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Abstract. A common application of search-based software testing is
to generate test cases for all goals defined by a coverage criterion (e.g.,
statements, branches, mutants). Rather than generating one test case at
a time for each of these goals individually, whole test suite generation
optimizes entire test suites towards satisfying all goals at the same time.
There is evidence that the overall coverage achieved with this approach
is superior to that of targeting individual coverage goals. Nevertheless,
there remains some uncertainty on whether the whole test suite approach
might be inferior to a more focused search in the case of particularly
difficult coverage goals. In this paper, we perform an in-depth analysis
to study if this is the case. An empirical study on 100 Java classes reveals
that indeed there are some testing goals that are easier to cover with the
traditional approach. However, their number is not only very small in
comparison with those which are only covered by the whole test suite
approach, but also those coverage goals appear in small classes for which
both approaches already obtain high coverage.
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1 Introduction

Search-based software engineering has been applied to numerous different tasks
in software development [15], and software testing is one of the most successful
of these [1, 19]. One particular task in software testing for which search-based
techniques are well suited is the task of automated generation of unit tests.
For example, there are search-based tools like AUSTIN for C programs [18] or
EvoSuite for Java programs [8].

In search-based software testing, the testing problem is cast as a search prob-
lem. For example, a common scenario is to generate a set of test cases such that
their code coverage is maximized. A code coverage criterion describes a set of
typically structural aspects of the system under test (SUT) which should be ex-
ercised by a test suite, for example all statements or branches. Here, the search
space would consist of all possible data inputs for the SUT. A search algorithm
(e.g., a genetic algorithm) is then used to explore this search space to find the
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input data that maximize the given objective (e.g., cover as many branches as
possible).

Traditionally, to achieve this goal a search is carried out on each individual
coverage goal [19] (e.g., a branch). To guide the search, the fitness function
exploits information like the approach level [24] and branch distance [17]. It may
happen that during the search for a coverage goal there are others goals that can
be “accidentally” covered, and by keeping such test data one does not need to
perform search for those accidentally covered goals. However, there are several
potential issues with such an approach:

– Search budget distribution: If a coverage goal is infeasible, then all search
effort to try to cover it would be wasted (except for any other coverage goals
accidentally covered during the search). Unfortunately, determining whether
a goal is feasible or not is an undecidable problem. If a coverage goal is
trivial, then it will typically be covered by the first random input. Given
a set of coverage goals and an overall available budget of computational
resources (e.g., time), how to assign a search budget to the individual goals
to maximise the overall coverage?

– Coverage goal ordering: Unless some smart strategies are designed, the search
for each coverage goal is typically independent, and potentially useful infor-
mation is not shared between individual searches. For example, to cover a
nested branch one first needs to cover its parent branch, and test data for
this latter could be use to help the search for the nested branch (instead of
starting from scratch). In this regard, the order in which coverage goals are
sought can have a large impact on final performance.

To overcome these issues, in previous work we introduced the whole test suite
approach [11,12]. Instead of searching for a test for each individual coverage goal
in sequence, the search problem is changed to a search for a set of tests that cov-
ers all coverage goals at the same time; accordingly, the fitness function guides
to cover all goals. The advantage of such an approach is that both the questions
of how to distribute the available search budget between the individual cover-
age goals, and in which order to target those goals, disappear. With the whole
test suite approach, large improvements have been reported for both branch
coverage [11] and mutation testing [12].

Despite this evidence of higher overall coverage, there remains the question
of how the use of whole test suite generation influences individual coverage goals.
Even if the whole test suite approach covers more goals, those are not necessarily
going to be a superset of those that the traditional approach would cover. Is
the higher coverage due to more easy goals being covered? Is the coverage of
difficult goals adversely affected? Although higher coverage might lead to better
regression test suites, for testing purposes the difficult coverage goals might be
more “valuable” than the others. So, from a practical point of view, preferring
the whole test suite approach over the traditional one may not necessarily be
better for practitioners in industry.

In this paper, we aim to empirically study in detail how the whole test suite
approach compares to the traditional one. In particular, we aim at studying
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whether there are specific coverage goals for which the traditional approach is
better and, if that is the case, we want to characterise those scenarios. Based
on an empirical study performed on 100 Java classes, our study shows that
indeed there are cases in which the traditional approach provides better results.
However, those cases are very rare (nearly one hundred times less) compared
to the cases in which only the whole test suite approach is able to cover the
goals. Furthermore, those cases happen for small classes for which average branch
coverage is relatively high.

This paper is organised as follows. Section 2 provides background informa-
tion, whereas the whole test suite approach is discussed in details in Section 3.
The performed empirical study is presented in Section 4. A discussion on the
threats to the validity of the study follows in Section 5. Finally, Section 6 con-
cludes the paper.

