EVOSUITE at the SBST 2017 Tool Competition

Gordon Fraser*, José Miguel RojasT, José Camp053t

The University of Sheffield
Sheffield, United Kingdom

{*gordon.fraser, Tj.rojas, ijose.campos}@shefﬁeld.ac.uk

Abstract—EVOSUITE is a search-based tool that automatically
generates unit tests for Java code. This paper summarises the
results and experiences of EVOSUITE’s participation at the fifth
unit testing competition at SBST 2017, where EVOSUITE achieved
the highest overall score.

I. INTRODUCTION

The annual unit test generation competition aims to drive
and evaluate progress on unit test generation tools. In the
5th instance of the competition at the International Workshop
on Search-Based Software Testing (SBST) 2017, two tools,
EVOSUITE and JTEXPERT, competed on a set of 69 open-
source Java classes. Two other tools, RANDOOP and T3,
and existing open-source test suites were used as baseline.
This paper describes the results obtained by the EVOSUITE
test generation tool [7] in this competition. Details about the
procedure of the competition, the technical framework, and the
benchmark classes can be found in [21]. In this competition,
EVOSUITE achieved an overall score of 1457, which was the
highest among the competing and baseline tools.

II. ABOoUT EVOSUITE

EVOSUITE [7] is a search-based tool [11] that uses a
genetic algorithm to automatically generate test suites for Java
classes. Given the name of a target class and the full Java
classpath (i.e., where to find the compiled bytecode of the class
under test and all its dependencies), EVOSUITE automatically
produces a set of JUnit test cases aimed at maximising code
coverage. EVOSUITE can be used on the command line, or
through plugins for popular development tools such as IntelliJ,
Eclipse, or Maven [2].

The underlying genetic algorithm uses test suites as repre-
sentation (chromosomes). Each test suite consists of a variable
number of test cases, each of which is represented as a
variable length sequence of Java statements (e.g., calls on
the class under test). A population of randomly generated
individuals is evolved using suitable search operators (e.g.,
selection, crossover and mutation), such that iteratively better
solutions with respect to the optimisation target are produced.
The optimisation target is to maximise code coverage. To
achieve this, the fitness function uses standard heuristics such
as the branch distance; see [11] for more details. EVOSUITE
can be configured to optimise for multiple coverage criteria
at the same time, and the default configuration combines

Andrea Arcuri
Westerdals Oslo ACT, Norway
and University of Luxembourg, Luxembourg
arcand @ westerdals.no

Table 1
CLASSIFICATION OF THE EVOSUITE UNIT TEST GENERATION TOOL

Prerequisites

Static or dynamic Dynamic testing at the Java class level

Software Type Java classes
Lifecycle phase Unit testing for Java programs
Environment All Java development environments
Knowledge required JUnit unit testing for Java

Experience required Basic unit testing knowledge

Input and Output of the tool

Input Bytecode of the target class and dependen-
cies

Output JUnit 4 test cases

Operation

Interaction Through the command line, and plugins for

IntelliJ, Maven and Eclipse

Manual verification of assertions for func-
tional faults

User guidance

Source of information http://www.evosuite.org

Maturity Mature research prototype, under develop-

ment

Technology behind the tool Search-based testing / whole test suite gen-

eration

Obtaining the tool and information

License Lesser GPL V.3
Cost Open source
Support None

Does there exist empirical evidence about
See [11, 13]

Effectiveness and Scalability

branch coverage with mutation testing [12] and other ba-
sic criteria [18]. Once the search is completed, EVOSUITE
applies various optimisations to improve the readability of
the generated tests. For example, tests are minimised, and
a minimised set of effective test assertions is selected using
mutation analysis [16]. For more details on the tool and its
abilities we refer to [7, 8].

The effectiveness of EVOSUITE has been evaluated on
open source as well as industrial software in terms of code
coverage [13, 20], fault finding effectiveness [1, 23], and
effects on developer productivity [15, 19].

In the first two and the fourth editions of the unit testing
tool competition, EVOSUITE ranked first [9, 10, 14], whereas
it ranked second in the third one.

III. COMPETITION SETUP

The configuration of EVOSUITE for the competition is
largely based on its default values, since these have been
tuned extensively [4]. We used the default set of coverage
criteria [18] (e.g., line coverage, branch coverage, branch
coverage by direct method invocation, weak mutation testing,
output coverage, exception coverage). The use of an archive of
solutions [20], which iteratively removes covered goals from
the fitness function and stores the corresponding test cases, is
now enabled by default in EVOSUITE.

