
EvoSuite at the SBST 2019 Tool Competition

José Campos
University of Washington

Seattle, USA

jmcampos@uw.edu

Annibale Panichella
Delft University of Technology

Delft, Netherlands

a.panichella@tudelft.nl

Gordon Fraser
Chair of Software Engineering II,

University of Passau

Passau, Germany

gordon.fraser@uni-passau.de

ABSTRACT

EvoSuite is a search-based tool that automatically generates ex-

ecutable unit tests for Java code (JUnit tests). This paper sum-

marises the results and experiences of EvoSuite’s participation at

the seventh unit testing competition at SBST 2019, where EvoSuite

achieved the highest overall score (255.43 points) for the sixth time

in seven editions of the competition.

ACM Reference Format:

José Campos, Annibale Panichella, and Gordon Fraser. 2019. EvoSuite at

the SBST 2019 Tool Competition. In SBST’19: IEEE/ACM 12th International

Workshop on Search-Based Software Testing, May 27, 2019, Montreal, Canada.

ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION

The annual unit test generation competition aims to drive and eval-

uate progress on unit test generation tools. In the 7th instance of

the competition at the International Workshop on Search-Based

Software Testing (SBST) 2019, several JUnit test generation tools

competed on a set of 38 open-source Java classes. This paper de-

scribes the results obtained by the EvoSuite test generation tool [8]

in this competition. Details about the procedure of the competition,

the technical framework, and the benchmark classes can be found

in [21]. In this competition, EvoSuite achieved an overall score of

255.43, which was the highest among the competing and baseline

tools.

2 ABOUT EVOSUITE

EvoSuite [8] is a search-based tool [12] that uses a genetic algo-

rithm to automatically generate test suites for Java classes. Given

the name of a target class and the full Java classpath (i.e., where

to find the compiled bytecode of the class under test and all its

dependencies), EvoSuite automatically produces a set of JUnit test

cases aimed at maximizing code coverage. EvoSuite can be used

on the command line, or through plugins for popular development

tools such as IntelliJ, Eclipse, or Maven [2].

For this edition of the competition, EvoSuite was configured

with Dynamic Many-Objective Sorting Algorithm (DynaMOSA) as a

search algorithm. DynMOSA [23, 24] is a recently developed many-

objective algorithm that incrementally optimizes multiple coverage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBST’19, May 27, 2019, Montreal, Canada

© 2019 Association for Computing Machinery.

Table 1: Classification of the EvoSuite unit test generation

tool

Prerequisites

Static or dynamic Dynamic testing at the Java class level

Software Type Java classes

Lifecycle phase Unit testing for Java programs

Environment All Java development environments

Knowledge required JUnit unit testing for Java

Experience required Basic unit testing knowledge

Input and Output of the tool

Input Bytecode of the target class and depen-

dencies

Output JUnit 4 test cases

Operation

Interaction Through the command line, and plugins

for IntelliJ, Maven and Eclipse

User guidance Manual verification of assertions for

functional faults

Source of information http://www.evosuite.org

Maturity Mature research prototype, under devel-

opment

Technology behind the tool Search-based testing / many-objective

optimization

Obtaining the tool and information

License Lesser GPL V.3

Cost Open source

Support None

Does there exist empirical evidence about

Effectiveness and Scalability See [12, 13]

criteria at the same time. More specifically, different testing cover-

age requirements (e.g., branches) are treated as distinct, contrasting

search objectives in a many-objective paradigm. Search objectives

are computed using standard heuristics for code coverage, such

as the branch distance and the approach level (see [12] for more

details). Coverage requirements are prioritized during the search ac-

cording to their structural dependencies in the control dependency

graph. The search is initialized with the coverage requirements (e.g.,

branches) positioned higher in the hierarchy; then, the remaining

requirements are incrementally inserted in later generations when

their dominator requirements are covered.

29

2019 IEEE/ACM 12th International Workshop on Search-Based Software Testing (SBST)

978-1-7281-2233-5/19/$31.00 ©2019 IEEE
DOI 10.1109/SBST.2019.00017

Authorized licensed use limited to: University of Passau. Downloaded on September 16,2021 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

SBST’19, May 27, 2019, Montreal, Canada B. Trovato et al.

