
EvoSuite at the SBST 2015 Tool Competition

Gordon Fraser
University of Sheffield

Sheffield, UK

Andrea Arcuri
Scienta, Norway

and University of Luxembourg

Abstract—EVOSUITE is a mature research prototype that
automatically generates unit tests for Java code. This paper
summarizes the results and experiences of EVOSUITE’s partic-
ipation at the third unit testing competition at SBST 2015. An
unfortunate issue of conflicting dependency versions in two out
of the nine benchmark projects reduced EVOSUITE’s overall
score to 190.6, leading to the overall second rank.

Keywords-test case generation; search-based testing; testing
classes; search-based software engineering

I. INTRODUCTION

This paper describes the results of applying the EVO-
SUITE test generation tool [2] to the benchmark used in the
tool competition at the International Workshop on Search-
Based Software Testing (SBST) 2015. Details about the
competition and the benchmark can be found in [14]. In
this competition, EVOSUITE ranked second with a score of
190.6.

II. ABOUT EVOSUITE

EVOSUITE [2], [6] automatically generates test suites for
Java classes, targeting branch coverage and other coverage
criteria (e.g., mutation testing [8]). EVOSUITE works at the
Java bytecode level, i.e., it does not require source code. It is
fully automated and requires no manually written test drivers
or parameterized unit tests. For example, when EVOSUITE
is used from its Eclipse plugin, a user just needs to select a
class, and tests are generated with a mouse-click.

EVOSUITE has been evaluated on millions of lines of
Java code [9], both open-source code and close-source code
provided by one of our industrial partners. In the previous
two editions of the unit testing tool competition, EVOSUITE
ranked first [4], [5].

EVOSUITE uses an evolutionary approach to derive these
test suites: A genetic algorithm evolves candidate individuals
(chromosomes) using operators inspired by natural evolution
(e.g., selection, crossover and mutation), such that iteratively
better solutions with respect to the optimization target (e.g.,
branch coverage) are produced. For details on this test gener-
ation approach we refer to [6]. To improve performance fur-
ther, we are investigating several extensions to EVOSUITE.
For example, EVOSUITE can employ dynamic symbolic
execution [13] and memetic algorithms [10] to handle the
cases in which our genetic algorithm may struggle.

Table I
CLASSIFICATION OF THE EVOSUITE UNIT TEST GENERATION TOOL.

Prerequisites

Static or dynamic Dynamic testing at the Java class level
Software Type Java classes
Lifecycle phase Unit testing for Java programs
Environment All Java development environments
Knowledge required JUnit unit testing for Java
Experience required Basic unit testing knowledge

Input and Output of the tool

Input Bytecode of the target class and dependen-
cies

Output JUnit test cases (version 3 or 4)

Operation

Interaction Through the command line, and Eclipse
plugin

User guidance manual verification of assertions for func-
tional faults

Source of information http://www.evosuite.org
Maturity Mature research prototype, under develop-

ment
Technology behind the tool Search-based testing / whole test suite gen-

eration

Obtaining the tool and information

License GNU General Public License V3
Cost Open source
Support None

Does there exist empirical evidence about

Effectiveness and Scalability See [6], [9].

As the generated unit tests are meant for human con-
sumption [11], EVOSUITE applies various post-processing
steps to improve readability (e.g., minimising) and adds test
assertions that capture the current behavior of the tested
classes. To select the most effective assertions, EVOSUITE
uses mutation analysis [12]. EVOSUITE can also be used
to automatically find faults such as undeclared thrown ex-
ceptions and broken code contracts [7]. For more details
on the tool and its abilities we refer to [2], and for more
implementation details we refer to [3].

III. COMPETITION SETUP

We configured EVOSUITE to use a dynamic timeout of
maximum 10 minutes per class for the search, with an earlier



stop if the fitness value did not increase for two minutes. The
fitness function to drive the genetic algorithm was based
on a combination of line coverage, branch coverage, and
weak mutation testing [8]. We enabled the post-processing
step of test minimization, but to reduce the time spent
we included all assertions rather than filtering them with
mutation analysis [12]. In practice, this may not result in
the most readable or maintainable test cases, but neither of
these two attributes is measured by the SBST contest metric.

