceforge.barbecue.env.EnvironmentFactory 189.45 0.01 1.83 0.7593 0.6667 0.2436
net.sourceforge.barbecue.env.HeadlessEnvironment 186.99 0.00 1.00 1.0000 1.0000 1.0000
net.sourceforge.barbecue.linear.LinearBarcode 194.73 0.00 1.00 0.0000 0.0000 0.0000
net.sourceforge.barbecue.linear.codabar.CodabarBarcode 194.15 0.01 1.00 0.2738 0.1319 0.0000
net.sourceforge.barbecue.linear.code128.Code128Barcode 194.80 0.01 2.00 0.2548 0.0308 0.0000
net.sourceforge.barbecue.linear.code128.ModuleFactory 196.60 0.01 1.83 0.9944 0.9000 0.0008
net.sourceforge.barbecue.linear.code39.Code39Barcode 193.88 0.02 3.00 0.5109 0.5625 0.0000
net.sourceforge.barbecue.linear.ean.UCCEAN128Barcode 194.93 0.03 5.00 0.3591 0.1404 0.0000
net.sourceforge.barbecue.linear.twoOfFive.Int2of5Barcode 193.77 0.01 2.00 0.2667 0.5000 0.0000
net.sourceforge.barbecue.linear.twoOfFive.Std2of5Barcode 193.61 0.01 2.00 0.4136 0.4833 0.0139
net.sourceforge.barbecue.output.GraphicsOutput 192.90 0.15 3.33 0.8444 0.6333 0.1411
org.apache.commons.lang3.ArrayUtils 200.56 0.01 12.33 0.1097 0.0805 0.0000
org.apache.commons.lang3.BooleanUtils 12.55 0.00 0.00 0.0000 0.0000 0.0000
org.apache.commons.lang3.CharRange 187.10 0.00 13.67 0.9778 0.9400 0.4729
org.apache.commons.lang3.math.Fraction 195.11 0.01 35.67 0.9497 0.8861 0.1494
org.apache.commons.lang3.math.NumberUtils 190.04 0.01 8.83 0.1422 0.1183 0.0000
org.apache.lucene.util.FixedBitSet 192.46 0.03 41.50 0.9158 0.5173 0.0000
org.apache.lucene.util.WeakIdentityMap 186.98 0.01 4.83 0.9032 0.5000 0.0000
org.joda.time.Chronology 190.47 0.07 1.00 0.1053 1.0000 0.0000
org.joda.time.DateTimeComparator 191.00 0.06 9.33 0.9107 0.8225 0.0040
org.joda.time.DateTimeFieldType 189.80 0.07 10.83 1.0000 1.0000 0.0075
org.joda.time.DateTimeUtils 191.04 0.08 9.33 0.5653 0.4912 0.0040
org.joda.time.DateTimeZone 221.39 0.08 21.83 0.5161 0.4589 0.0052
org.joda.time.Days 191.94 0.17 18.67 0.8680 0.8632 0.0045
org.joda.time.DurationField 186.85 0.00 1.00 0.0000 0.0000 0.0028
org.joda.time.DurationFieldType 189.61 0.04 4.83 0.9944 1.0000 0.0021
org.joda.time.Hours 190.23 0.09 18.17 0.7764 0.7500 0.0040
org.joda.time.IllegalFieldValueException 187.27 0.01 11.50 0.4474 0.5625 0.0035
org.joda.time.Minutes 190.67 0.09 16.50 0.8213 0.8238 0.0037
org.joda.time.Months 190.17 0.08 20.00 0.8586 0.8485 0.0049
org.joda.time.MutableDateTime 195.96 0.33 56.50 0.3057 0.2027 0.0000
org.joda.time.PeriodType 192.25 0.05 13.00 0.4886 0.3494 0.0050
org.joda.time.Seconds 190.79 0.09 17.33 0.8478 0.8333 0.0042
org.joda.time.Years 190.04 0.08 15.17 0.8497 0.8571 0.0055
org.joda.time.chrono.BuddhistChronology 6.07 0.00 0.00 0.0000 0.0000 0.0000
org.joda.time.chrono.GJChronology 216.55 0.07 21.33 0.7836 0.5909 0.0205
org.joda.time.chrono.GregorianChronology 6.14 0.00 0.00 0.0000 0.0000 0.0000
