
EvoSuite at the SBST 2018 Tool Competition

Gordon Fraser
Chair of Software Engineering II,

University of Passau

Passau, Germany

gordon.fraser@uni-passau.de

José Miguel Rojas
Department of Informatics, University

of Leicester

Leicester, United Kingdom

j.rojas@leicester.ac.uk

Andrea Arcuri
Westerdals Oslo ACT, Norway and

University of Luxembourg,

Luxembourg

arcand@westerdals.no

ABSTRACT

EvoSuite is a search-based tool that automatically generates exe-

cutable unit tests for Java code (JUnit tests). This paper summarises

the results and experiences of EvoSuite’s participation at the sixth

unit testing competition at SBST 2018, where EvoSuite achieved

the highest overall score (687 points) for the fifth time in six editions

of the competition.

ACM Reference Format:

Gordon Fraser, José Miguel Rojas, and Andrea Arcuri. 2018. EvoSuite

at the SBST 2018 Tool Competition. In SBST’18: SBST’18:IEEE/ACM 11th

International Workshop on Search-Based Software Testing , May 28–29, 2018,

Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/10.

1145/3194718.3194729

1 INTRODUCTION

The annual unit test generation competition aims to drive and

evaluate progress on unit test generation tools. In the 6th instance

of the competition at the International Workshop on Search-Based

Software Testing (SBST) 2018, several JUnit test generation tools

competed on a set of 59 open-source Java classes, and existing

open-source test suites were used as baseline. This paper describes

the results obtained by the EvoSuite test generation tool [7] in

this competition. Details about the procedure of the competition,

the technical framework, and the benchmark classes can be found

in [22]. In this competition, EvoSuite achieved an overall score

of 687, which was the highest among the competing and baseline

tools.

2 ABOUT EVOSUITE

EvoSuite [7] is a search-based tool [11] that uses a genetic algo-

rithm to automatically generate test suites for Java classes. Given

the name of a target class and the full Java classpath (i.e., where

to find the compiled bytecode of the class under test and all its

dependencies), EvoSuite automatically produces a set of JUnit test

cases aimed at maximising code coverage. EvoSuite can be used

on the command line, or through plugins for popular development

tools such as IntelliJ, Eclipse, or Maven [2].

The underlying genetic algorithm uses test suites as representa-

tion (chromosomes). Each test suite consists of a variable number

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBST’18, May 28–29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5741-8/18/05. . . $15.00
https://doi.org/10.1145/3194718.3194729

Table 1: Classification of the EvoSuite unit test generation

tool

Prerequisites

Static or dynamic Dynamic testing at the Java class level

Software Type Java classes

Lifecycle phase Unit testing for Java programs

Environment All Java development environments

Knowledge required JUnit unit testing for Java

Experience required Basic unit testing knowledge

Input and Output of the tool

Input Bytecode of the target class and depen-

dencies

Output JUnit 4 test cases

Operation

Interaction Through the command line, and plugins

for IntelliJ, Maven and Eclipse

User guidance Manual verification of assertions for

functional faults

Source of information http://www.evosuite.org

Maturity Mature research prototype, under devel-

opment

Technology behind the tool Search-based testing / whole test suite

generation

Obtaining the tool and information

License Lesser GPL V.3

Cost Open source

Support None

Does there exist empirical evidence about

Effectiveness and Scalability See [11, 12]

of test cases, each of which is represented as a variable-length se-

quence of Java statements (e.g., calls on the class under test). A

population of randomly generated individuals is evolved using suit-

able search operators (e.g., selection, crossover and mutation), such

that iteratively better solutions with respect to the optimisation

target are produced. The optimisation target is to maximise code

coverage. To achieve this, the fitness function uses standard heuris-

tics such as the branch distance; see [11] for more details. EvoSuite

can be configured to optimise for multiple coverage criteria at the

same time, and the default configuration combines branch coverage

with mutation testing [13] and other basic criteria [19]. Once the

search is completed, EvoSuite applies various optimisations to

improve the readability of the generated tests. For example, tests

34

2018 ACM/IEEE 11th International Workshop on Search-Based Software Testing

SBST’18, May 28–29, 2018, Gothenburg, Sweden B. Trovato et al.

are minimised, and a minimised set of effective test assertions is

selected using mutation analysis [17]. For more details on the tool

and its abilities we refer to [7, 8].