IV. BENCHMARK RESULTS

The results of EVOSUITE on the benchmark classes are
listed in Table II. On average, EVOSUITE achieved 55.36%
line coverage, 47.19% branch coverage1, and 41.02% muta-
tion score. On average, EVOSUITE took 6 minutes and 11
seconds per class to generate test cases. The generated test
suites take on average 2.1 seconds to run per class.

A. Issues Encountered

Out of 63 classes under test (CUTs), EVOSUITE did not
manage to obtain any coverage for 18, i.e., 28% of all
classes. For 14 of them (seven in the twitter4j project and
seven in the hibernate project), this is due to a mismatch
in libraries on the classpath. In particular, EVOSUITE does
bytecode instrumentation using the ASM library (currently
using version 5.0.3). However, the projects of the CUTs had
their own (older) version of ASM; for example Twitter4J
has an indirect dependency to ASM 3.2.

Because the API of ASM has changed over
different versions, this leads to errors like:
“java.lang.IncompatibleClassChangeError: class
org.objectweb.asm.tree.ClassNode has interface
org.objectweb.asm.ClassVisitor as super class”. Note:
EVOSUITE can be applied to its own library dependencies
through its use of customized classloaders. However,
bytecode instrumentation is also performed in the generated
JUnit files (e.g., to support environment testing based on
mock objects [1]), which leads to a runtime dependency to
ASM. Consequently, EVOSUITE generates tests for those
14 classes, but then all these tests fail due to the above
mentioned exception. An easy solution would be to ship
EVOSUITE with its own ASM version using a different
package name (e.g., by using the JarJar tool2). If we had
handled this issue properly before the competition, this
would have changed the outcome: Excluding classes from
the twitter4j and hibernate, the overall score of EVOSUITE
would be 191.584, whereas the first ranked tool (GRT)
would have a score of 164.464. Consequently, this issue
clearly is the main factor affecting EVOSUITE’s overall
result.

1Using Cobertura’s definition of branch coverage, which only counts
conditional statements, not edges in the CFG.

2https://code.google.com/p/jarjar/

For the other four classes with 0% coverage, EVO-
SUITE failed to generate any tests for other reasons. For
CharMatcher, there was an issue in how EVOSUITE han-
dled timeouts, which resulted in EVOSUITE’s master process
killing the client process before tests were written to disk.
For CycleHandler and WikipediaInfo, EVOSUITE
ran into an issue when trying to resolve the generic type
parameters of some dependency classes; this also affects
Page with 1.49% coverage. This issue could be avoided
by omitting generic type parameters, as the Java compiler
would only issue warnings about such missing parameters.
However, as EVOSUITE is aiming to produce readable tests,
we feel it is important to properly handle Java Generics.
Finally, for Response the constructor requires a parameter
of type java.net.HttpURLConnection, which is an
abstract class without concrete subclasses. As EVOSUITE
does not produce stubs automatically, it therefore failed to
instantiate Response objects.

V. CONCLUSIONS

With an overall score of 190.6, EVOSUITE achieved the
second highest score of all tools in the competition. The
score calculated for the best tool is 203.7: a very close
call. In particular, if considering only projects without a
configuration issue in the classpath of the target projects,
EVOSUITE would have scored first with a score of 191.6.
The underlying issue can be easily fixed for future runs of
the competition.

To learn more about EVOSUITE, visit our Web site:

http://www.evosuite.org

REFERENCES

[1] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated unit test
generation for classes with environment dependencies,” in
IEEE/ACM Int. Conference on Automated Software Engineer-
ing (ASE). ACM, 2014, pp. 79–90.

[2] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite
generation for object-oriented software.” in ACM Symposium
on the Foundations of Software Engineering (FSE), 2011, pp.
416–419.

[3] ——, “EvoSuite: On the challenges of test case generation
in the real world (tool paper),” in IEEE Int. Conference on
Software Testing, Verification and Validation (ICST), 2013.

[4] ——, “Evosuite at the SBST 2013 tool competition,” in
International Workshop on Search-Based Software Testing
(SBST), 2013, pp. 406–409.

[5] ——, “Evosuite at the second unit testing tool competition.”
in Fittest Workshop, 2013.

[6] ——, “Whole test suite generation,” IEEE Transactions on
Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[7] ——, “1600 faults in 100 projects: Automatically finding
faults while achieving high coverage with evosuite,” Empiri-
cal Software Engineering (EMSE), 2014.