org.joda.time.chrono.ISOChronology 189.47 0.04 5.33 0.8444 0.5833 0.0186
org.joda.time.chrono.LenientChronology 190.50 0.04 2.00 0.4967 0.1146 0.0165
org.joda.time.convert.CalendarConverter 191.64 0.05 3.33 0.5667 0.4500 0.4086
org.joda.time.convert.ConverterManager 189.47 0.02 12.33 0.6492 0.4624 0.1233
org.joda.time.convert.ConverterSet 190.54 0.05 9.00 0.6709 0.5979 0.4240
org.joda.time.convert.DateConverter 189.46 0.01 1.00 0.6667 1.0000 0.2353
org.joda.time.convert.LongConverter 189.43 0.02 1.33 0.9167 1.0000 0.4815
org.joda.time.convert.NullConverter 189.47 0.05 1.00 0.9091 1.0000 0.6439
org.joda.time.convert.ReadableDurationConverter 189.92 0.04 1.33 0.8889 0.8333 0.3125
org.joda.time.convert.ReadableInstantConverter 190.91 0.05 3.50 0.4537 0.2292 0.2262
org.joda.time.convert.ReadableIntervalConverter 190.57 0.06 4.33 0.6429 0.5278 0.5808
org.joda.time.convert.ReadablePartialConverter 190.73 0.05 1.83 0.5104 0.3750 0.3214
org.joda.time.convert.ReadablePeriodConverter 189.74 0.05 1.33 1.0000 1.0000 0.5000
org.joda.time.convert.StringConverter 191.44 0.07 16.17 0.5056 0.4571 0.0883
org.joda.time.field.BaseDateTimeField 194.84 0.07 17.50 0.8363 0.7986 0.0753
org.joda.time.field.FieldUtils 189.50 0.06 25.83 0.9262 0.9195 0.2500
org.joda.time.field.MillisDurationField 186.89 0.00 1.00 0.0000 0.0000 0.0394
org.joda.time.field.OffsetDateTimeField 188.86 0.05 3.17 0.4402 0.6250 0.0681
org.joda.time.field.PreciseDateTimeField 189.55 0.04 1.00 0.4683 0.3889 0.0124
org.joda.time.field.PreciseDurationDateTimeField 191.30 0.05 8.17 0.9383 0.8500 0.0771
org.joda.time.field.PreciseDurationField 186.85 0.00 1.00 0.0417 0.0000 0.0672
org.joda.time.field.ScaledDurationField 187.39 0.00 5.67 0.6579 0.5000 0.0717
org.joda.time.field.UnsupportedDateTimeField 193.01 0.07 38.83 0.7295 0.9306 0.0627
org.joda.time.format.DateTimeFormat 196.14 0.06 25.83 0.7200 0.5641 0.0142
org.joda.time.format.DateTimeFormatter 200.64 0.07 21.50 0.7480 0.6348 0.0205
org.joda.time.format.DateTimeFormatterBuilder 229.80 0.00 0.00 0.0000 0.0000 0.0000
org.joda.time.format.ISODateTimeFormat 191.23 0.04 18.33 0.7710 0.5076 0.0213
org.joda.time.format.ISOPeriodFormat 190.74 0.09 3.67 1.0000 1.0000 0.0341
org.joda.time.format.PeriodFormat 189.58 0.03 1.33 1.0000 1.0000 0.0293
org.joda.time.format.PeriodFormatter 191.23 0.05 8.33 0.9722 0.9318 0.0335
org.joda.time.format.PeriodFormatterBuilder 207.49 0.07 31.67 0.7805 0.6519 0.0393

Average 186.3 0.05 9.06 0.61 0.58 0.13


	I Introduction
	II About EvoSuite
	II-A Whole Test Suite Generation
	II-B Efficient Assertion Generation
	II-C Safe Test Execution

	III Configuration for the Competition Entry
	IV Benchmark results
	IV-A Low Mutation Scores
	IV-B Classes with Low Coverage

	V Conclusions
	References

