On Parameter Tuning in
Search Based Software Engineering

Andrea Arcurt and Gordon Frasér

! Simula Research Laboratory
P.O. Box 134, 1325 Lysaker, Norway
arcuri @i mul a. no
2 Saarland University — Computer Science
Saarbiicken, Germany
fraser @s. uni - saarl and. de

Abstract. When applying search-based software engineering (SBSE) techknique
one is confronted with a multitude of different parameters that need tbdmea:
Which population size for a genetic algorithm? Which selection mechanism to
use? What settings to use for dozens of other parameters? This pnodiemly
troubles users who want to apply SBSE tools in practice, but also résearc
performing experimentation — how to compare algorithms that can hdesatit
parameter settings? To shed light on the problem of parameters, veemped

the largest empirical analysis on parameter tuning in SBSE to date, collecting
and statistically analysing data from more than a million experiments. As case
study, we chose test data generation, one of the most popular prabl&BSE.

Our data confirm that tuning does have a critical impact on algorithmioperf
mance, and over-fitting of parameter tuning is a dire threat to exterfiditya

of empirical analyses in SBSE. Based on this large empirical evideregjws
guidelines on how to handle parameter tuning.

Key words: Search based software engineering, test data generati@ct-oriented,
unit testing

1 Introduction

Recent years have brought a large growth of interest in Bdwsed software engineer-
ing (SBSE) [1], especially in software testing [2]. The fiblaks even matured to a stage
where industrial applications have started to appear [of the key strengths
of SBSE leading to this success is its ability of automaltjcablving very complex
problems where exact solutions cannot be deterministi¢aiind in reasonable time.
However, to make SBSE really usable in practice, no knovdaafgsearch algorithms
should be required from practitioners who want to use it,uzh knowledge is highly
specialized and might not be widespread. In other words ESB8Is should be treated
as “black boxes” where the internal details are hidden,ratise technology transfer to
industrial practice will hardly be feasible.

One of the main barriers to the use of a search algorithm irESBsining A search
algorithm can have many parameters that need to be set. &opd, to use a genetic

algorithm, one has to specify the population size, type lefcs®n mechanism (roulette
wheel, tournament, rank-based, etc.), type of crossoirggléspoint, multi-point, etc.),

crossover probability, type and probability of mutatioype and rate of elitism, etc.
The choice of all these parameters might have a large impattteoperformance of a
search algorithm. In the worst case, an “unfortunate” patansetting might make it
impossible to solve the problem at hand.

Is it possible to find amptimal parameter setting, to solve this problem once and
for all? Unfortunately, this is not possible, and this hasrbéormally proven in the
No Free LunchNFL) theorem [5]: All algorithms perform on average equaih all
possible problems. For any problem an algorithm is goodlairsp you can always find
another problem for which that algorithm has worse perfarceahan other algorithms.
Because the same algorithm with different parameter gsttian be considered as a
family of different algorithms, the NFL theorem applies tming as well. However,
the NFL is valid only wherall possible search problems are considered. SBSE only
represents a subset of all possible problems, so it couldobsilde to find “good”
parameter settings that work well for this subset. Such avkngood configuration is
important when handing tools over to practitioners, as as reasonable to expect
them to tune such tools as that would require deep knowlefigpe dools and of search
algorithms in general. Similarly, it is also important fremnesearch perspective to avoid
skewing results with improper parameter settings.

In this paper, we present the results of the largest empaitalysis of tuning in
SBSE to date to address the question of parameter tuning.hd&edhe scenario of
test data generation at unit test level because it is oneeofribst studied problems
in SBSE [1]. In particular, we consider test data generatrobject-oriented soft-
ware using the FOSUITE tool [6], where the goal is to find the minimal test suite that
maximizes branch coverage (having a small test suite isitapbwhen no automated
oracles are available and results need to be manually ctidxgksoftware testers). We
chose to consider five parameter settings (e.g., populaiz@nand crossover rate). To
make the experiments finish in feasible time, we only consd@0 software classes as
case study (previous empirical analyses gbSuUITE were based on thousands of dif-
ferent classes [6]). Still, this led to more thane millionexperiments that took weeks
to run even on a cluster of computers.

Although it is well known that parameter tuning has impactlom performance of
search algorithms, there is little empirical evidence im literature of SBSE that tries
to quantify its effects. The results of the large empiricalgsis presented in this paper
provide compelling evidence that parameter tuning is idde#ical, and unfortunately
very sensitive to the chosen case study. This brings to a comyulse ofmachine
learningtechniques [7] if one wants to evaluate tuning in a soundnsifie way. Fur-
thermore, a problem related to tuning that is often ignosdtésearch budgetA prac-
titioner might not want to deal with the choice of a genetigogithm population size,
but the choice of the computational time (i.e., how long kbég willing to wait before
the tool gives an output) is something that has a strong itrgratuning. To improve
performance, tuning should be a function of the search budgewe will discuss in
more details in the paper.