Table II
DETAILED RESULTS OF EVOSUITE ON THE SBST BENCHMARK CLASSES. TIME IS EXPRESSED IN MINUTES.

Class JUnit Files Generation Time Execution Time % Line Coverage % Branch Coverage % Mutation Score

com.google.gdata.data.AttributeHelper 1.00 9.94 0.03 92.56 92.89 62.50
com.google.gdata.data.DateTime 1.00 3.62 0.02 83.31 71.67 86.25
com.google.gdata.data.Kind 1.00 4.03 0.04 57.07 48.86 46.74
com.google.gdata.data.Link 1.00 11.17 0.08 74.94 72.75 63.06
com.google.gdata.data.OtherContent 1.00 3.60 0.04 56.46 49.24 64.58
com.google.gdata.data.OutOfLineContent 1.00 8.96 0.04 89.75 85.12 29.17
com.google.gdata.data.Source 1.00 10.43 0.05 64.37 63.07 16.23
net.sf.javaml.core.AbstractInstance 1.00 3.31 0.02 13.28 5.36 0.00
net.sf.javaml.core.Complex 1.00 0.28 0.02 100.00 0.00 100.00
net.sf.javaml.core.DefaultDataset 1.00 3.87 0.02 95.31 97.50 57.80
net.sf.javaml.core.DenseInstance 1.00 3.92 0.02 98.87 100.00 100.00
net.sf.javaml.core.Fold 1.00 4.74 0.02 91.44 96.67 79.17
net.sf.javaml.core.SparseInstance 1.00 3.06 0.02 98.37 87.50 97.06
net.sf.javaml.tools.data.ARFFHandler 1.00 2.47 0.02 75.42 70.83 48.15
twitter4j.ExceptionDiagnosis 1.00 3.81 0.01 0.00 0.00 0.00
twitter4j.GeoQuery 1.00 3.80 0.01 0.00 0.00 0.00
twitter4j.OEmbedRequest 1.00 4.47 0.01 0.00 0.00 0.00
twitter4j.Paging 1.00 3.35 0.01 0.00 0.00 0.00
twitter4j.TwitterBaseImpl 1.00 11.48 0.01 0.00 0.00 0.00
twitter4j.TwitterException 1.00 5.12 0.01 0.00 0.00 0.00
twitter4j.TwitterImpl 1.00 16.35 0.01 0.00 0.00 0.00
com.puppycrawl.tools.checkstyle.api.AbstractLoader 1.00 2.28 0.03 77.00 50.00 30.00
com.puppycrawl.tools.checkstyle.api.AnnotationUtility 1.00 3.02 0.02 53.74 50.00 40.91
com.puppycrawl.tools.checkstyle.api.AutomaticBean 1.00 2.75 0.04 67.50 50.00 18.60
com.puppycrawl.tools.checkstyle.api.FileContents 1.00 5.50 0.03 97.08 91.67 80.67
com.puppycrawl.tools.checkstyle.api.FileText 1.00 2.94 0.03 88.62 85.26 91.84
com.puppycrawl.tools.checkstyle.api.ScopeUtils 1.00 14.16 0.09 72.63 50.33 24.04
com.puppycrawl.tools.checkstyle.api.Utils 1.00 3.35 0.03 93.99 92.31 90.48
com.google.common.base.CharMatcher 0.00 31.32 0.00 0.00 0.00 0.00
com.google.common.base.Joiner 1.00 3.37 0.03 86.52 97.10 79.79
com.google.common.base.Objects 1.00 2.63 0.03 98.13 95.37 94.59
com.google.common.base.Predicates 1.00 4.16 0.02 44.39 21.88 30.68
com.google.common.base.SmallCharMatcher 1.00 4.06 0.02 97.60 92.31 0.00
com.google.common.base.Splitter 1.00 4.88 0.02 94.35 91.35 76.56
com.google.common.base.Suppliers 1.00 3.07 0.02 60.38 58.33 56.06
org.hibernate.search.SearchException 1.00 0.26 0.01 0.00 0.00 0.00
org.hibernate.search.Version 1.00 0.24 0.01 0.00 0.00 0.00
org.hibernate.search.backend.BackendFactory 1.00 7.65 0.01 0.00 0.00 0.00
org.hibernate.search.backend.FlushLuceneWork 1.00 2.28 0.01 0.00 0.00 0.00
org.hibernate.search.backend.OptimizeLuceneWork 1.00 2.28 0.01 0.00 0.00 0.00
org.hibernate.search.util.logging.impl.LoggerFactory 1.00 0.27 0.01 0.00 0.00 0.00
org.hibernate.search.util.logging.impl.LoggerHelper 1.00 0.25 0.01 0.00 0.00 0.00
de.tudarmstadt.ukp.wikipedia.api.CategoryDescendantsIterator 1.00 2.51 0.05 8.24 0.00 0.00
de.tudarmstadt.ukp.wikipedia.api.CycleHandler 0.00 32.02 0.00 0.00 0.00 0.00
de.tudarmstadt.ukp.wikipedia.api.Page 1.00 2.75 0.06 1.49 6.00 2.67
de.tudarmstadt.ukp.wikipedia.api.PageIterator 1.00 3.76 0.06 47.72 46.83 38.54
de.tudarmstadt.ukp.wikipedia.api.PageQueryIterable 1.00 3.01 0.05 18.57 9.30 0.00
de.tudarmstadt.ukp.wikipedia.api.Title 1.00 2.98 0.02 89.51 83.33 98.81
de.tudarmstadt.ukp.wikipedia.api.WikipediaInfo 0.00 32.02 0.00 0.00 0.00 0.00
org.asynchttpclient.AsyncHttpClient 1.00 6.81 0.05 67.51 63.89 63.08
org.asynchttpclient.AsyncHttpClientConfig 1.00 10.24 0.06 93.73 61.11 83.03
org.asynchttpclient.FluentCaseInsensitiveStringsMap 1.00 5.59 0.02 98.72 95.13 87.21
org.asynchttpclient.FluentStringsMap 1.00 4.00 0.02 98.76 94.38 86.05
org.asynchttpclient.Realm 1.00 8.00 0.02 97.55 95.20 89.93
org.asynchttpclient.RequestBuilderBase 1.00 8.06 0.03 93.96 89.89 43.05
org.asynchttpclient.SimpleAsyncHttpClient 0.50 31.34 0.60 32.64 20.77 0.00
org.scribe.model.OAuthConfig 1.00 0.58 0.02 100.00 100.00 100.00
org.scribe.model.OAuthRequest 1.00 3.49 0.02 100.00 100.00 80.00
org.scribe.model.ParameterList 1.00 2.65 0.02 99.61 99.07 91.30
org.scribe.model.Request 1.00 3.18 0.02 62.15 40.91 28.68
org.scribe.model.Response 0.00 2.20 0.00 0.00 0.00 0.00
org.scribe.model.Token 1.00 2.35 0.02 100.00 100.00 77.27
org.scribe.model.Verifier 1.00 0.12 0.02 100.00 0.00 50.00