The effectiveness of EvoSuite has been evaluated on open source

as well as industrial software in terms of code coverage [12, 21],

fault finding effectiveness [1, 24], and effects on developer produc-

tivity [16, 20] and software maintenance [25].

EvoSuite has a longstanding record of success at the unit testing

tool competition, having ranked second in the third edition of the

competition [14] and first in all the other editions [9, 10, 15, 18].

3 COMPETITION SETUP

The configuration of EvoSuite for the 2018 competition is largely

based on its default values, since these have been tuned exten-

sively [4]. We used the default set of coverage criteria [19] (e.g.,

line coverage, branch coverage, branch coverage by direct method

invocation, weak mutation testing, output coverage, exception cov-

erage). EvoSuite uses an archive of solutions [21] to keep the search

focused on uncovered goals, iteratively discarding covered goals

and storing the tests that covered them. After a certain percent-

age of the search budget has passed and with a certain probability,

EvoSuite starts using mock objects (relying on Mockito) instead

of actual class instances [3] for dependencies; only branches that

cannot be covered without mocks lead to tests with mock objects.

As in the previous instance of the competition, we continue to use

frequency-based weighted constants for seeding [23] and support

Java Enterprise Edition features [5]. EvoSuite is actively main-

tained, therefore several bug fixes and minor improvements have

been applied since the last instance of the competition, in partic-

ular in relation to non-determinism and flaky tests [6], as well as

new types of test assertions (e.g., related to arrays and standard

container classes).

Like in previous instances of the competition, we enabled the

post-processing step of test minimisation—not for efficiency rea-

sons, but because minimised tests are less likely to break. To reduce

the overall time of test generation we included all assertions rather

than filtering them with mutation analysis [17], which is computa-

tionally expensive. The use of all assertions has a negative impact

on readability, but this is not evaluated as part of the SBST contest.

Four time budgets were used to call each tool: 10, 60, 120 and 240

seconds. We used the same strategy used in previous competition

(e.g., [15]) to distribute the overall time budget onto the different

phases of EvoSuite (e.g., initialisation, search, minimisation, asser-

tion generation, compilation check, removal of flaky tests). That

is, 50% of the time was allocated to the search, and the rest was

distributed equally to the remaining phases.

4 BENCHMARK RESULTS

Overall Results. Table 2 lists the branch coverage and mutation

analysis results achieved by EvoSuite on all benchmark classes in

the contest. Coverage and mutation scores are generally in the ex-

pected ranges, with clear overall increases for higher time budgets.

With the highest time budget of 240s , the average branch coverage

achieved was 61.6%, lower that last year’s 64.6% for the same time

budget, but the average mutation score was 53.5%, higher than last

year’s 49.6% for the same time budget.

Manually Written Tests. This year, the contest also included man-

ually written test suites as baseline (for 49 out of 59 benchmarks).

The results indicate that there is no significant difference in branch

coverage between EvoSuite-generated test suites (avg. 55.8%) and

manually written ones (avg. 46.4%), with Vargha-Delaney’s A12 =

0.59 and p = 0.120. In terms of mutation scores, surprisingly, the

results show that automatically generated assertions are competi-

tive with manually written ones: the average EvoSuite mutation

score for these 49 benchmarks is 47.4% and the average mutation

score obtained by developer-written test suites is 34.9% (A12 = 0.62

and p = 0.033).

Flaky Tests. EvoSuite generated 0.8 flaky tests per run on

average, much lower than the number of flaky tests produced

by the competing and baseline tools (1.5 by T3, 13.5 by jTEx-

pert, and 16.2 by Randoop). We attribute these relatively positive

results—also consistent with previous years’ results—to the way

EvoSuite handles execution environments during test generation

(e.g., controlling the static state of the class under test, mocking

interactions with the file system, system calls like System.in and

System.currentTimeMillis, etc.) [6]. EvoSuite provides deter-

ministic replacement classes for many classes with known non-

determinism, (e.g., those related to date and time), and in particular

the FASTJSON benchmarks made heavy use of these. For example,

multiple calendar systems are necessary (e.g., classes HijrahDate,

MinguoDate, JapaneseDate, ThaiBuddhistDate), and EvoSuite

instantiated its own replacement versions of these classes 719 times

altogether, thus potentially avoiding many flaky tests. Overall, no

flaky tests were generated for the vast majority of subjects in the

competition.