This paper is organized as follows. Section 2 discussetetbl@ork on tuning. The
analyzed search algorithm (a genetic algorithm usedvo$UITE) is presented in
Section 3 with a description of the parameters we investigath respect to tuning.
Section 4 presents the case study and the empirical anaysidelines on how to
handle parameter tuning are discussed in Section 5. Threaddidity are discussed in
Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Eibenet al. [8] presented a survey on how to control and set parameteevaif evo-
lutionary algorithms. In their survey, several technigaes discussed. Of particular
interest is the distinction betwegrarameter tuningand parameter contral The for-
mer deals with how to choose parameter valoeforerunning a search algorithm. For
example, should we use a population size of 50 or 100? On ttex band, parameter
control deals with how to change parameter valliging the run of a search algorithm.
A particular value that is good at the beginning of the seariiht become sub-optimal
in the later stages. For example, in a genetic algorithm oigatrvant to have a high
mutation rate (or large population size) at the beginninpefsearch, and then decrease
itin the course of the evolution; this would be conceptusiiyilar to temperature cool-
ing in simulated annealing. In this paper we only deal witrapzeter tuning. Parameter
control is a promising area of research, but mainly unexgglén SBSE.

Recently, Smit and Eiben [9] carried out a series of expanisen parameter tun-
ing. They consider the tuning of six parameters of a gendgiardhm applied to five
numerical functions, comparing three settings: a defatlirg) based on “common wis-
dom”, the best tuning averaged on the five functions (whidy ttall generalis}, and
the best tuning for each function independenglyecialisy. Only one fixed search bud-
get (i.e., maximum number of fithess evaluations as stopgitgrion) was considered.
Our work shares some commonalities with these experimbuatsnore research ques-
tions and larger empirical analysis are presented in thpepéletails will be given in
Section 4).

In order to find the best parameter configuration for a givese caudy, one can run
experiments with different configurations, and then thefigomation that gives highest
results on average can be identified as best for that casg stodever, evaluating all
possible parameter combinations is infeasible in pracfieehniques to select only a
subset of configurations to test that have high probabilitheing optimal exist, for
example regression trees (e.g., used in [10]) and respamtEEs methodology (e.g.,
used in [11]). The goal of this paper is to study the effectparhimeter tuning, which
includes also the cases of sub-optimal choices. Such tygeadysis requires an exhaus-
tive evaluation. This is done only for the sake of answereggarch questions (as for
example to study the effects of a sub-optimal tuning). Inegah a practitioner would
be interested only in the best configuration.

If a practitioner wants to use a search algorithm on an im@gtroblem (not nec-
essarily in software engineering) that has not been studi¢kle literature, then she
would need to tune the algorithm by herself, as defaultrsggtare likely to bring to
poor performance. To help practitioners in making suchrgyihere exist frameworks

such as GUIDE [12]. The scope of this paper is different: veklesknownSBSE prob-
lems (e.g., test data generation for object-oriented swéjv For known problems, it is
possible to carry out large empirical analyses in laboyasettings.

There might be cases in which, even on known problems, it htighuseful to let
the practitioners perform/improve tuning (if they have egio knowledge about search
algorithms), and tools like EvoTest support this [3]. As aaraple, a SBSE problem
instance type might need to be solved several times (e.@ft@ase system that is
slightly modified during time). Another example could be totdning on a sub-system
before tackling the entire system (which for example co@dtilions of lines of code).
Whether such cases occur in practice, and whether the tuambesafely left to prac-
titioners, would require controlled empirical studiesrdiistrial contexts. As such em-
pirical evidence is currently lacking in the literature @SE, we are in the conditions
to claim that parameter tuning is needed before releasirf83Bol prototypes.

3 Search Algorithm Setting

We performed our experiments in a domain of test generationlfject-oriented soft-
ware. In this domain, the objective is to derive test suisesyof test cases) for a given
class, such that the test suite maximizes a chosen coverigg@o while minimizing
the number of tests and their length. A test case in this doma sequence of method
calls that constructs objects and calls methods on themré&hdting test suite is pre-
sented to the user, who usually has to add test oracles thek ¢br correctness when
executing the test cases.

The test cases may have variable length [13], and so eapg@paches to testing
object-oriented software made use of method sequences$qjldr strongly typed ge-
netic programming [16, 17]. In our experiments, we used theE&ITE [6] tool, in
which one individual is an entire test suite of variable silee entire search space of
test suites is composed of all possible test suites of sipas f to a predefined max-
imum N. Each test case can have a size (i.e., number of statememts) fo L. For
each position in the sequence of statements of a test cage, ¢hn be up td,, ..
possible statements, depending on the SUT and the positthimthe test case (later
statements can reuse objects instantiated in previowenstats). The search space is
hence extremely large, although finite becalysd. and1,,,, are finite.

Crossover between test suites generates two offsgringnd O, from two parent
test suites”?; and P,. A random valuex is chosen fronj0,1], and the first offspring),
contains the firsty| P, | test cases from the first parent, followed by the {ast «)|P,|
test cases from the second parent. The second offspxirgpntains the firsty| P,| test
cases from the second parent, followed by the (&st «)|P;| test cases from the first
parent.

