
EVOSUITE at the SBST 2021 Tool Competition
Sebastian Vogl⇤, Sebastian Schweikl⇤, Gordon Fraser⇤, Andrea Arcuri†, Jose Campos‡, and Annibale Panichella§

⇤University of Passau, Germany
{sebastian.vogl,sebastian.schweikl,gordon.fraser}@uni-passau.de

†Kristiania University College and Oslo Metropolitan University, Norway
andrea.arcuri@kristiania.no

‡University of Lisbon, Portugal
jcmcampos@fc.ul.pt

§Delft University of Technology, Netherlands
A.Panichella@tudelft.nl

Abstract—EVOSUITE is a search-based unit test generation tool
for Java. This paper summarises the results and experiences of
EVOSUITE’s participation at the ninth unit testing competition at
SBST 2021, where EVOSUITE achieved the highest overall score.

I. INTRODUCTION

The annual unit test generation competition aims to drive
and evaluate progress on unit test generation tools. Every year,
a benchmark of Java classes is selected, and different test
generation tools are evaluated in terms of the code coverage
and mutation scores they can achieve on these classes. In the
2021 edition of the competition, six tools were applied on a set
of 98 classes. Details about the procedure of the competition,
the technical framework, and the benchmark classes can be
found in the competition report [9]. EVOSUITE achieved an
overall score of 292.05, which was the highest among the
competing and baseline tools.

II. ABOUT EVOSUITE

EVOSUITE [2] uses evolutionary search to automatically
generate test suites for Java classes. It takes as input the name
of a target class as well as the classpath describing where the
compiled bytecode of the class as well as its dependencies
are located. A basic static analysis extracts information about
the relevant classes as well as their constructors, methods,
and fields. The bytecode is instrumented while classes are
loaded, such that EVOSUITE can produce execution traces
for test executions, and to avoid test flakiness by replacing
non-deterministic calls with deterministic, mocked versions.
EVOSUITE then applies meta-heuristic search algorithms to
automatically produce a set of JUnit test cases aimed at
maximising code coverage.

Originally, EVOSUITE was implemented to optimise entire
test suites with respect to their overall code coverage [4].
The latest search algorithm, which is now used by default, is
the Dynamic Many-Objective Sorting Algorithm (DynaMOSA)
search algorithm [7] which operates at the test case level.
The genetic encoding of test cases in EVOSUITE consists of
variable-length sequences of Java statements (e.g., primitive
statements as well as calls on constructors or methods). Stan-
dard evolutionary search operators (e.g., selection, crossover,

mutation) are adapted for this representation. EVOSUITE sup-
ports multiple different coverage criteria that can be optimised
simultaneously. The core fitness functions in EVOSUITE are
based on traditional heuristics for code coverage, such as the
branch distance and the approach level (see [4] for more
details). Further fitness functions are based on mutation test-
ing [5] as well as other basic criteria [10].

To improve the readability of the generated tests and to
avoid test smells [8], EVOSUITE applies post-processing once
the available search budget has been exhausted [2, 3]. In
particular, minimisation is used to remove redundant tests
and statements, and a minimised set of assertions is added
using mutation analysis [6]. Finally, EVOSUITE compiles and
executes each test individually to avoid compilation errors
(which may be the result of bugs in EVOSUITE) or flakiness
caused by non-determinism in the class under test.

III. COMPETITION SETUP

The most recent version of EVOSUITE (1.1.0) was used
in the competition. As of this version, the default search
algorithm in EVOSUITE is DynaMOSA [7]. No new features
were added in this version, but support for Java 9+ was added,
several bugs were fixed, and a major refactoring was applied
to improve the code quality with respect to the use of Java
generics internally. Several smaller bugfixes were applied in
the run-up to the competition, which are now included in the
current development version on GitHub.

The configuration of EVOSUITE used in the 2021 com-
petition is identical to the configuration used in prior years,
and largely based on its tuned default values [1] and default
coverage criteria [10]. Similar to prior competitions, the test
minimisation step was omitted as the competition score does
not reward test minimality, and the minimisation takes substan-
tial computational effort. Similarly, we included all regression
assertions rather than filtering them with mutation analysis to
save time. Same as in previous competitions, we allocated
50% of the overall time set by the competition organisers
for the search, and distributed the other 50% equally to the
remaining phases (e.g., assertion generation, compile-check,
flakiness-check).

28

2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST)

978-1-6654-4571-9/21/$31.00 ©2021 IEEE
DOI 10.1109/SBST52555.2021.00012

20
21

 IE
EE

/A
CM

 1
4t

h
In

te
rn

at
io

na
l W

or
ks

ho
p

on
 S

ea
rc

h-
Ba

se
d

So
ft

w
ar

e
Te

st
in

g
(S

BS
T)

 |
 9

78
-1

-6
65

4-
45

71
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SB
ST

52
55

5.
20

21
.0

00
12

Authorized licensed use limited to: University of Passau. Downloaded on September 16,2021 at 15:23:26 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Coverage results achieved in the competition.