A new feature in EVOSUITE is the use of Mockito mock
classes [3]. After a certain percentage of the search budget
has passed, EVOSUITE starts considering the use of mock
objects instead of real classes. Only branches that cannot be
covered without mocks will result in tests with mock objects
in the end. We further added frequency based weighting to
constants for seeding [22], and included extensions to support
Java Enterprise Edition features [5]. Besides these changes,
several bug fixes were applied since the last instance of the
competition, in particular in relation to non-determinism and
flaky tests [6].

Like in previous instances of the competition, we enabled
the post-processing step of test minimisation—not for effi-
ciency reasons, but because minimised tests are less likely
to break. To reduce the overall time of test generation we
included all assertions rather than filtering them with mutation
analysis [16], which is a computationally expensive process.
The use of all assertions has a negative impact on readability,
but this is not evaluated as part of the SBST contest.

Like in the 2016 competition, tools were called with dif-
ferent time budgets. We used the same strategy as for the
previous competition [14] to distribute the overall time budget
onto the different phases of EVOSUITE (e.g., initialisation,
search, minimisation, assertion generation, compilation check,
removal of flaky tests). That is, 50% of the time was allocated
to the search, and the rest was distributed equally to the
remaining phases.

IV. BENCHMARK RESULTS
A. Overall Results

Table II lists the branch coverage and mutation analysis
results achieved by EVOSUITE on all benchmark classes in the
contest. Coverage is generally in the expected range, with clear
overall increases for higher time budgets. With the highest
time budget of 480s, the average branch coverage achieved
was 66.5% (slightly higher than last year’s 65.6%) and the
average mutation score was 50.7% (considerably higher than
last year’s 41.0%).

This year, the contest also included manually written test
suites as baseline (only for 63 out of the 69 benchmarks).
The results indicate that there is no significant difference
in branch coverage between EVOSUITE-generated test suites
(avg. 50.8%) and manually written ones (avg. 53.8%), with
Vargha-Delaney’s A15 = 0.45 and p = 0.367. In terms of mu-
tation scores, however, the results show that—unsurprisingly—
automatically generated assertions are weaker than manually

written ones: the average EVOSUITE mutation score for these
63 benchmarks is 36.9%, significantly lower than the average
54.3% obtained by developer-written test suites, with A1 =
0.31 and p< 0.001.

EVOSUITE generated 0.4 flaky tests per run on average,
much lower than the number of flaky tests produced by the
competing and baseline tools (1.3 by T3, 9.9 by ITEXPERT,
and 32.1 by RANDOOP). We attribute these results—also
consistent with previous years’ results—to the way EVOSUITE
handles execution environments during test generation (e.g.,
controlling the static state of the class under test, mocking in-
teractions with the file system, system calls like System.in
and System.currentTimeMillis, etc.) [6].

B. Challenges

EVOSUITE failed to produce any test suites for bench-
marks JXPATH-7 and OKHTTP-8, and also struggled often
for benchmarks 1.A4J-3, LA4J-7, BCEL-9 (highlighted in
Table II). All executions of EVOSUITE for JXPATH-7 failed
in the instrumentation phase, where Java’s 64k limit on the
size of methods was exceeded. A viable fix would be to stop
instrumenting before the limit is reached, at the price of limited
search guidance; a more effective solution would involve
identifying parts of the code that are worth instrumenting. A
missing dependency for OKHTTP-8 caused all executions—
for all tools—to fail. For the other mentioned benchmarks, the
failure reasons (in some cases related to sandboxing, mocking
and timeouts) will require further investigation.

As expected, both branch coverage and mutation score
generally increased with higher time budgets, although in
some cases, especially with budget = 300s, a decrease
was observed for some benchmarks. Having run only three
repetitions of the tool per time budget, it is fair to assume the
decreases are due to bugs affecting executions by chance. A
preliminary investigation on the source of this loss of coverage
revealed that memory management (e.g., out-of-memory errors
for OKHTTP-2 and RE2J-7), sandboxing (e.g., affecting all
executions for LA4J-3 and LA4J-7), and mocking (affecting
BCEL-1, BCEL-5 and BCEL-7, for example) are some of the
aspects that require attention and debugging in EVOSUITE.