2 Background

Search-based techniques have been successfully used for test data generation
(see [1, 19] for surveys on this topic). The application of search for test data
generation can be traced back to the 70s [20], and later the key concepts of branch
distance [17] and approach level [24] were introduced to help search techniques
in generating the right test data.

More recently, search-based techniques have also been applied to test object-
oriented software (e.g., [13,21–23]). One specific issue that arises in this context
is that test cases are sequences of calls, and their length needs to be controlled
by the search. Since the early work of Tonella [22], researchers have tried to
deal with this problem, for example by penalizing the length directly in the
fitness function. However, longer test sequences can lead to achieve higher code
coverage [2], yet properly handling their growth/reduction during the search
requires special care [10].

Most approaches described in the literature aim at generating test suites
that achieve as high as possible branch coverage. In principle, any other cover-
age criterion is amenable to automated test generation. For example, mutation
testing [16] is often considered a worthwhile test goal, and has been used in a
search-based test generation environment [13].

When test cases are sought for individual goals in such coverage based ap-
proaches, it is important to keep track of the accidental collateral coverage of the
remaining goals. Otherwise, it has been proven that random testing would fare
better under some scalability models [5]. Recently, Harman et al. [14] proposed
a search-based multi-objective approach in which, although each coverage goal
is still targeted individually, there is the secondary objective of maximizing the
number of collateral goals that are accidentally covered. However, no particular
heuristic is used to help covering these other coverage goals.

All approaches mentioned so far target a single test goal at a time – this
is the predominant method. There are some notable exceptions in search-based
software testing. The works of Arcuri and Yao [6] and Baresi et al. [7] use a
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single sequence of function calls to maximize the number of covered branches
while minimizing the length of such a test case. A drawback of such an approach
is that there can be conflicting testing goals, and it might be impossible to cover
all of them with a single test sequence regardless of its length.

To overcome those issues, in previous work we proposed the whole test suite
approach [11,12]. In this approach, instead of evolving individual tests, whole test
suites are evolved, with a fitness function that considers all the coverage goals
at the same time. Promising results were obtained for both branch coverage [11]
and mutation testing [12].

3 Whole Test Suite Generation

To make this paper self-contained, in this section we provide a summarised
description of the traditional approach used in search-based software testing
and the whole test suite approach. For more details on the traditional approach,
the reader can for example refer to [19, 24]. For the whole test suite approach,
the reader can refer to [11,12].

Given a SUT, assume X to be the set of coverage goals we want to automat-
ically cover with a set of test cases (i.e., a test suite) T . Coverage goals could be
for example branches if we are aiming at branch coverage, or any other element
depending on the chosen coverage criterion (e.g., mutants in mutation testing).

3.1 Generating Tests for Individual Coverage Goals

Given |X| = n coverage goals, traditionally there would be one search for each
of them. To give more gradient to the search (instead of just counting “yes/no”
on whether a goal is covered), usually the approach level A(t,x) and branch
distance d(t,x) are employed for the fitness function [19,24]. The approach level
A(t,x) for a given test t on a coverage goal x ∈ X is used to guide the search
toward such target branch. It is determined as the minimal number of control
dependent edges in the control dependency graph between the target branch
and the control flow represented by the test case. The branch distance d(t,x) is
used to heuristically quantify how far a predicate in a branch x is from being
evaluated as true. In this context, the considered predicate xc is taken for the
closest control dependent branch where the control flow diverges from the target
branch. Finally, the resulting fitness function to minimize for a coverage goal x
will be:

f(t,x) = A(t,x) + ν(d(t,xc)) ,

where ν is any normalizing function in [0,1] (see [3]). For example, consider
this trivial function:
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public static void foo(int z){
if(z > 0)
if(z > 100)
if(z > 200)
; //target

}

With a test case t50 having the value z = 50, the execution would diverge
at the second if-condition, and so the resulting fitness function for the target
xz>200 would be

f(t50,xz>200) = 1 + ν(|50− 100|+ 1) = 1 + ν(51) ,

which would be higher (i.e., worse) than a test case having z = 101:

f(t101,xz>200) = 0 + ν(|101− 200|+ 1) = 0 + ν(100) .

While implementing this traditional approach, we tried to derive a faithful
representation of current practice, which means that there are some optimiza-
tions proposed in the literature which we did not include:

– New test cases are only generated for branches that have not already been
covered through collateral coverage of previously created test cases. However,
we do not evaluate the collateral coverage of all individuals during the search,
as this would add a significant overhead, and it is not clear what effects this
would have given the fixed timeout we used in our experiments.