Amongst those benchmarks for which EvoSuite struggled with

flakiness, FASTJSON-4 is a notable example: in the worst case, 90

flaky tests were generated in one single run. An analysis of the

execution logs indicates several possible sources for this flakiness:

a) a non-final static constant that is not properly reset in between

executions; b) a possibly incorrect handling of enum types; and c) a

global property not being reset in between executions. Considering

that there were still remaining flaky tests, further investigation will

be needed to confirm these conjectures and act upon them.

Mocking. As mentioned in the previous section, EvoSuite uses

private API access and functional mocking [3]. Overall, in all tests

generated in this competition, 1,339 private fields were set and

2,409 private methods were invoked using reflection, and 15,369

Mockito mock instances were created and configured using another

9,553 statements (e.g., using the doReturn method). Considering

the 1,804,932 overall test statements, this means that only 1.4%

of the tests were devoted to mocking. Amongst the 331 distinct

classes for which mocks were generated at least once there are

some classes for which EvoSuite can instantiate regular objects

(e.g., List). This suggests that EvoSuite sometimes struggles to

generate and set up complex objects correctly, and there is potential

for future improvements.

Problematic benchmarks. EvoSuite failed to produce any test

suites for benchmarks DUBBO-2 and WEBMAGIC-4, and generally

struggled with most REDISSON benchmarks (highlighted in grey

in Table 2). The former two benchmarks had missing dependencies

35

EvoSuite at the SBST 2018 Tool Competition SBST’18, May 28–29, 2018, Gothenburg, Sweden

Table 2: Detailed results of EvoSuite on the SBST benchmark classes.

Benchmark Java Class
Branch Coverage Mutation Score

10s 60s 120s 240s 10s 60s 120s 240s

DUBBO-10 com.alibaba.dubbo.common.bytecode.Wrapper 24.1% 24.5% 25.3% 28.2% 11.5% 20.9% 21.3% 20.9%

DUBBO-2 com.alibaba.dubbo.common.utils.ReflectUtils 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

DUBBO-3 com.alibaba.dubbo.common.utils.StringUtils 87.1% 94.6% 96.8% 97.1% 93.9% 87.3% 81.8% 85.8%

DUBBO-4 com.alibaba.dubbo.common.utils.ClassHelper 92.4% 94.4% 95.8% 95.1% 66.7% 91.4% 93.8% 92.6%

DUBBO-5 com.alibaba.dubbo.common.io.UnsafeByteArrayOutputStream 94.4% 94.4% 94.4% 94.4% 68.3% 77.8% 79.4% 78.9%

DUBBO-6 com.alibaba.dubbo.common.utils.CompatibleTypeUtils 4.7% 3.9% 4.7% 4.7% 3.1% 2.9% 3.1% 2.3%

DUBBO-7 com.alibaba.dubbo.common.beanutil.JavaBeanDescriptor 80.2% 92.4% 95.1% 97.9% 77.9% 96.2% 97.4% 99.0%

DUBBO-8 com.alibaba.dubbo.common.Parameters 61.1% 66.1% 77.6% 77.6% 49.5% 74.8% 76.9% 78.4%

DUBBO-9 com.alibaba.dubbo.common.io.Bytes 67.8% 71.9% 79.5% 77.1% 38.1% 65.2% 71.8% 70.4%

FASTJSON-1 com.alibaba.fastjson.parser.JSONLexerBase - 15.9% 15.2% 20.4% - 3.7% 6.8% 10.2%

FASTJSON-10 com.alibaba.fastjson.serializer.StringCodec 40.0% 44.2% 46.7% 50.0% 21.8% 42.0% 44.3% 45.4%

FASTJSON-2 com.alibaba.fastjson.util.TypeUtils 6.8% 28.7% 31.2% 40.4% 8.6% 30.3% 32.9% 43.5%

FASTJSON-3 com.alibaba.fastjson.parser.DefaultJSONParser 5.3% 9.3% 16.2% 18.5% 2.9% 6.8% 13.4% 16.9%

FASTJSON-4 com.alibaba.fastjson.JSONArray 20.0% 32.2% 21.1% 30.6% 34.2% 52.3% 38.7% 54.0%

FASTJSON-5 com.alibaba.fastjson.util.JavaBeanInfo 0.0% 15.7% 17.6% 21.0% 0.0% 12.2% 15.2% 17.6%