Flaky tests continue to be a challenge for test generation.
Benchmarks FREEHEP-7 and JXPATH-10 were the ones with
the highest number of flaky tests in one run (12 and 14,
respectively). In both cases, the minimisation phase timed out
and hence EVOSUITE reverted the resulting test suite to its
previous, unminimised version, which as mentioned before is
more likely to break. A partial minimisation approach to select
and minimise only a reduced subset of tests, or a more efficient
minimisation approach based on delta-debugging [17], might
be worth exploring to alleviate this issue.

As mentioned in the previous section, EVOSUITE now uses
private API access and functional mocking [3]. In the com-
petition, a total of 20,921 objects were mocked, 1,485 private
fields were set and 3,090 private methods were invoked using
mocked access, adding up to represent only 1.09% of the total
number of lines of code in the EVOSUITE-generated test suites

(2,329,361 LOC). Further investigation would be needed to
assess the impact of these mocking features on test generation
effectiveness for the benchmarks in the competition.

V. CONCLUSIONS

This paper reports on the participation of the EVOSUITE
test generation tool in the 5th SBST Java Unit Testing Tool
Contest. With an overall score of 1457, EVOSUITE achieved
the highest score of all tools in the competition.

To learn more about EVOSUITE, visit our Web site:

http://www.evosuite.org

Acknowledgments: Many thanks to all the contributors
to EVOSUITE. This project has been funded by the EPSRC
project “GREATEST” (EP/N023978/1), and by the National
Research Fund, Luxembourg (FNR/P10/03).

REFERENCES

[1] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and
J. Benefelds, “An industrial evaluation of unit test gen-
eration: Finding real faults in a financial application,”
in ACM/IEEE Int. Conference on Software Engineering
(ICSE). 1EEE, 2017, to appear.

[2] A. Arcuri, J. Campos, and G. Fraser, “Unit test genera-
tion during software development: Evosuite plugins for
maven, intellij and jenkins,” in IEEE International Con-
ference on Software Testing, Verification and Validation
(ICST). IEEE Computer Society, 2016, pp. 401-408.

[3] A. Arcuri, G. Fraser, and R. Just, “Private api access and
functional mocking in automated unit test generation,” in
IEEE Int. Conference on Software Testing, Verification
and Validation (ICST), 2017, to appear.

[4] A. Arcuri and G. Fraser, “Parameter tuning or default val-

ues? An empirical investigation in search-based software

engineering,” Empirical Software Engineering (EMSE),
pp- 1-30, 2013, dOI: 10.1007/s10664-013-9249-9.

——, “Java enterprise edition support in search-based

junit test generation,” in International Symposium on

Search Based Software Engineering. Springer, 2016,

pp. 3-17.

[6] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated
unit test generation for classes with environment depen-
dencies,” in IEEE/ACM Int. Conference on Automated
Software Engineering (ASE). ACM, 2014, pp. 79-90.

[7] G. Fraser and A. Arcuri, “EvoSuite: Automatic test
suite generation for object-oriented software.” in ACM
Symposium on the Foundations of Software Engineering
(FSE), 2011, pp. 416-419.

[8] ——, “EvoSuite: On the challenges of test case gener-
ation in the real world (tool paper),” in IEEE Int. Con-
ference on Software Testing, Verification and Validation
(ICST), 2013.

, “Evosuite at the SBST 2013 tool competition,”

in International Workshop on Search-Based Software

Testing (SBST), 2013, pp. 406—409.

(5]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

, “Evosuite at the second unit testing tool competi-
tion.” in Fittest Workshop, 2013.

——, “Whole test suite generation,” IEEE Transactions
on Software Engineering, vol. 39, no. 2, pp. 276-291,
2013.

, “Achieving scalable mutation-based generation
of whole test suites.” Empirical Software Engineering
(EMSE), 2014.

——, “A large-scale evaluation of automated unit test
generation using evosuite,” ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), vol. 24,
no. 2, p. 8, 2014.

——, “Evosuite at the SBST 2016 tool competition,”
in International Workshop on Search-Based Software
Testing (SBST), 2016, pp. 33-36.

G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Pad-
berg, “Does automated unit test generation really help
software testers? a controlled empirical study,” ACM
Transactions on Software Engineering and Methodology
(TOSEM), vol. 24, no. 4, p. 23, 2015.