IV. RESULTS

With an overall score of 292.05, EVOSUITE achieved the
highest score of all tools in the competition. As described
in the competition report [9], the score is calculated on the
subset of 25 classes for which all tools produced tests in some
of the runs. Figure 1 summarises the results of EVOSUITE
in terms of the mean coverage for the 25 classes used in
the competition. While the coverage increased from the 30
seconds to the 120 seconds search budget (mean line coverage
of 65.7% vs. 77.1%, respectively), the additional run of 300
seconds actually shows a slight decrease (mean line coverage
of 73.9%). The likely reason for this result is that EVOSUITE
crashed more frequently when given more time. For example,
for 76 runs of EVOSUITE on the 25 classes no test cases
were generated. In most cases we found that the JVM process
running EVOSUITE on the competition machine crashed with
an OutOfMemoryException, which possibly could have
been avoided with a more generous allocation of memory.

The coverage ratios are generally higher than the mutation
scores; while this is largely because it is simply more difficult
to achieve a high mutation score, the mutation score is
also negatively affected by classes with flakiness or failing
tests (in which case the mutation score reported is 0% by
definition). Furthermore, in many cases the execution with the
PIT mutation tool reported an error during class loading, which
may be caused by configuration errors or clashes between
EVOSUITE’s and PIT’s bytecode instrumentation.

A final observation is that all 25 Java classes considered
in the competition results were taken from the Guava project,
which is notorious for its complex use of Java Generics—
which is a feature EVOSUITE still struggles to handle effec-
tively. In particular, in 99 of all runs on the 25 competition
classes EVOSUITE did not manage to move beyond the
initial generation, which tends to happen specifically when
EVOSUITE struggles to correctly instantiate complex, nested
generic types. This is currently a focus point of structural
improvements and refactorings in EVOSUITE’s codebase.

V. CONCLUSIONS

This paper reports on the participation of the EVOSUITE
test generation tool in the ninth SBST Java Unit Testing
Tool Contest. On average, EVOSUITE achieved 71% branch
coverage, 77% line coverage, and a mutation score of 53%,
using a search budget of 120 seconds on the 25 classes
considered for the competition. Overall, this results in a score
of 292.05, which is the highest score of all tools in the
competition.

To learn more about EVOSUITE, visit our Web site:

http://www.evosuite.org

Acknowledgments: Many thanks to all the contributors to
EVOSUITE. This project has been supported by EPSRC project
EP/N023978/2.

REFERENCES

[1] A. Arcuri and G. Fraser, “Parameter tuning or default val-
ues? An empirical investigation in search-based software
engineering,” Empirical Software Engineering (EMSE),
pp. 1–30, 2013.

[2] G. Fraser and A. Arcuri, “EvoSuite: Automatic test
suite generation for object-oriented software.” in ACM

Symposium on the Foundations of Software Engineering

(FSE), 2011, pp. 416–419.
[3] G. Fraser and A. Arcuri, “EvoSuite: On the challenges

of test case generation in the real world (tool paper),” in
IEEE Int. Conference on Software Testing, Verification

and Validation (ICST), 2013, pp. 362–369.
[4] G. Fraser and A. Arcuri, “Whole test suite generation,”

IEEE Transactions on Software Engineering, vol. 39,
no. 2, pp. 276–291, 2013.

[5] G. Fraser and A. Arcuri, “Achieving scalable mutation-
based generation of whole test suites.” Empirical Soft-

ware Engineering (EMSE), vol. 20, no. 3, pp. 783–812,
2015.

[6] G. Fraser and A. Zeller, “Mutation-driven generation of
unit tests and oracles,” IEEE Transactions on Software

Engineering (TSE), vol. 28, no. 2, pp. 278–292, 2012.
[7] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated

Test Case Generation as a Many-Objective Optimisation
Problem with Dynamic Selection of the Targets,” IEEE

Transactions on Software Engineering, vol. 44, no. 2, pp.
122–158, Feb 2018.

[8] A. Panichella, S. Panichella, G. Fraser, A. A. Sawant,
and V. J. Hellendoorn, “Revisiting test smells in automat-
ically generated tests: limitations, pitfalls, and opportuni-
ties,” in IEEE Int. Conference on Software Maintenance

and Evolution (ICSME). IEEE, 2020, pp. 523–533.
[9] S. Panichella, A. Gambi, F. Zampetti, and V. Riccio,

“SBST Tool Competition 2021,” in Int. Conference on

Software Engineering, Workshops. ACM, 2021.
[10] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Ar-

curi, “Combining multiple coverage criteria in search-
based unit test generation,” in Search-Based Software

Engineering. Springer, 2015, pp. 93–108.

29

Authorized licensed use limited to: University of Passau. Downloaded on September 16,2021 at 15:23:26 UTC from IEEE Xplore. Restrictions apply.