FASTJSON-6 com.alibaba.fastjson.serializer.DateCodec 18.5% 39.2% 48.0% 34.5% 8.8% 20.9% 25.9% 19.1%

FASTJSON-7 com.alibaba.fastjson.util.IOUtils 52.4% 63.6% 66.6% 71.6% 18.9% 40.2% 46.8% 49.8%

FASTJSON-8 com.alibaba.fastjson.parser.JSONReaderScanner 69.6% 70.1% 73.1% 77.3% 74.7% 70.6% 71.0% 73.1%

FASTJSON-9 com.alibaba.fastjson.util.ASMUtils 38.5% 39.1% 39.1% 39.1% 27.6% 38.6% 39.0% 39.5%

JSOUP-1 org.jsoup.parser.TokenQueue 85.8% 90.0% 90.6% 94.9% 59.3% 81.8% 85.6% 87.5%

JSOUP-2 org.jsoup.select.QueryParser 49.8% 24.9% 21.9% 55.8% 36.4% 12.8% 11.3% 40.8%

JSOUP-3 org.jsoup.helper.DataUtil 39.6% 38.7% 44.8% 52.0% 28.3% 28.1% 41.0% 49.8%

JSOUP-4 org.jsoup.parser.Parser 48.3% 95.0% 98.3% 98.0% 31.7% 80.6% 85.6% 87.3%

JSOUP-5 org.jsoup.parser.Tokeniser 35.6% 53.3% 54.8% 56.5% 23.4% 44.0% 47.3% 50.0%

OKIO-1 okio.Buffer 44.6% 42.1% 58.3% 56.1% 9.8% 21.0% 34.1% 23.9%

OKIO-10 okio.Timeout 83.3% 80.0% 85.6% 83.3% 76.8% 78.1% 82.5% 80.7%

OKIO-2 okio.ByteString 81.7% 72.3% 89.8% 95.0% 40.9% 59.2% 84.5% 78.7%

OKIO-3 okio.SegmentedByteString 56.1% 72.5% 88.9% 87.8% 28.0% 61.4% 67.6% 69.2%

OKIO-4 okio.RealBufferedSource 12.7% 27.4% 40.1% 49.9% 12.3% 17.9% 30.5% 51.1%

OKIO-5 okio.RealBufferedSink 61.4% 79.5% 89.1% 93.4% 45.7% 76.9% 86.5% 88.4%

OKIO-6 okio.Okio 73.2% 81.5% 82.1% 85.7% 80.6% 83.3% 83.9% 86.7%

OKIO-7 okio.Segment 85.4% 96.5% 97.2% 97.2% 54.5% 77.6% 78.0% 79.3%

OKIO-8 okio.AsyncTimeout 40.9% 58.0% 55.7% 59.5% 20.6% 46.1% 58.2% 60.5%

OKIO-9 okio.Utf8 42.3% 42.3% 42.3% 42.3% 25.6% 35.9% 35.9% 35.9%

REDISSON-1 org.redisson.RedissonSetMultimapValues 13.3% 0.0% - - 1.1% 0.0% - -

REDISSON-10 org.redisson.config.Config 63.8% 0.0% 97.8% - 17.1% 0.0% 20.9% -

REDISSON-2 org.redisson.RedissonQueue 39.6% 25.0% - - 0.0% 0.0% - -

REDISSON-3 org.redisson.jcache.JCacheManager - 0.0% 0.0% 0.0% - 0.0% 0.0% 0.0%

REDISSON-4 org.redisson.RedissonSetMultimap 0.0% - 0.0% - 0.0% - 0.0% -

REDISSON-5 org.redisson.RedissonBloomFilter 0.0% 0.0% - - 0.0% 0.0% - -

REDISSON-6 org.redisson.reactive.RedissonMapReactive 0.0% 0.0% - - 0.0% 0.0% - -

REDISSON-7 org.redisson.RedissonBaseMapIterator - - - - - - - -

REDISSON-8 org.redisson.jcache.JCachingProvider 58.3% 61.1% - - 80.6% 79.0% - -

REDISSON-9 org.redisson.cluster.ClusterPartition 68.2% 92.4% 99.2% 99.2% 30.1% 69.9% 75.5% 74.5%

WEBMAGIC-1 us.codecraft.webmagic.model.PageModelExtractor 10.3% 17.9% 21.5% 22.4% 24.6% 34.0% 41.0% 42.0%