– When applying the one goal at a time approach, a possible improvement could
be to use a seeding strategy [24]. During the search, we could store the test
data that have good fitness values on coverage goals that are not covered
yet. These test data can then be used as starting point (i.e., for seeding the
first generation of a genetic algorithm) in the successive searches for those
uncovered goals. However, we decided not to implement this, as reference [24]
does not provide sufficient details to reimplement the technique, and there is
no conclusive data regarding several open questions; for example, potentially
a seeding strategy could reduce diversity in the population, and so in some
cases it might in fact reduce the overall performance of the search algorithm.

– The order in which coverage goals are selected might also influence the result.
As in the literature usually no order is specified (e.g., [14, 22]), we selected
the branches in random order. However, in the context of procedural code
approaches to prioritize coverage goals have been proposed, e.g., based on
dynamic information [24]. However, the goal of this paper is neither to study
the impact of different orders, nor to adapt these prioritization techniques to
object-oriented code.

– In practice, when applying a single goal strategy, one might also bootstrap
an initial random test suite to identify the trivial test goals, and then use a
more sophisticated technique to address the difficult goals; here, a difficult,
unanswered question is when to stop the random phase and start the search.
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3.2 Whole Test Suite Generation

For the whole test suite approach, we used exactly the same implementation as
in [11,12]. In the Whole approach, the approach level A(t,x) is not needed in the
fitness function, as all branches are considered at the same time. In particular,
the resulting fitness function to minimize for a set of test cases T on a set of
branches X is:

w(T,X) =
∑
x∈X

d(T,x) ,

where d(T,x) is defined as:

d(T,x) =


0 if the branch has been covered,

ν(dmin(t ∈ T,x)) if the predicate has been
executed at least twice,

1 otherwise.

Note that these X coverage goals could be considered as different objectives.
Instead of linearly combining them in a single fitness score, a multi-objective
algorithm could be used. However, a typical class can have hundreds if not
thousands of objectives (e.g., branches), making a multi-objective algorithm not
ideal due to scalability problems.

4 Empirical Study

In this paper, we carried out an empirical study to compare the whole test suite
approach (Whole) with the traditional one branch at a time approach (One-
Branch). In particular, we aim at answering the following research questions:

RQ1: Are there coverage goals in which OneBranch performs better?
RQ2: How many coverage goals found by Whole get missed by OneBranch?
RQ3: Which factors influence the relative performance between Whole and

OneBranch?

4.1 Experimental Setup

In this paper, for the case study we randomly chose 100 Java classes from the
SF100 corpus [9], which is a collection of 100 projects randomly selected from
the SourceForge open source software repository. We randomly selected from
SF100 to avoid possible bias in the selection procedure, and to have higher
confidence to generalize our results to other Java classes as well. In total, the
selected 100 classes contain 2,383 branches, which we consider as test goals.

The SF100 currently contains more than 11,000 Java classes. We only used
100 classes instead of the entire SF100 corpus due to the type of experiments
we carried out. In particular, on the selected case study, for each class we ran
EvoSuite in two modes: one using the traditional one branch at a time approach
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(OneBranch), and the other using the whole test suite approach (Whole). To take
randomness into account, each experiments was repeated 1,000 times, for a total
of 100× 2× 1,000 = 200,000 runs of EvoSuite.

When choosing how many classes to use in a case study, there is always a
tradeoff between the number of classes and the number of repeated experiments.
On one hand, a higher number of classes helps to generalize the results. On the
other hand, a higher number of repetitions helps to better study in detail the
differences on specific classes. For example, given the same budget to run the
experiments, we could have used 10,000 classes and 10 repetitions. However, as
we want to study the “corner cases” (i.e., when one technique completely fails
while the other compared one does produce results), we gave more emphasis on
the number of repetitions to reduce the random noise in the final results.

Each experiment was run for up to three minutes (the search on a class was
also stopped once 100% coverage was achieved). Therefore, in total the entire
case study took up to 600,000/(24× 60) = 416 days of computational resources,
which required a large cluster to run. When running the OneBranch approach,
the search budget (i.e., the three minutes) is equally distributed among the
coverage goals in the SUT. When the search for a coverage goal finishs earlier
(or a goal is accidentally covered by a previous search), the remaining budget is
redistributed among the other goals still to cover.

To properly analyse the randomized algorithms used in this paper, we fol-
lowed the guidelines in [4]. In particular, when branch coverage values were com-
pared, statistical differences were measured with the Wilcoxon-Mann-Whitney
U-test, where the effect size was measured with the Vargha-Delany Â12. A
Â12 = 0.5 means no difference between the two compared algorithms.