The mutation operator for test suites works both at tesesuit test case levels:
When a test suitd is mutated, each of its test cases is mutated with probabjlit7 |.
Then, with probabilitys = 0.1, a new test case is added to the test suite. If it is added,
then a second test case is added with probabifttyand so on until théth test case
is not added (which happens with probability- o%). Test cases are added only if the
limit V has not been reached.

If a test case is mutated, then three types of operationspptieed with probability
1/3 in order: remove, change and insert. When removing statemendf a test case of
lengthi, each statement is removed with probabilit}f. Removing a statement might
invalidate dependencies within the test case, which wengttéo repair; if this repair
fails, then dependent statements are also deleted. Wheyirapfite change mutation,
each statement is changed with probabilify. A change means it is replaced with a
different statement that retains the validity of the tesega.g., a different method call
with the same return type. When inserting statements, welrfiisett a new statement
with probabilitys’ = 0.5 at a random position. If it is added, then a second statement
is added with probabilityr’?, and so on until théth statement is not inserted. If after
applying these mutation operators a test ¢dsas no statement left (i.e., all have been
removed), thert is removed fronf/". The initial population of test cases is generated
randomly, by repeatedly performing the insertion operalsw used to mutate test cases.

The search objective we chose is branch coverage, whiclirescghat a test suite
exercises a program in such a way that every condition (iflewhtc.) evaluates to true
and to false. The fitness function is based on the well-astedd branch distance [18],
which estimates the distance towards a particular evaluati a branch predicate. The
overall fitness of a test suite with respect to all branch@sdasured as the sum of the
normalized branch distancesof all branches in the prognaglentest. Using a fithess
function that considers all the testing targets at the samehas been shown to lead to
better results than the common strategy of consideringteagét individually [6]. Such
an approach is particularly useful to reduce the negatiexesfof infeasible targets for
the search.

We applied several bloat control techniques [19] to avoéd the size of individuals
becomes bloated during the search.

In the experiments presented in this paper, we investigatecgparameters of the
search, which are not specific to this application domaire fitst parameter is the
crossover rateWhenever two individuals are selected from the parent geioer, this
parameter specifies the probability with which they are sedsover. If they are not
crossed over, then the parents are passed on to the nexiistagggion), else the off-
spring resulting from the crossover are used at the mutatange.

The second parameter is thepulation sizewhich determines how many individ-
uals are created for the initial population. The populas@e does not change in the
course of the evolution, i.e., reproduction ensures tteah#xt generation has the same
size as the initial generation.

The third parameter is thelitism rate Elitism describes the process that the best
individuals of a population (its elite) automatically siwevevolution. The elitism rate is
sometimes specified as a percentage of the population tiviess) or as the number of
individuals that are copied to the next generation. For @lanwith an elitism rate set
to 1 individual, the best individual of the current poputatis automatically copied to
the next generation. In addition, it is still available feproduction during the normal
selection/crossover/mutation process.

In a standard genetic algorithm, elitism, selection andaeyction is performed
until the next population has reached the desired populaiive. A common variant
is steady statgenetic algorithms, in which after the reproduction thejafing replace

their parents in the current population. As the concept iisel does not apply to
steady state genetic algorithms, we treat the steady statetig algorithm as a special
parameter setting of the elitism rate.

The fourth parameter is theelection mechanismwhich describes the algorithm
used to select individuals from the current population émroduction. In roulette wheel
selection, each individual is selected with a probabilitsttis proportionate to its fit-
ness (hence it is also known as fitness proportionate sah¢cth tournament selection,
a number of individuals are uniformly selected out of therent population, and the
one with the best fithess value is chosen as one parent faychegtion. Thetourna-
ment sizedenotes how many individuals are considered for the “tauera”. Finally,
rank selection is similar to roulette wheel selection, @kdbat the probability of an
individual being selected is not proportionate to its fimbst to its rank when rank-
ing individuals according to their fithess. The advantagthisf approach over roulette
wheel selection is that the selection is not easily domahbteindividuals that are fitter
than others, which would lead to premature convergence pitieability of a ranking
position can be weighted using trenk biasparameter.

Finally, the fifth parameter we consider is whether or notgplaaparent replace-
ment checkWhen two offspring have been evolved through crossover amation,
checking against the parents means that the offspringveuovily if at least one of the
two offspring has a better fitness than their parents. Ifighisot the case, the parents
are used in the next generation instead of the offspring.