G. Fraser and A. Zeller, “Mutation-driven generation of
unit tests and oracles,” IEEE Transactions on Software
Engineering (TSE), vol. 28, no. 2, pp. 278-292, 2012.
A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer,
“Efficient unit test case minimization,” in IEEE/ACM Int.
Conference on Automated Software Engineering (ASE),
2007, pp. 417-420.

J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Ar-
curi, “Combining multiple coverage criteria in search-
based unit test generation,” in Search-Based Software
Engineering. Springer, 2015, pp. 93-108.

J. M. Rojas, G. Fraser, and A. Arcuri, “Automated
unit test generation during software development: A
controlled experiment and think-aloud observations,” in
Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ser. ISSTA ’15. ACM,
2015, pp. 338-349.

J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A
Detailed Investigation of the Effectiveness of Whole
Test Suite Generation,” Empirical Software Engineering
(EMSE), 2016, to appear.

U. Rueda and A. Panichella, “Unit testing tool competi-
tion - fifth round,” in International Workshop on Search-
Based Software Testing (SBST), 2017.

A. Sakti, G. Pesant, and Y.-G. Guéhéneuc, “Instance
generator and problem representation to improve object
oriented code coverage,” IEEE Transactions on Software
Engineering, vol. 41, no. 3, pp. 294-313, 2015.

S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn,
and A. Arcuri, “Do automatically generated unit tests
find real faults? an empirical study of effectiveness and
challenges,” in IEEE/ACM Int. Conference on Automated
Software Engineering (ASE). 1EEE, 2015, pp. 201-211.

DETAILED RESULTS OF EVOSUITE ON THE SBST BENCHMARK CLASSES.