When checking how often a goal was covered, because it is a binary variable,
we used the Fisher exact test. As effect size, we used the odds ratios, with a
δ = 1 correction to handle the zero occurrences. When there is no difference
between two algorithms, then the odds ratio is equal to one. Note, in some of
the graphs we rather show the natural logarithm of the odds ratios, and this is
done only to simplify their representation.

4.2 Results

Table 1 shows the average coverage obtained for each of the 100 Java classes.
The results in Table 1 confirm our previous results in [11]: the whole test suite
approach leads to higher code coverage. In this case, the average branch cov-
erage increases from 67% to 76%, with a 0.62 effect size. However, there are
two classes in which the Whole approach leads to significantly worse results:
RecordingEvent and BlockThread. Two cases out of 100 could be due to the
randomness of the algorithm, although having 1,000 repetitions does reduce the
probability of this. However, in both cases the Whole approach does achieve
relatively high coverage (i.e, 84% and 90%).

Looking at RecordingEvent in detail, we see that there are some branches
that are never covered by the Whole approach, but sometimes by OneBranch
(see Figure 1). Specifically, there is a disjunction of two conditions on two static
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Table 1. For each class, the table reports the average branch coverage obtained by
the OneBranch approach and by the Whole approach. Effect sizes and p-values of the
comparisons are in bold when the p-values are lower than 0.05.