In addition to these parameters, another important dectisi@ genetic algorithm
is when to stop the search, as it cannot be assumed that amabgblution is always
found. The search budget can be expressed in many diffevanafs, for example, in
terms of the time that the search may execute. A common forofign used in the
literature to allow better and less biased comparisons, lisnit the number of fitness
evaluations. In our setting, the variable size of individuaeans that comparing fitness
evaluations can be meaningless, as one individual can lyesthert and another one
can be very long. Therefore, in this setting (i.e., test detaeration for object-oriented
software) we rather count the number of statements executed

4 Experiments

In this paper, we use as case study a subset of 20 Java clagsdglmse previously
used to evaluate OSUITE [6]. In choosing the case study, we tried to balance the
different types of classes: historical benchmarks, datacgtres, numerical functions,
string manipulations, classes coming from open sourcecgtjgns and industrial soft-
ware. Apart from historical benchmarks, our criterion wisetecting individual classes
was that classes are non-trivial, but on whichdSuITE may still achieve high cov-
erage to allow for variation in the results. We thereforeesteld classes wherevB-
SUITE used up its entire search budget without achieving 100%chranverage, but
still achieved more than 80% coverage.

We investigated five parameters:

— Crossover ratef0, .2 ,.5,.8,1}.
— Population size{4 , 10, 50 , 100 , 200}.

— Elitismrate:{0, 1, 10% , 50%} or steady state.

— Selection: roulette wheel, tournament with size eithar 7, and rank selection
with bias eitherl.2 or 1.7.

— Parent replacement check (activated or not).

Notice that the search algorithm used iNdSUITE has many other parameters
to tune. Because the possible number of parameter contisas exponential in the
number of parameters, only a limited number of parametetts/alues could be used.
For the evaluation we chose parameters that are common tbganstic algorithms,
and avoided parameters that are specific WoEUITE to handle object-oriented soft-
ware. Furthermore, because the goal of this paper is to shedgffects of tuning, we
analyzed all the possible combinations of the selectedhpetexrs. On the other hand,
if one is only interested in finding the “best” tuning for thase study at hand, tech-
niques such as the response surface methodology could 8eaiseduce the number
of configurations to evaluate.

Another important factor is theearch budgetA search algorithm can be run for
any arbitrary amount of time — for example, a practitionarldaun a search algorithm
for one second only, or for one hour. However, the search diuidgs a strong effect
on parameter tuning, and it is directly connected to the epnhof explorationand
exploitationof the search landscape. For example, the choice of a lagdaimn size
puts more emphasis on the exploration of the search landswdych could lead to a
better escape from local optima. On the other hand, a largelation can slow down
the convergence to global optima when not so many local @ptine present. If one
has a small search budget, it would be advisable to use a pomallation size because
with a large population only few generations would be pdssibherefore, parameter
tuning is strongly correlated to the search budget. In thetsearch budget is perhaps
the only parameter a practitioner should set. A realistmacio might be the following:
During working hours and development, a software engineeldvhave a small budget
(in the order of seconds/minutes) for search, as coding abdgljing would take place
at the same time. On the other hand, a search could then lvariefhg overnight, and
results collected the morning after. In these two situ&johne parameter settings (e.g.
population size) should be different. In this paper, we @ersa budget ofl 00,000
function call executions (considering the number of fitrfesstion evaluations would
not be fair due to the variable length of the evolved soligjoiVe also consider the
cases of a budget that is a tenty,000) and ten times bigger (000,000).

For each class in the case study, we run each combinationrafngéer settings
and search budget. All experiments were repeated 15 timeakéothe random nature
of these algorithms into account. Therefore, in total we 2@ac 5* x 2 x 3 x 15 =
1,125,000 experiments. Parameter settings were compared based anttieyed cov-
erage. Notice that, in testing object-oriented softwadrks, @lso very important to take
the size of the generated test suites into account. Howragasons of space, in this
paper we only consider coverage, in particular branch emgeer

Using the raw coverage values for parameter setting cosgaiwould be too
noisy. Most branches are always covered regardless of theenohparameter setting,
while many others are simply infeasible. Giviethe number of covered branches in a

run for a clasg, we used the following normalization to definecdative coverage::

rlbye) = 0= Mine
max. — min.

wheremin, is the worst coverage obtain &l the 56,250 experiments for that class

andmax, is the maximum obtained coveragentin, == max., thenr = 1.

To analyze all these data in a sound manner, we followed tideles in [20].
Statistical difference is measured with the Mann-Whitnetebk; whereas effect sizes
are measured with the Vargha-Delanéy, statistics. Thed,, statistics measures the
probability that a run with a particular parameter settingjds better coverage than
a run of the other compared setting. If there is no differenegveen two parameter
setting performances, theh, = 0.5. For reasons of space it is not possible to show all
the details of the data and analyses. For example, insteabofting all the p-values,
we only state when those are lower tha65.

In the analyses in this paper, we focus on four specific ggttimorst {1'), best
(B), default (0) and tuned T'). The worst combinatiolV is the one that gives the
worst coverage out of th&* x 2 = 1,250 combinations, and can be different depend-
ing on the class under test and chosen search budget. Hymibarepresents the best
configuration out ofl,250. The “default” combinatiorD is arbitrarily set to population
size 100, crossover rates, rank selection withl.7 bias,10% of elitism rate and no
parent replacement check. These valuesraliee with common suggestions in the lit-
erature, and that we used in previous work. In particul#s,dbfault setting was chosen
beforerunning any of the experiments. Finally, given a set of @dasshe tuned con-
figurationT represents the configuration that has the highest averkdweecoverage
on all that set of classes. When we write for exampley, = 0.8, this means that,
for the addressed class and search budget, a run of the tdefatigurationD has0.8
probability of yielding a coverage that is higher than the abtained by a run of the
worst configuratioriV'.