DynaMOSA evolves test cases [23], which correspond to the

chromosomes for the search. Each test case consists of variable-

length sequences of Java statements (e.g., primitive statements and

calls on the class under test). A population of randomly generated

test cases is evolved using search operators (e.g., selection, crossover

and mutation) to iteratively produce test cases that are closer to

satisfy the target coverage requirements. The final test suite is

formed by the shorter test cases encountered during the search,

and that satisfy the coverage requirements. These tests are stored

in an external data structure, called archive [22, 23].

EvoSuite can be configured to satisfy for multiple coverage

criteria at the same time, and the default configuration combines

branch coverage with mutation testing [14] and other basic crite-

ria [25]. Once the search is completed, EvoSuite applies various

post-search optimizations aimed to improve the readability of the

generated tests. For example, tests are minimized and test asser-

tions are selected using mutation analysis [18]. For more details on

post-process optimization we refer to [8, 9].

In the past, the effectiveness of EvoSuite has been evaluated

on open source as well as industrial software in terms of code

coverage [7, 13, 23, 27], fault finding effectiveness [1, 29], and effects

on developer productivity [17, 26] and software maintenance [30].

EvoSuite has a longstanding record of success at the unit testing

tool competition, having ranked second in the third edition of the

competition [15] and first in all the other editions [10, 11, 16, 19, 20].

3 COMPETITION SETUP

The configuration of EvoSuite for the 2019 competition is largely

based on its default values since these have been tuned exten-

sively [4]. We used the default set of coverage criteria [25] (e.g.,

line coverage, branch coverage, branch coverage by direct method

invocations, weak mutation testing, output coverage, exception cov-

erage). EvoSuite uses an archive of solutions [27] to keep the search

focused on uncovered goals, iteratively discarding covered goals

and storing the tests that covered them. After a certain percent-

age of the search budget has passed and with a certain probability,

EvoSuite starts using mock objects (relying on Mockito) instead

of actual class instances [3] for dependencies; only branches that

cannot be covered without mocks lead to tests with mock objects.

As in the previous instance of the competition, we continue to use

frequency-based weighted constants for seeding [28] and support

Java Enterprise Edition features [5]. EvoSuite is actively main-

tained, therefore several bug fixes and minor improvements have

been applied since the last instance of the competition, in particular

regarging non-determinism and flaky tests [6], as well as new types

of test assertions (e.g., related to arrays and standard container

classes).

Like in previous instances of the competition, we enabled the

post-processing step of test minimization—not for efficiency rea-

sons, but because minimized tests are less likely to break. To reduce

the overall time of test generation we included all assertions rather

than filtering them with mutation analysis [18], which is computa-

tionally expensive. The use of all assertions has a negative impact

on readability, but this is not evaluated as part of the SBST contest.

Four time budgets were used to call each tool: 10, 60, 120 and 240

seconds. We used the same strategy used in previous competition

(e.g., [16]) to distribute the overall time budget onto the different

phases of EvoSuite (e.g., initialisation, search, minimization, asser-

tion generation, compilation check, removal of flaky tests). That

is, 50% of the time was allocated to the search, and the rest was

distributed equally to the remaining phases.

4 BENCHMARK RESULTS

On the whole, the performance of EvoSuite was in line with previ-

ous results, although EvoSuite seemed to fail on a notably large

number of classes. In particular, EvoSuite failed to produce any

test suites for benchmarks DUBBO-2, SPOON-169, SPOON-25, and

WEBMAGIC-4, and generally struggled with most AUTHZFORCE

benchmarks (highlighted in grey in Table 2).

A closer look at the benchmarks DUBBO-2 and WEBMAGIC-4

reveals that there were missing dependencies in the competition

setup [21] (similar to cases in previous years [20]), which explains

why EvoSuite was incapable of generating any test: When a depen-

dency of the class under test is missing, then EvoSuite intentionally

aborts with an error to inform the user of the configuration error.