Average 6.19 0.03 55.36 47.19 41.02

[8] ——, “Achieving scalable mutation-based generation of
whole test suites.” Empirical Software Engineering (EMSE),
2014.

[9] ——, “A large-scale evaluation of automated unit test gen-
eration using evosuite,” ACM Transactions on Software En-
gineering and Methodology (TOSEM), vol. 24, no. 2, p. 8,
2014.

[10] G. Fraser, A. Arcuri, and P. McMinn, “A memetic algorithm
for whole test suite generation,” Journal of Systems and
Software, 2014.

[11] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Pad-
berg, “Does automated white-box test generation really help
software testers?” in Proceedings of the 2013 International

Symposium on Software Testing and Analysis. ACM, 2013,
pp. 291–301.

[12] G. Fraser and A. Zeller, “Mutation-driven generation of unit
tests and oracles,” IEEE Transactions on Software Engineer-
ing (TSE), vol. 28, no. 2, pp. 278–292, 2012.

[13] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-
based test suite generation with dynamic symbolic execution,”
in IEEE Int. Symposium on Software Reliability Engineering
(ISSRE), 2013.

[14] U. Rueda, T. E. Vos, and I. Prasetya, “Unit testing tool
competition - round three,” in International Workshop on
Search-Based Software Testing (SBST), 2015.


	I Introduction
	II About EvoSuite
	III Competition Setup
	IV Benchmark results
	IV-A Issues Encountered

	V Conclusions
	References