The data collected from this large empirical study could eduto addresseveral
research questions. Unfortunately, for reasons of spaceniyefocus on the four that
we believe are most important.

RQ1: How large is the potential impact of a wrong choice of paameter settings?

In Table 1, for each class in the case study and test budgg100, we report the relative
coverage (averaged out of 15 runs) of the worst and best ewafigns. There are cases
in which the class under test is trivial fovBSUITE (e.g., DateParse), in which tuning
is not really important. But, in most cases, there is a verydalifference between the
worst and best configuration (e.g., BellmanFordltera#dgyrong parameter tuning can
make it hard (on average) to solve problems that could be@hsywise.

Different parameter settings cause
very large variance in the performance.

Table 1.Relative coverage averaged out of 15 runs for default, worst astidonfiguration. Ef-
fect sizes for default compared to worst) and and compared to best configuratighh(z).
Statistically significant effect sizes are in bold.

Class Default Worst Best Apw Aps
Cookie 0.49 0.33 0.86 0.93 0.00
DateParse 1.00 1.00 1.00 0.50 0.50
Triangle 1.00 0.60 1.00 0.70 0.50
XMLElement 0.90 0.43 0.97 1.00 0.10
ZipOutputStream 1.00 0.47 1.00 0.77 0.50
CommandLine 0.41 0.11 0.59 0.98 0.34
Remainder 0.82 0.30 0.98 0.98 0.13
Industryl 0.95 0.53 0.98 1.00 0.18
Industry?2 0.90 0.42 0.95 1.00 0.11
Attribute 0.47 0.21 0.90 1.00 0.00
DoubleMetaphone 0.63 0.22 0.96 1.00 0.00
Chronology 0.77 0.43 0.94 1.00 0.00
ArrayList 1.00 0.67 1.00 0.67 0.50
DateTime 0.60 0.21 0.95 1.00 0.00
TreeMap 0.65 0.00 0.78 0.93 0.27
Bessj 0.65 0.42 0.95 1.00 0.00
BellmanFordlterator 0.13 0.00 1.00 0.57 0.07
TTestimpl 0.55 0.21 1.00 0.88 0.00
LinkedListMultimap 0.81 0.18 1.00 1.00 0.03
FastFourierTransformer 1.00 0.29 1.00 0.98 0.47

RQ2: How does a “default” setting compare to the best and worsachievable
performance?

Table 1 also reports the relative coverage for the defattinge with effect sizes of
the comparisons with the worst and best configuration. Asvamdd expect, a default
configuration has to be better than the worst, and worselégjtlze best configuration.
However, for most problems, although the default settingugh bettethan the worst
setting (i.e. A pw values close ta), it is unfortunatelymuch worse¢han the best setting
(i.e., App values are close). When one uses randomized algorithms, it is reasonable
to expect variance in the performance when they are run twittea different seed.
However, consider the example of Bessj in Table 1, whérgy = 1 andApp = 0.

In that case, the coverage values achieved by the defatittgsat 15 runs are always
better than any of thé5 coverage values obtained with the worst configuration, but
also always worse than any of the& runs obtained with best configuration. These data
suggest that, if one does not have the possibility of tunihgn the use of a default
setting is not particularly inefficient. However, there #&de space for performance
improvement if tuning is done.

Default parameter settings perform relatively well, bug ar
far from optimal on individual problem instances.

RQ3: If we tune a search algorithm based on a set of classes,wawill its
performance be on other new classes?

To answer this research question, for each class, we turedgbrithm on thether19
classes, and then compared this tuned version with the ltdefad best configuration
for the class under test. Table 2 reports the data of thig/sisalf one makes tuning
on a sample of problem instances, then we would expect avedatjood performance
on new instances. But thd; values in Table 2 are in most of the cases low and
statistically significant. This means that parameter rsgstithat should work well on
average can be particularly inefficient on new instancespesed to the best tuning
for those instances. In other words, there is a very highawas in the performance of
parameter settings.

Of particular interest are thér, values. In three cases they are equal.fo(so no
difference between tuned and default settings), in sevsascihey are higher thans
(so tuning helps), but then in 10 cases they are lower tharbut only in four cases
there is statistically significant difference). This meémast, on the case study used in
this paper, doing tuning is evemorsethan just using some arbitrary settings coming
from the literature! This might be explained with the cortogfover-fittingin machine
learning [7]. A too intensive tuning on a set of problem imstas can result in parameter
settings that are too specific for that set. Even the ca$e pfoblem instances, as done
in this paper, is too small to avoid such type of over-fitting.

Tuning should be done on a very large sample of problem
instances. Otherwise, the obtained parameter settingg are
likely to be worse than arbitrary default values.