While this is desirable behavior during regular usage, arguably in

the scope of the competition, EvoSuite could try to ignore such

errors and try to generate tests nevertheless, as it might still be

possible to cover code even with some missing dependencies. For

the benchmark FASTJSON-3 and a 10s time budget, EvoSuite gen-

erated some test suites, but due to a bug in the competition infras-

tructure, no data was collected.

For the benchmarks SPOON-169 and SPOON-25, EvoSuite ei-

ther failed to generate a compilable test suite or crashed due to

a bug in DynaMOSA. Although EvoSuite’s minimization could

help at reducing the number of uncompilable / flaky test cases, for

SPOON-169 all minimizations attempts ran out of time.

For the AUTHZFORCE benchmarks, although EvoSuite man-

aged to generate some test suites, most executions for data collec-

tion ended with a failure. Specifically, for these classes, an exception

was raised for test execution for all tools in the competition. How-

ever, while this exception was not problematic for other tools, it

caused an inconsistent state of the JVM which led to the @Before
setup methods of EvoSuite to fail (the @Before method was not

able to configure EvoSuite’s custom security manager because it

was never correctly removed). As a consequence, all test executions

failed. We were not able to reproduce the error in the competition

infrastructure, and thus cannot conjecture about the causes. The

same problem also occurred for SPOON-253. While in principle it

would be possible to extend EvoSuite to try to ignore such errors

and keep on executing tests, as explained it is EvoSuite’s philos-

ophy that the user should be made aware of configuration errors,

and hence such an extension would only serve to tune EvoSuite

for the competition.

In general, EvoSuite often struggles with a time budget as low

as 10 seconds. For example, Table 2 reports “-” for benchmarks

FASTJSON-1, FASTJSON-3, FESCAR-41, FESCAR-42, and SPOON-

105. Surprisingly, for benchmarks SPOON-155, SPOON-16, SPOON-

20, and SPOON-211, EvoSuite successfully generated test suites

for small-time budgets, but it failed to do it for large time budgets.

For all, EvoSuite crashed due to a bug in the DynaMOSA algo-

rithm which had not been revealed by our previous experiments.

30

Authorized licensed use limited to: University of Passau. Downloaded on September 16,2021 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

EvoSuite at the SBST 2019 Tool Competition SBST’19, May 27, 2019, Montreal, Canada

Table 2: Detailed results of EvoSuite on the SBST benchmark classes.

Benchmark Java Class
Branch Coverage Mutation Score

10s 60s 120s 240s 10s 60s 120s 240s

AUTHZFORCE-1 org.ow2.authzforce.core.pdp.impl.PdpBean 0.0% 16.7% 0.0% 0.0% 0.0% 14.4% 0.0% 0.0%

AUTHZFORCE-11 org.ow2.authzforce.core.pdp.impl.func.LogicalNOfFunction 0.0% 0.0% 0.0% 0.0% 4.8% 4.8% 0.0% 0.0%

AUTHZFORCE-27 org.ow2.authzforce.core.pdp.impl.func.MapFunctionFactory 75.0% 0.0% 0.0% 0.0% 75.0% 0.0% 0.0% 0.0%

AUTHZFORCE-32 org.ow2.authzforce.core.pdp.impl.func.SubstringFunction 0.0% 0.0% 0.0% 0.0% 7.7% 0.0% 0.0% 0.0%

AUTHZFORCE-33 org.ow2.authzforce.core.pdp.impl.SchemaHandler 55.6% 0.0% 0.0% 0.0% 57.6% 0.0% 0.0% 0.0%

AUTHZFORCE-48 org.ow2.authzforce.core.pdp.impl.policy.PolicyVersions 0.0% 12.1% 34.8% 60.6% 0.0% 16.7% 37.3% 69.6%

AUTHZFORCE-5 org.ow2.authzforce.core.pdp.impl.CloseableAttributeProvider 20.5% 0.0% 0.0% 0.0% 27.4% 0.0% 0.0% 0.0%

AUTHZFORCE-52 org.ow2.authzforce.core.pdp.impl.PepActionExpression 91.7% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