WEBMAGIC-2 us.codecraft.webmagic.Spider 25.9% 36.1% 40.7% 41.5% 52.1% 60.8% 60.2% 53.6%

WEBMAGIC-3 us.codecraft.webmagic.Site 55.2% 65.4% 79.9% 84.1% 33.9% 90.7% 79.5% 83.2%

WEBMAGIC-4 us.codecraft.webmagic.Page 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

WEBMAGIC-5 us.codecraft.webmagic.utils.DoubleKeyMap 50.0% 26.0% 0.0% 0.0% 68.8% 30.0% 0.0% 0.0%

ZXING-1 com.google.zxing.qrcode.detector.FinderPatternFinder 29.8% 32.8% 36.3% 39.3% 4.4% 16.2% 22.8% 16.7%

ZXING-10 com.google.zxing.qrcode.encoder.Encoder 68.4% 79.6% 80.4% 81.7% 54.1% 73.7% 76.3% 73.2%

ZXING-2 com.google.zxing.pdf417.decoder.PDF417ScanningDecoder 24.3% 25.6% 27.5% 30.3% 6.8% 17.9% 27.1% 32.9%

ZXING-3 com.google.zxing.common.StringUtils 87.6% 90.8% 91.5% 91.7% 3.9% 65.5% 65.9% 68.6%

ZXING-4 com.google.zxing.client.result.ResultParser 86.2% 81.9% 89.2% 95.3% 82.0% 75.7% 83.2% 84.3%

ZXING-5 com.google.zxing.qrcode.encoder.MatrixUtil 46.0% 77.9% 80.0% 89.0% 53.4% 53.5% 56.8% 52.6%

ZXING-6 com.google.zxing.datamatrix.decoder.BitMatrixParser 36.3% 56.5% 60.5% 61.5% 45.3% 33.1% 34.4% 37.7%

ZXING-7 com.google.zxing.pdf417.decoder.ec.ModulusPoly 96.1% 97.4% 96.5% 97.4% 72.7% 87.0% 92.4% 92.4%

ZXING-8 com.google.zxing.maxicode.decoder.DecodedBitStreamParser 54.4% 67.2% 77.8% 82.2% 31.1% 36.9% 42.3% 46.8%

ZXING-9 com.google.zxing.oned.CodaBarWriter 89.8% 91.5% 92.5% 96.9% 52.5% 57.1% 61.0% 63.5%

Average 47.8% 53.3% 58.9% 61.6% 34.8% 46.6% 51.4% 53.5%

in the competition setup [22], which explains why EvoSuite was

incapable of generating any test: When a dependency of the class

under test is missing, then EvoSuite intentionally aborts with an

error to inform the user of the configuration error. While this is

desirable behavior during regular usage, arguably in the scope of

the competition EvoSuite could try to ignore such errors and try

to generate tests nevertheless, as it might still be possible to cover

code even with some missing dependencies.

For the REDISSON benchmarks, most executions ended with a

timeout; unfortunately, we have not been able to reproduce this

behaviour locally, hence we can only conjecture that the timeouts

(reported during the initialisation phase) are due to the large num-

ber of dependency classes (>7000) that need to be loaded for these

benchmarks to start off the test generation.

5 CONCLUSIONS

This paper reports on the participation of the EvoSuite test gener-

ation tool in the 6th SBST Java Unit Testing Tool Contest. With an

overall score of 687 points, EvoSuite achieved the highest score of

all tools in the competition.

To learn more about EvoSuite, visit our Web site:

http://www.evosuite.org

Acknowledgments: Many thanks to all the contributors to

EvoSuite. This project has been funded by the EPSRC project

“GREATEST” (EP/N023978/1), and by the National Research Fund,

Luxembourg (FNR/P10/03).

36

SBST’18, May 28–29, 2018, Gothenburg, Sweden B. Trovato et al.

REFERENCES
[1] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds, “An industrial

evaluation of unit test generation: Finding real faults in a financial application,”
in ACM/IEEE Int. Conference on Software Engineering (ICSE). IEEE, 2017, pp.
263–272.

[2] A. Arcuri, J. Campos, and G. Fraser, “Unit Test Generation During Software
Development: EvoSuite Plugins for Maven, IntelliJ and Jenkins,” in IEEE Interna-
tional Conference on Software Testing, Verification and Validation (ICST). IEEE
Computer Society, 2016, pp. 401–408.