RQ4: What are the effects of the search budget on parameter tung?

For each class and the three search budgets, we comparesdtfitrenance of the default
setting against the worst and the best; Table 3 shows theofldtés analysis. For a
very large search budget one would expect not much differdsetween parameter
settings, as all achievable coverage would be reached vgkhgnobability. Recall that

it is not possible to stop the search before because, apantthivial cases, there are
always infeasible testing targets (e.g., branches) whosdar is unknown. The data in
Table 3 show that trend for many of the used programs (e g L.is&edListMultimap)
regarding the default and best settings, but the worshggtistill much worse than the
others (i.e.,Apw close tol) even with a search budget of one million function calls.
What is a “large” search budget depends of course on the aade §or example, for
DateParse, already a budget1®0,000 is enough to get no difference between best,
worst and default configuration. On the other hand, with ackelaudget ofl,000,000,

for example for CommandLine there is still a statisticatiypag difference.

As said, a very large search budget might reduce the imptahtuning. How-
ever, when we increase the search budget, that does notsatmegn that tuning be-
comes less important. Consider again the case of CommagdRinbudget10,000,
the Ay is not statistically significant (i.e., close ic5 and Mann-Whitney U-test has

Table 2. Relative coverage averaged out of 15 runs for tuned configurdiftect sizes for tuned
compared to default{r) and and compared to best configuratiehy-). Statistically signifi-
cant effect sizes are in bold.

Class Tuned Arp Arg
Cookie 0.78 0.98 0.27
DateParse 1.00 0.50 0.50
Triangle 1.00 0.50 0.50
XMLElement 0.81 0.40 0.11
ZipOutputStream 0.93 0.47 0.47
CommandLine 0.38 0.32 0.22
Remainder 0.62 0.23 0.05
Industryl 0.90 0.24 0.08
Industry2 0.84 0.30 0.17
Attribute 0.52 0.75 0.00
DoubleMetaphone 0.57 0.08 0.00
Chronology 0.87 0.76 0.28
ArrayList 1.00 0.50 0.50
DateTime 0.93 1.00 0.30
TreeMap 0.32 0.33 0.26
Bessj 0.81 0.92 0.18
BellmanFordIterator 0.00 0.43 0.00
TTestimpl 0.68 0.93 0.03
LinkedListMultimap 0.98 0.96 0.33
FastFourierTransformer 0.97 0.28 0.25

p-value greater tha®.05), whereas it gets higher (close tpfor 100,000 and then for
1,000,000. For Ap g, it is statistically significant when budget 18,000, but not when
we increase the budget 1©0,000. Interestingly, it comes back to be statistically sig-
nificant at1,000,000, with an effect size that is even stronger than in the caseddgét
10,000. How come? The reason is that the testing targets have efiffaifficulty to
be covered. Even with an appropriate tuning, for some target would still need a
minimum amount of search budget. If the search budget isrithan that threshold,
then we would not cover (with high probability) those taseten with the best tuning.
Therefore, tuning might not be so important if either thercledoudget is too “large”,
orifitis too “small”’, where “large” and “small” depend ondltase study. But such an
information is usually not known before doing tuning.

Available search budget has strong impact on the
parameter settings that should be used.

5 Guidelines

The empirical analysis carried out in this paper clearlwshthat tuning has a strong
impact on search algorithm performance, and if it is not doroperly, there are dire

Table 3. For each test budget, effect sizes of default configuration cordparbe worst A py)
and best configuration4p). Statistically significant effect sizes are in bold. Some data are
missing (-) due to the testing tool running out of memory.

Class Test Budget
10,000 100,000 1,000,000

Apw Apsp Apw Aps Apw Aps
Cookie 0.77 0.07 0.93 0.00 0.82 0.11
DateParse 0.63 0.50 0.50 0.50 0.50 0.50
Triangle 0.67 0.50 0.70 0.50 0.69 0.50
XMLElement 0.81 0.07 1.00 0.10 1.00 0.50
ZipOutputStream 0.87 0.43 0.77 0.50 0.71 050
CommandLine 0.54 0.23 0.98 0.34 1.00 0.00
Remainder 0.72 0.21 0.98 0.13 1.00 0.46
Industryl 0.63 0.00 1.00 0.18 - -
Industry?2 0.82 0.06 1.00 0.11 1.00 0.42
Attribute 0.80 0.06 1.00 0.00 1.00 0.15
DoubleMetaphone 0.87 0.06 1.00 0.00 0.92 0.14
Chronology 0.90 0.08 1.00 0.00 1.00 0.17
ArrayList 0.70 0.43 0.67 0.50 1.00 0.50
DateTime 0.69 0.06 1.00 0.00 0.88 0.45
TreeMap 0.60 0.24 0.93 0.27 1.00 0.27
Bessj 0.83 0.10 1.00 0.00 1.00 0.33
BellmanFordlterator 0.50 0.00 0.57 0.07 - -
TTestimpl 0.88 0.21 0.88 0.00 0.95 0.31
LinkedListMultimap 0.60 0.05 1.00 0.03 0.96 0.50
FastFourierTransformer 0.83 0.00 0.98 0.47 - -

risks in ending up with tuned configurations that are worsa tuggested values in the
literature. To avoid these problems, it would hence be itgmito use machine learn-
ing techniques [7] when tuning parameters. Which ones tosisentext dependent,
and a detailed discussion is beyond the scope of this papsead, we discuss some
basic scenarios here, aiming at developers who want to naeneters before releasing
SBSE tool prototypes, or researchers who want to tune tookscientific experiments.
Further details can be found for example in [7].