AUTHZFORCE-63 org.ow2.authzforce.core.pdp.impl.combining.DPUnlessPDCombiningAlg 10.0% 3.3% 0.0% 0.0% 5.6% 1.9% 0.0% 0.0%

AUTHZFORCE-65 org.ow2.authzforce.core.pdp.impl.combining.FirstApplicableCombiningAlg 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

DUBBO-2 com.alibaba.dubbo.common.utils.ReflectUtils 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

FASTJSON-1 com.alibaba.fastjson.parser.JSONLexerBase - 23.0% 24.9% 31.6% - 7.7% 8.8% 6.5%

FASTJSON-3 com.alibaba.fastjson.parser.DefaultJSONParser - 13.4% 20.5% 25.7% - 9.4% 14.1% 19.1%

FESCAR-1 com.alibaba.fescar.core.protocol.transaction.BranchReportRequest 97.9% 95.8% 96.9% 99.0% 97.7% 97.7% 98.5% 100.0%

FESCAR-12 com.alibaba.fescar.core.rpc.netty.RpcServerHandler 12.5% 87.5% 87.5% 87.5% 50.0% 100.0% 100.0% 100.0%

FESCAR-18 com.alibaba.fescar.core.protocol.MergedWarpMessage 61.9% 48.8% 56.0% 42.9% 81.2% 60.9% 68.1% 51.4%

FESCAR-23 com.alibaba.fescar.core.protocol.MergeResultMessage 63.1% 78.6% 64.3% 83.3% 78.6% 97.0% 79.2% 98.8%

FESCAR-25 com.alibaba.fescar.core.rpc.netty.RmMessageListener 37.5% 62.5% 62.5% 50.0% 22.2% 22.2% 22.2% 18.5%

FESCAR-36 com.alibaba.fescar.core.protocol.RegisterRMRequest 100.0% 92.9% 80.1% 83.3% 100.0% 93.8% 81.2% 83.0%

FESCAR-37 com.alibaba.fescar.core.rpc.RpcContext 52.9% 89.2% 91.2% 91.2% 71.9% 96.4% 94.8% 95.8%

FESCAR-41 com.alibaba.fescar.core.rpc.netty.RmRpcClient - 2.0% 2.0% 2.0% - 2.4% 2.4% 2.4%

FESCAR-42 com.alibaba.fescar.core.rpc.DefaultServerMessageListenerImpl - 16.1% 27.4% 27.9% - 16.7% 27.8% 29.2%

FESCAR-7 com.alibaba.fescar.core.rpc.netty.MessageCodecHandler 37.8% 78.4% 82.8% 87.1% 37.9% 92.8% 95.2% 98.3%

OKIO-1 okio.Buffer 27.4% 57.0% 62.3% 67.9% 13.2% 20.2% 16.3% 18.5%

OKIO-4 okio.RealBufferedSource 19.2% 37.6% 51.3% 76.2% 13.1% 28.8% 40.1% 45.3%

SPOON-105 spoon.support.compiler.jdt.PositionBuilder - 22.1% 16.4% 3.8% - 27.7% 23.1% 5.4%

SPOON-155 spoon.reflect.visitor.filter.AllMethodsSameSignatureFunction 12.0% 4.2% 2.5% 0.0% 19.0% 10.7% 4.3% 5.0%

SPOON-16 spoon.reflect.path.CtElementPathBuilder 34.0% 34.3% 0.0% 2.0% 45.5% 43.9% 0.0% 4.0%

SPOON-169 spoon.reflect.visitor.ImportScannerImpl - 0.0% 0.0% 0.0% - 0.0% 0.0% 0.0%

SPOON-20 spoon.support.reflect.reference.CtLocalVariableReferenceImpl 33.3% 20.0% 0.0% 0.0% 40.3% 33.3% 0.0% 0.0%

SPOON-211 spoon.reflect.path.impl.CtRolePathElement 8.1% 19.2% 0.0% 5.1% 27.8% 36.8% 0.0% 17.7%