[3] A. Arcuri, G. Fraser, and R. Just, “Private api access and functional mocking
in automated unit test generation,” in IEEE Int. Conference on Software Testing,
Verification and Validation (ICST), 2017, pp. 126–137.

[4] A. Arcuri and G. Fraser, “Parameter tuning or default values? An empirical inves-
tigation in search-based software engineering,” Empirical Software Engineering
(EMSE), pp. 1–30, 2013.

[5] ——, “Java enterprise edition support in search-based junit test generation,” in
Int. Symposium on Search Based Software Engineering. Springer, 2016, pp. 3–17.

[6] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated unit test generation for classes
with environment dependencies,” in IEEE/ACM Int. Conference on Automated
Software Engineering (ASE). ACM, 2014, pp. 79–90.

[7] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation for object-
oriented software.” in ACM Symposium on the Foundations of Software Engineering
(FSE), 2011, pp. 416–419.

[8] ——, “EvoSuite: On the challenges of test case generation in the real world (tool
paper),” in IEEE Int. Conference on Software Testing, Verification and Validation
(ICST), 2013, pp. 362–369.

[9] ——, “EvoSuite at the SBST 2013 tool competition,” in Int. Workshop on Search-
Based Software Testing (SBST), 2013, pp. 406–409.

[10] ——, “EvoSuite at the second unit testing tool competition.” in Fittest Workshop.
Springer, 2013, pp. 95–100.

[11] ——, “Whole test suite generation,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 276–291, 2013.

[12] ——, “A large-scale evaluation of automated unit test generation using EvoSuite,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 24,
no. 2, pp. 8:1–8:42, 2014.

[13] ——, “Achieving scalable mutation-based generation of whole test suites.” Empir-
ical Software Engineering (EMSE), vol. 20, no. 3, pp. 783–812, 2015.

[14] ——, “EvoSuite at the SBST 2015 tool competition,” in Int. Workshop on Search-
Based Software Testing (SBST). IEEE Press, 2015, pp. 25–27.

[15] ——, “EvoSuite at the SBST 2016 tool competition,” in Int. Workshop on Search-
Based Software Testing (SBST). ACM, 2016, pp. 33–36.

[16] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does automated unit
test generation really help software testers? a controlled empirical study,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 24, no. 4,
pp. 23:1–23:49, 2015.

[17] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and oracles,”
IEEE Transactions on Software Engineering (TSE), vol. 28, no. 2, pp. 278–292, 2012.

[18] J. C. Gordon Fraser, José Miguel Rojas and A. Arcuri, “EvoSuite at the SBST 2017
tool competition,” in Int. Workshop on Search-Based Software Testing (SBST). IEEE
Press, 2016, pp. 39–41.

[19] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri, “Combining multiple
coverage criteria in search-based unit test generation,” in Search-Based Software
Engineering. Springer, 2015, pp. 93–108.

[20] J. M. Rojas, G. Fraser, and A. Arcuri, “Automated unit test generation during
software development: A controlled experiment and think-aloud observations,”
in ACM Int. Symposium on Software Testing and Analysis (ISSTA). ACM, 2015,
pp. 338–349.

[21] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A Detailed Investigation of the
Effectiveness of Whole Test Suite Generation,” Empirical Software Engineering
(EMSE), vol. 22, no. 2, pp. 852–893, 2016.

[22] U. Rueda, F. Kifetew, and A. Panichella, “Java unit testing tool competition – sixth
round,” in Int. Workshop on Search-Based Software Testing (SBST), 2018.

[23] A. Sakti, G. Pesant, and Y.-G. Guéhéneuc, “Instance generator and problem
representation to improve object oriented code coverage,” IEEE Transactions on
Software Engineering, vol. 41, no. 3, pp. 294–313, 2015.

[24] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri, “Do auto-
matically generated unit tests find real faults? an empirical study of effectiveness
and challenges,” in IEEE/ACM Int. Conference on Automated Software Engineering
(ASE). IEEE, 2015, pp. 201–211.

[25] S. Shamshiri, J. M. Rojas, J. P. Galeotti, N. Walkinshaw, and G. Fraser, “How do
automatically generated unit tests influence software maintenance?” in IEEE Int.
Conference on Software Testing, Verification and Validation (ICST), 2018, to appear.

37