Table II

Benchmark Branch Coverage Mutation Score

10s 30s 60s 120s 240s 300s 480s 10s 30s 60s 120s 240s 300s 480s
BCEL-1 14.0% 0.0% 18.0% 36.6% 17.2% 0.0% 0.0% 5.9% 0.0% 149% 18.6% 16.8% 0.0% 0.0%
BCEL-10 1.4% 1.4% 412% 458% 713% 76.4% 71.3% 1.3% 1.3% 35.6% 39.6% 622% 689% 653%
BCEL-2 1.1% 1.3% 1.5% 1.9% 2.0% 2.4% 2.1% 0.4% 0.4% 0.7% 1.1% 1.2% 1.5% 1.5%
BCEL-3 579% 638% 657% 133% 78.6% 198% 529% 339% 382% 294% 43.6% 44.4% 49.7% 53.6%
BCEL-4 62.4% 662% 743% 802% 81.0% 82.6% 84.6% 463% 458% 582% 559% 599% 62.1% 81.9%
BCEL-5 6.9% 69% 16.7% 551% 53.7% 31.9% 51.9% 4.8% 39% 174% 502% 50.7% 324% 48.3%
BCEL-6 55.6% 549% 599% 66.7% 685% 685% 685% 56.7% 553% 66.0% 693% 76.7% 76.0% 78.0%
BCEL-7 578% 637% 378% 63.7% 652% 21.5% T719% 381% 437% 278% 492% 65.1% 143% 50.8%
BCEL-8 37.5% 37.5% 931% 93.1% 972% 93.1% 944% 219% 219% 91.7% 938% 948% 92.7% 94.8%
BCEL-9 0.0% 0.0% 36.9% 0.0% 23.1% 0.0% 0.0% 0.0% 0.0% 33.3% 0.0% 17.5% 0.0% 0.0%
FREEHEP-1 83.6% 83.6% 87.4% 89.1% 92.5% 934% 93.4% 218% 233% 388% 374% 402% 382% 37.9%
FREEHEP-10 48.6% 67.6% 82.4% 954% 94.0% 958% 958% 22.0% 229% 699% 77.4% 72.6% 783% 71.1%
FREEHEP-2 0.0% 0.0% 642% 954% 96.1% 96.8% 96.5% 0.0% 0.0% 4.0% 7.1% 7.4% 7.6% 7.1%
FREEHEP-3 0.0% 0.0% 48.1% 748% 86.7% 81.7% 87.1% 0.0% 00% 11.1% 144% 162% 192% 21.5%
FREEHEP-4 132% 508% 492% 624% 194% 70.9% 84.7% 42% 18.0% 175% 247% 31.7% 289% 34.4%
FREEHEP-5 321% 327% 591% 685% 613% 124% 752% 17.8% 21.5% 462% 523% 533% 533% 56.3%
FREEHEP-6 0.0% 0.0% 86.4% 87.7% 883% 89.5% 89.5% 0.0% 0.0% 38.0% 46.7% 50.0% 413% 46.0%
FREEHEP-7 542% 55.6% 854% 93.1% 944% 993% 938% 142% 142% 42.8% 512% 61.4% 475% 459%
FREEHEP-8 259% 282% 58.8% 824% 81.0% 86.1% 91.2% 1.0% 24% 102% 51.8% 543% 43.1% 65.9%
FREEHEP-9 1.4% 14% 13.1% 225% 49.1% 29.7% 33.8% 0.0% 0.0% 0.0% 0.0% 16.7% 158% 16.2%
GSON-1 0.0% 0.0% 463% 685% 704% 704% 70.4% 0.0% 0.0% 454% 63.0% 657% 657% 63.9%
GSON-10 439% 45.1% 63.0% 622% 61.8% 622% 622% 229% 22.1% 545% 532% 524% 53.7% 55.4%
GSON-2 3.3% 9.6% 255% 324% 36.7% 37.1% 39.6% 2.8% 81% 264% 341% 364% 372% 42.1%
GSON-3 60.8% 54.6% 76.7% 80.4% 829% 854% 883% 46.7% 479% T189% 182% 824% 835% 11.8%
GSON-4 3.1% 24% 131% 189% 2715% 41.7% 46.8% 0.4% 0.6% 87% 128% 195% 172% 34.2%
GSON-5 16.0% 21.8% 30.7% 327% 387% 404% 50.7% 177% 22.0% 328% 33.6% 37.7% 403% 44.3%
GSON-6 174% 244% 63.6% 864% 864% 919% 919% 153% 19.6% 51.9% 72.0% 61.8% 742% 76.6%
GSON-7 42.1% 43.0% 78.1% 825% 833% 825% 81.6% T1.3% T72.0% 90.0% 92.0% 92.7% 913% 91.3%
GSON-9 328% 40.0% 51.1% 53.9% 46.7% 40.0% 483% 174% 274% 637% 647% 58.7% 53.7% 60.2%
IMAGE-1 213% 278% 44.6% 554% 533% 49.8% 57.0% 75% 199% 18.4% 21.5% 28.0% 32.1% 36.4%
IMAGE-2 65.0% 70.0% 789% 883% 87.8% 91.7% 96.1% 212% 208% 56.6% 628% 122% 72.6% 72.9%
IMAGE-3 278% 29.0% 249% 285% 26.8% 39.0% 44.4% 8.6% 8.6% 9.2% 97% 144% 18.1% 21.4%
IMAGE-4 33.6% 358% 473% 759% 194% 17.9% 17.9% 16.7% 174% 38.0% 63.4% 554% 64.1% 71.4%
JXPATH-1 624% 654% 13.5% 168% 11.5% 16.8% 114% 413% 385% 503% 68.0% 683% 66.7% 61.2%