SPOON-25 spoon.pattern.internal.ValueConvertorImpl - - 0.0% 0.0% - - 0.0% 0.0%

SPOON-253 spoon.pattern.internal.parameter.MapParameterInfo 29.7% 50.0% 0.0% 0.0% 34.8% 50.0% 0.0% 0.0%

SPOON-32 spoon.MavenLauncher 12.5% 10.4% 10.4% 12.5% 6.7% 5.6% 5.6% 6.7%

SPOON-65 spoon.support.DefaultCoreFactory 9.0% 49.8% 20.0% 5.7% 1.2% 2.3% 1.2% 2.0%

WEBMAGIC-1 us.codecraft.webmagic.model.PageModelExtractor 28.0% 27.6% 28.8% 31.3% 50.4% 50.0% 51.3% 54.3%

WEBMAGIC-4 us.codecraft.webmagic.Page 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

ZXING-10 com.google.zxing.qrcode.encoder.Encoder 70.1% 82.3% 82.9% 84.0% 63.0% 76.1% 72.6% 72.8%

Average 17.3% 17.2% 14.8% 15.5% 19.9% 16.9% 13.9% 14.6%

Consequently, even though DynaMOSA is known to increase the

coverage, EvoSuite achieves substantially in general, this increase

was countered with some missing datapoints. As always, the com-

petition was helpful in improving the robustness of the tool, by

revealing this and other bugs.

5 CONCLUSIONS

This paper reports on the participation of the EvoSuite test gener-

ation tool in the 7th SBST Java Unit Testing Tool Contest. With an

overall score of 255.43 points, EvoSuite achieved the highest score

of all tools in the competition.

To learn more about EvoSuite, visit our Web site:

http://www.evosuite.org

Acknowledgments: Many thanks to all the contributors to

EvoSuite. This project has been funded by the EPSRC project

“GREATEST” (EP/N023978/2), and by the National Research Fund,

Luxembourg (FNR/P10/03).

REFERENCES
[1] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds, “An industrial

evaluation of unit test generation: Finding real faults in a financial application,”
in ACM/IEEE Int. Conference on Software Engineering (ICSE). IEEE, 2017, pp.
263–272.

[2] A. Arcuri, J. Campos, and G. Fraser, “Unit Test Generation During Software
Development: EvoSuite Plugins for Maven, IntelliJ and Jenkins,” in IEEE Interna-
tional Conference on Software Testing, Verification and Validation (ICST). IEEE
Computer Society, 2016, pp. 401–408.

[3] A. Arcuri, G. Fraser, and R. Just, “Private api access and functional mocking
in automated unit test generation,” in IEEE Int. Conference on Software Testing,
Verification and Validation (ICST), 2017, pp. 126–137.

[4] A. Arcuri and G. Fraser, “Parameter tuning or default values? An empirical inves-
tigation in search-based software engineering,” Empirical Software Engineering
(EMSE), pp. 1–30, 2013.

[5] ——, “Java enterprise edition support in search-based junit test generation,” in
Int. Symposium on Search Based Software Engineering. Springer, 2016, pp. 3–17.

[6] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated unit test generation for classes
with environment dependencies,” in IEEE/ACM Int. Conference on Automated
Software Engineering (ASE). ACM, 2014, pp. 79–90.

[7] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri, “An empirical
evaluation of evolutionary algorithms for unit test suite generation,” Information
and Software Technology, vol. 104, pp. 207 – 235, 2018.

[8] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation for object-
oriented software.” in ACM Symposium on the Foundations of Software Engineering
(FSE), 2011, pp. 416–419.

31

Authorized licensed use limited to: University of Passau. Downloaded on September 16,2021 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

SBST’19, May 27, 2019, Montreal, Canada B. Trovato et al.

[9] ——, “EvoSuite: On the challenges of test case generation in the real world (tool
paper),” in IEEE Int. Conference on Software Testing, Verification and Validation
(ICST), 2013, pp. 362–369.

[10] ——, “EvoSuite at the SBST 2013 tool competition,” in Int. Workshop on Search-
Based Software Testing (SBST), 2013, pp. 406–409.