Given a case study composed of a number of problem instaracemly partition
it in two non-overlapping subsets: thaining and thetestset. A common rule of thumb
is to use 90% of instances for the training set, and the rangalr0% for the test set. Do
the tuning using only the problem instances in the trainety Isstead of considering
all possible parameter combinations (which is not feakihlee techniques such as
the response surface methodology (e.g., used in [11]).MGivparameter setting that
performs best on this training set, then evaluate its perdoice on the test set. Draw
conclusions on the algorithm performance only based onethiglts on this test set.

If the case study is “small” (e.g., because composed of indlisystems and not
open-source software that can be downloaded in large diesitiand/or if the cost of
running the experiment is relatively low, usdold cross validation [7]. In other words,

randomly partition the case study inon-overlapping subsets (a common value is
k = 10). Use one of these as test set, and merge the éthet subsets to use them as
training set. Do the tuning on the training set, and evalti&eerformance on the test
set. Repeat this procesdimes, every time with a different subset for the test sed, an
remainingk — 1 for the training set. Average the performance on all theltesbtained
from all thek test sets, which will give some valuedescribing the performance of the
algorithm. Finally, apply tuning oall the case study (do not use any test set), and keep
the resulting parameter setting as the final one to use. Tiidityaof this parameter
setting would be estimated by the valuealculated during the cross validation.

Comparisons among algorithms should never be done on tedormance on the
training set — only use the results on validation sets. Adaafithumb, if one com-
pares different “tools” (e.qg., prototypes released in thblig domain), then no tuning
should be done on released tools, because parameter settingn essential component
thatdefinea tool. On the other hand, if the focus is on evaluating ators at a high
level (e.g., on a specific class of problems, is it better ® pspulation based search
algorithms such as genetic algorithms or single individglgbrithms such as simulated
annealing?), then each compared algorithm should redeiveame amount of tuning.

6 Threats to Validity

Threats tanternal validity might come from how the empirical study was carried out.
To reduce the probability of having faults in our experimémamework, it has been
carefully tested. But it is well known that testing alone manprove the absence of
defects. Furthermore, randomized algorithms are affdayathance. To cope with this
problem, we repeated each experiméhtimes with different random seeds, and we
followed rigorous statistical procedures to evaluatertresults.

Threats taconstruct validit)come from the fact that we evaluated parameter settings
only based on structural coverage of the resulting testsgienerated by \EOSUITE .
Other factors that are important for practitioners and ghatuld be considered as well
are the size of the test suites and their readability (engportant in case of no formal
specifications when assert statements need to be manudégrdVhether these factors
are negatively correlated with structural coverage is aenaf further investigation.

Threats toexternal validitycome from the fact that, due to the very large number of
experiments, we only uset) classes as case study, which still took weeks even when
using a computer cluster. Furthermore, we manually selebtese20 classes, in which
we tried to have a balance of different kinds of software. fiedent selection for the
case study might result in different conclusions. Howetgethe best of our knowledge,
there is no standard benchmark in test data generation fectetriented software that
we could have rather used.

The results presented in this paper might not be valid onotare engineering
problems that are commonly addressed in the literature &S Based on the fact that
parameter tuning has large impact on search algorithmpeafaces, we hence strongly
encourage the repetition of such empirical analysis onr@BSE problems.

7 Conclusion

In this paper, we have reported the results of the largestramlpstudy in parameter
tuning in search based software engineering to date. licpkat, we focus on test data
generation for object-oriented software using thedoBUITE tool [6].

It is well known that parameter tuning has effects on thegrarbnce of search
algorithms. However, this paper is the first that quantifiesé effects for a search based
software engineering problem. The results of this emgdiacalysis clearly show that
arbitrary parameter settings can lead to sub-optimal bgaecformance. Even if one
does a first phase of parameter tuning on some problem irstatiee results on new
problem instances can be very poor, even worse than agbgedtings. Hence, tuning
should be done on (very) large samples of problem instafides main contribution
of this paper is that it provides compelling empirical evide to support these claims
based on rigorous statistical methods.