JXPATH-10 17.6% 239% 355% 223% 522% 482% 48.0% 127% 154% 242% 19.0% 39.6% 354% 42.6%
JXPATH-2 597% 67.1% 69.0% 744% 709% 119% 13.6% 409% 443% 508% 652% 625% 682% 62.9%
JXPATH-3 734% 833% 79.7% 828% 833% 81.0% 90.1% 28.6% 39.5% 70.1% 86.4% 844% 932% 89.1%
JXPATH-4 76.8% 78.1% 80.1% 83.0% 853% 89.5% 87.6% 685% 68.1% T11.4% 75.0% 183% 82.6% 83.7%
JXPATH-5 66.0% 733% 82.7% 86.7% 88.0% 88.7% 933% 31.0% 31.0% 754% 89.7% 88.1% 90.5% 95.2%
JXPATH-6 0.0% 0.0% 0.0% 48.6% 84.8% 83.3% 83.3% 0.0% 0.0% 0.0% 513% 827% 86.7% 78.7%
JXPATH-7 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
JXPATH-8 389% 402% 52.0% 524% 63.6% 604% 673% 221% 213% 397% 428% 535% 49.6% 56.6%
JXPATH-9 95% 11.9% 459% 912% 854% 88.1% 91.8% 1.1% 33% 268% 598% 55.7% 544% 63.1%
LAA4J-1 362% 68.5% 73.5% 1712% 115% 81.0% 199% 239% 47.1% 55.6% 559% 64.7% T145% 55.9%
LAA4J-10 31.8% 833% 909% 924% 924% 924% 92.4% 57% 22.6% 49.1% 704% 774% 692% 69.2%
LA4J-2 10.7% 194% 198% 79.1% 81.4% 76.0% 78.1% 1.0% 2.2% 47% 148% 102% 17.0% 17.8%
LA4J-3 0.0% 15.6% 0.0% 17.1% 38.9% 0.0% 20.3% 0.0% 10.8% 0.0% 10.5% 27.1% 0.0% 7.1%
LA4J-4 0.0% 495% 71.7% 682% 71.7% 77.8% 80.8% 0.0% 33.1% 489% 523% 53.0% 439% 58.4%
LAA4J-5 0.0% 235% 32.6% 423% 544% 52.0% 44.4% 00% 149% 205% 24.1% 34.1% 203% 27.2%
LA4J-6 133% 61.7% 70.0% 933% 950% 93.3% 91.7% 4.6% 16.7% 269% 187% 61.6% 63.0% 67.6%
LA4J-7 0.0% 7.5% 0.0% 21.7% 0.0% 0.0% 21.9% 0.0% 6.1% 0.0% 17.6% 0.0% 0.0% 17.1%
LAA4J-8 324% 598% 74.0% 155% 809% 11.0% 119% 342% 585% 69.1% 12.7% 827% 18.8% 15.5%
LA4J-9 150% 398% 67.4% 185% 11.0% 84.8% 93.1% 0.4% 5.6% 16.6% 242% 28.0% 294% 22.8%
OKHTTP-1 4.2% 6.4% 5.9% 87% 144% 17.8% 16.8% 2.2% 3.4% 4.9% 6.5% 10.5% 8.0% 10.5%
OKHTTP-2 333% 333% 333% 500% 50.0% 333% 50.0% 363% 382% 324% 48.0% 49.0% 324% 50.0%
OKHTTP-3 70.7% 753% 758% 713% 147% 16.8% 163% 362% 37.6% 67.6% 695% 68.1% 685% 68.1%
OKHTTP-4 29.6% 339% 548% 53.8% 559% 56.5% 58.6% 14.1% 174% 469% 545% 554% 559% 55.9%
OKHTTP-5 0.0% 0.0% 3.6% 11.1% 238% 12.7% 33.3% 0.0% 0.0% 50% 12.0% 19.0% 11.8% 29.3%
OKHTTP-6 548% 729% 77.6% 762% 833% 833% 83.8% 9.6% 153% 79.7% 75.1% 802% 83.6% 81.9%
OKHTTP-7 27.6% 36.5% 24.0% 39.6% 42.7% 26.0% 46.4% 10.1% 122% 11.6% 28.6% 34.4% 12.7% 28.0%
OKHTTP-8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
RE2J-1 304% 50.7% 492% 514% 60.0% 60.5% 653% 19.7% 332% 32.0% 343% 438% 429% 39.9%
RE2J-2 92% 138% 1717% 92.0% 94.0% 952% 96.4% 39% 324% 36.6% 673% 69.6% 657% 71.6%
RE2J-3 1.8% 1.8% 369% 488% 48.8% 50.0% 57.7% 3.4% 34% 23.0% 41.4% 437% 43.7% 48.9%
RE2J-4 812% 85.1% 93.1% 948% 951% 955% 96.9% 27.6% 27.1% 91.5% 912% 92.0% 89.5% 84.6%
RE2J-5 11.0% 22.7% 573% 61.2% 659% 58.0% 80.4% 2.9% 39% 31.1% 34.6% 369% 294% 42.7%
RE2J-6 0.0% 0.0% 551% 56.7% 83.7% 843% 86.8% 0.0% 0.0% 420% 51.0% 692% 689% 66.3%
RE2J-7 154% 392% 403% 532% 482% 31.4% 51.5% 59% 17.0% 154% 40.1% 392% 27.5% 47.8%
RE2J-8 592% 90.8% 89.5% 929% 91.5% 929% 932% 26.7% 44.1% 67.7% 15.6% 81.0% 75.6% 81.2%
Average 274% 36.4% 509% 60.6% 64.6% 623% 665% 153% 198% 36.5% 457% 49.6% 46.6% 50.7%