[11] ——, “EvoSuite at the second unit testing tool competition.” in Fittest Workshop.
Springer, 2013, pp. 95–100.

[12] ——, “Whole test suite generation,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 276–291, 2013.

[13] ——, “A large-scale evaluation of automated unit test generation using EvoSuite,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 24,
no. 2, pp. 8:1–8:42, 2014.

[14] ——, “Achieving scalable mutation-based generation of whole test suites.” Empir-
ical Software Engineering (EMSE), vol. 20, no. 3, pp. 783–812, 2015.

[15] ——, “EvoSuite at the SBST 2015 tool competition,” in Int. Workshop on Search-
Based Software Testing (SBST). IEEE Press, 2015, pp. 25–27.

[16] ——, “EvoSuite at the SBST 2016 tool competition,” in Int. Workshop on Search-
Based Software Testing (SBST). ACM, 2016, pp. 33–36.

[17] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does automated unit
test generation really help software testers? a controlled empirical study,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 24, no. 4,
pp. 23:1–23:49, 2015.

[18] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and oracles,”
IEEE Transactions on Software Engineering (TSE), vol. 28, no. 2, pp. 278–292, 2012.

[19] J. C. Gordon Fraser, José Miguel Rojas and A. Arcuri, “EvoSuite at the SBST 2017
tool competition,” in Int. Workshop on Search-Based Software Testing (SBST). IEEE
Press, 2017, pp. 39–41.

[20] J. M. R. Gordon Fraser and A. Arcuri, “EvoSuite at the SBST 2018 tool competition,”
in Int. Workshop on Search-Based Software Testing (SBST). IEEE Press, 2018, pp.
34–37.

[21] F. Kifetew, X. Devroey, and U. Rueda, “Java Unit Testing Tool Competition -
Seventh Round,” in Int. Workshop on Search-Based Software Testing (SBST), 2019.

[22] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating Branch Coverage as a
Many-Objective Optimization Problem,” in 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), April 2015, pp. 1–10.

[23] ——, “Automated Test Case Generation as a Many-Objective Optimisation Prob-
lem with Dynamic Selection of the Targets,” IEEE Transactions on Software Engi-
neering, vol. 44, no. 2, pp. 122–158, Feb 2018.

[24] A. Panichella, F. M. Kifetew, and P. Tonella, “Incremental control dependency
frontier exploration for many-criteria test case generation,” in International Sym-
posium on Search Based Software Engineering. Springer, 2018, pp. 309–324.

[25] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri, “Combining multiple
coverage criteria in search-based unit test generation,” in Search-Based Software
Engineering. Springer, 2015, pp. 93–108.

[26] J. M. Rojas, G. Fraser, and A. Arcuri, “Automated unit test generation during
software development: A controlled experiment and think-aloud observations,”
in ACM Int. Symposium on Software Testing and Analysis (ISSTA). ACM, 2015,
pp. 338–349.

[27] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A Detailed Investigation of the
Effectiveness of Whole Test Suite Generation,” Empirical Software Engineering
(EMSE), vol. 22, no. 2, pp. 852–893, 2016.

[28] A. Sakti, G. Pesant, and Y.-G. Guéhéneuc, “Instance generator and problem
representation to improve object oriented code coverage,” IEEE Transactions on
Software Engineering, vol. 41, no. 3, pp. 294–313, 2015.

[29] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri, “Do auto-
matically generated unit tests find real faults? an empirical study of effectiveness
and challenges,” in IEEE/ACM Int. Conference on Automated Software Engineering
(ASE). IEEE, 2015, pp. 201–211.

[30] S. Shamshiri, J. M. Rojas, J. P. Galeotti, N. Walkinshaw, and G. Fraser, “How do
automatically generated unit tests influence software maintenance?” in IEEE Int.
Conference on Software Testing, Verification and Validation (ICST), 2018, to appear.

32

Authorized licensed use limited to: University of Passau. Downloaded on September 16,2021 at 15:23:44 UTC from IEEE Xplore. Restrictions apply.