To entail technology transfer to industrial practice, paeger tuning is a task of
responsibility of who develops and releases search basésl tbis hence important
to havelarge tuning phases on whickeveralproblem instances are employed. Unfor-
tunately, parameter tuning phases can result in overgitiaues. To validate whether
a search based tool can be effective in practice once detivier software engineers
that will use it on their problem instances, it is importamtise machine learning tech-
nigues [7] to achieve sound scientific conclusions. For etantuning can be done on
a subset of the case study (i.e., the so caltathing se), whereas performance eval-
uation would be done a on a separate and independent seth@g&o calledest sel.
This would reduce the dire threats to external validity aogrfrom over-fitting the pa-
rameter tuning. To the best of our knowledge, in the liteatf search based software
engineering, in most of the cases parameter tuning is eititefone, done on thentire
case study at hand, or its details are simply omitted.

Another issue that is often neglected is the relation betvieeing and search bud-
get. The final user (e.g., software engineers) in some casaklwun the search for
some seconds/minutes, in other cases they could afforcdhtd far hours/days (e.g.,
weekends and night hours). In these cases, to improve sgaritiimance, the parame-
ter settings should be different. For example, the popartadize in a genetic algorithm
could be set based on a linear function of the search budgetettr, that is a little
investigated topic, and further research is needed.

Acknowledgements

Andrea Arcuri is supported by the Norwegian Research CbuGdgrdon Fraser is
funded by the Cluster of Excellence on Multimodal Computing Interaction at Saar-
land University, Germany.

References

1. Harman, M., Mansouri, S.A., Zhang, Y.: Search based so&wagineering: A comprehen-
sive analysis and review of trends techniques and applications. TatR&port TR-09-03,
King's College (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Ali, S., Briand, L., Hemmati, H., Panesar-Walawege, R.: A systemaview of the appli-

cation and empirical investigation of search-based test-case genen&lBE Transactions
on Software Engineering6(6) (2010) 742-762

. Vos, T., Baars, A., Lindlar, F., Kruse, P., Windisch, A., Wegred.: Industrial Scaled Auto-

mated Structural Testing with the Evolutionary Testing Tool. In: IEEE Irztéomal Confer-
ence on Software Testing, Verification and Validation (ICST). (20161834

. Arcuri, A., Igbal, M.Z., Briand, L.: Black-box system testing ohl¢ime embedded systems

using random and search-based testing. In: ICTSS'10: Procexdfitige IFIP International
Conference on Testing Software and Systems, Springer (2010105-1

. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optatian. IEEE Transactions

on Evolutionary Computatiofi(1) (1997) 67-82

. Fraser, G., Arcuri, A.: Evolutionary generation of whole test suitasinternational Con-

ference On Quality Software (QSIC). (2011)

. Mitchell, T.: Machine Learning. McGraw Hill (1997)
. Eiben, A., Michalewicz, Z., Schoenauer, M., Smith, J.: Parametetrol in evolutionary

algorithms. Parameter Setting in Evolutionary Algorithms (2007) 19-46

. Smit, S., Eiben, A.: Parameter tuning of evolutionary algorithms: €adisevs. specialist.

Applications of Evolutionary Computation (2010) 542-551

Bartz-Beielstein, T., Markon, S.: Tuning search algorithms fal-werld applications: A
regression tree based approach. In: IEEE Congress on Evolyti@uenputation (CEC).
(2004) 1111-1118

Poulding, S., Clark, J., Waeselynck, H.: A principled evaluatiothefeffect of directed
mutation on search-based statistical testing. In: International Workshdgearch-Based
Software Testing (SBST). (2011)

Da Costa, L., Schoenauer, M.: Bringing evolutionary computatiamdsstrial applications
with GUIDE. In: Genetic and Evolutionary Computation Conference (GBEG2009)
1467-1474

Arcuri, A.: A theoretical and empirical analysis of the role of tesfusaice length in soft-
ware testing for structural coverage. |EEE Transactions on Softagineering (2011)
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.44.

Tonella, P.: Evolutionary testing of classes. In: ISSTA04: Pedaggs of the ACM Interna-
tional Symposium on Software Testing and Analysis, ACM (2004) 118-12

Fraser, G., Zeller, A.: Mutation-driven generation of unit testb@macles. In: ISSTA'10:
Proceedings of the ACM International Symposium on Software Testidg\aalysis, ACM
(2010) 147-158

Wappler, S., Lammermann, F.: Using evolutionary algorithms fuwtfit testing of object-
oriented software. In: GECCO’'05: Proceedings of the 2005 Condéer®n Genetic and
Evolutionary Computation, ACM (2005) 1053—-1060

Ribeiro, J.C.B.: Search-based test case generation for ajented Java software using
strongly-typed genetic programming. In: GECCO’08: Proceedingth®f2008 GECCO
conference companion on Genetic and evolutionary computation, AODB[2.819-1822
McMinn, P.: Search-based software test data generation: &ysuBoftware Testing, Verifi-
cation and Reliabilityl4(2) (2004) 105-156

Fraser, G., Arcuri, A.: It is not the length that matters, it is how gontrol it. In: IEEE
International Conference on Software Testing, Verification and Validgt©ST). (2011)
Arcuri, A., Briand, L.: A practical guide for using statistical testsgeess randomized algo-
rithms in software engineering. In: IEEE International Conferenc8aftware Engineering
(ICSE). (2011)