Class OneB. Whole Â12 p-value

MapCell 1.00 1.00 0.50 -
br.com.jnfe.base.CST_COFINS 0.99 1.00 0.53 < 0.001
ch.bfh.egov.nutzenportfolio.service.kategorie.KategorieDaoService 0.00 0.01 0.97 < 0.001
com.browsersoft.aacs.User 0.51 0.87 1.00 < 0.001
com.browsersoft.openhre.hl7.impl.config.HL7SegmentMapImpl 0.04 0.99 0.99 < 0.001
com.gbshape.dbe.sql.Select 0.06 0.08 0.57 < 0.001
com.lts.caloriecount.ui.budget.BudgetWin 0.11 0.12 0.64 < 0.001
com.lts.io.ArchiveScanner 0.07 0.45 0.99 < 0.001
com.lts.pest.tree.ApplicationTree 0.00 0.00 0.50 -
com.lts.swing.table.dragndrop.test.RecordingEvent 0.95 0.84 0.03 < 0.001
com.lts.swing.thread.BlockThread 0.98 0.90 0.27 < 0.001
com.werken.saxpath.XPathLexer 0.51 0.73 1.00 < 0.001
corina.formats.TRML 0.03 0.21 0.99 < 0.001
corina.map.SiteListPanel 0.00 0.00 0.99 < 0.001
de.huxhorn.lilith.data.eventsource.EventIdentifier 0.99 1.00 0.51 < 0.001
de.huxhorn.lilith.debug.LogDateRunnable 0.60 0.60 0.50 -
de.huxhorn.lilith.engine.impl.eventproducer.SerializingMessageBasedEventProducer 0.99 1.00 0.50 0.316
de.outstare.fortbattleplayer.gui.battlefield.BattlefieldCell 0.17 0.21 0.64 < 0.001
de.outstare.fortbattleplayer.statistics.CriticalHit 1.00 1.00 0.50 -
de.paragon.explorer.util.LoggerFactory 1.00 1.00 0.50 -
de.progra.charting.render.InterpolationChartRenderer 0.12 0.55 0.96 < 0.001
edu.uiuc.ndiipp.hubandspoke.workflow.PackageDissemination 0.02 0.09 0.99 < 0.001
falselight 1.00 1.00 0.50 -
fi.vtt.noen.mfw.bundle.common.DataType 1.00 1.00 0.50 -
fi.vtt.noen.mfw.bundle.probe.plugins.measurement.WatchDog 0.03 0.31 0.86 < 0.001
fi.vtt.noen.mfw.bundle.probe.shared.MeasurementReport 0.09 1.00 0.99 < 0.001
fi.vtt.noen.mfw.bundle.server.plugins.webui.sacservice.OperationResult 1.00 1.00 0.50 -
fps370.MouseMoveBehavior 0.19 0.55 0.98 < 0.001
geo.google.mapping.AddressToUsAddressFunctor 0.04 0.52 0.98 < 0.001
httpanalyzer.ScreenInputFilter 0.73 0.83 0.64 < 0.001
jigl.gui.SignalCanvas 0.85 0.95 0.89 < 0.001
jigl.image.io.ImageOutputStreamJAI 0.21 0.54 0.94 < 0.001
jigl.image.utils.LocalDifferentialGeometry 0.04 0.43 0.99 < 0.001
lotus.core.phases.Phase 0.50 0.50 0.50 -
macaw.presentationLayer.CategoryStateEditor 0.00 0.00 0.50 -
messages.round.RoundTimeOverMsg 0.99 1.00 0.50 0.007
module.ModuleBrowserDialog 0.00 0.00 0.50 -
net.sf.xbus.base.bytearraylist.ByteArrayConverterAS400 0.00 0.00 0.50 -
net.sourceforge.beanbin.command.RemoveEntity 1.00 1.00 0.50 -
net.virtualinfinity.atrobots.robot.RobotScoreKeeper 1.00 1.00 0.50 -
nu.staldal.lagoon.util.Wildcard 0.99 1.00 0.50 < 0.001
oasis.names.tc.ciq.xsdschema.xal._2.PremiseNumberSuffix 1.00 1.00 0.50 -
org.apache.lucene.search.exposed.facet.FacetMapSinglePackedFactory 0.00 0.18 0.99 < 0.001
org.databene.jdbacl.dialect.H2Util 1.00 0.99 0.49 < 0.001
org.databene.jdbacl.identity.mem.AbstractTableMapper 0.20 0.71 0.99 < 0.001
org.dom4j.io.STAXEventReader 0.14 0.28 0.99 < 0.001
org.dom4j.tree.CloneHelper 1.00 1.00 0.50 -
org.dom4j.util.PerThreadSingleton 0.85 0.85 0.49 0.165
org.exolab.jms.config.GarbageCollectionConfigurationLowWaterThresholdType 1.00 1.00 0.50 -
org.exolab.jms.config.SecurityConfigurationDescriptor 0.62 0.62 0.47 < 0.001
org.exolab.jms.selector.And 0.87 0.99 0.77 < 0.001
org.exolab.jms.selector.BetweenExpression 0.33 0.75 0.94 < 0.001
org.fixsuite.message.view.ListView 0.10 0.10 0.50 0.312
org.jcvi.jillion.assembly.consed.phd.PhdFileDataStoreBuilder 0.43 0.83 0.99 < 0.001
org.jcvi.jillion.fasta.FastaRecordDataStoreAdapter 0.00 0.00 0.50 -
org.jsecurity.authc.credential.Md2CredentialsMatcher 1.00 1.00 0.50 -
org.jsecurity.io.IniResource 0.40 0.82 0.99 < 0.001
org.jsecurity.io.ResourceUtils 0.32 0.79 0.99 < 0.001
org.jsecurity.web.DefaultWebSecurityManager 0.07 0.37 0.99 < 0.001
org.quickserver.net.qsadmin.gui.SimpleCommandSet 0.83 0.83 0.50 -
org.quickserver.net.server.AuthStatus 0.33 0.33 0.50 -
org.sourceforge.ifx.framework.complextype.ChkAcceptAddRs_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.ChkInfo_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.ChkOrdInqRs_Type 0.99 1.00 0.50 0.080
org.sourceforge.ifx.framework.complextype.CreditAdviseRs_Type 0.99 1.00 0.50 0.315
org.sourceforge.ifx.framework.complextype.DepAcctStmtInqRq_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.EMVCardAdviseRs_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.ForExDealMsgRec_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.PassbkItemInqRs_Type 0.99 1.00 0.50 0.312
org.sourceforge.ifx.framework.complextype.RecPmtCanRq_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.StdPayeeId_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.SvcAcctStatus_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.complextype.TINInfo_Type 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.AllocateAllowed 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.BillInqRs 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.ChksumModRq 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.ChksumStatusCode 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.CompositeCurAmtId 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.CurAmt 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.CustAddRs 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.CustId 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.CustPayeeRec 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.DepBkOrdAddRs 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.DevCimTransport 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.FSPayee 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.Gender 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.Language 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.StdPayeeRevRs 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.TerminalSPObjAdviseRq 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.element.URL 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.pain001.simpletype.BatchBookingIndicator 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.pain001.simpletype.CashClearingSystem2Code 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.pain004.simpletype.CashClearingSystem2Code 1.00 1.00 0.50 -
org.sourceforge.ifx.framework.simpletype.DevName_Type 1.00 1.00 0.50 -
teder.Teder 1.00 1.00 0.50 -
umd.cs.shop.JSListSubstitution 0.97 0.99 0.53 < 0.001
wheel.components.Block 0.04 0.16 0.56 < 0.001
wheel.json.JSONStringer 0.99 1.00 0.50 < 0.001

Average 0.67 0.76 0.62
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class RecordingEvent {
static protected DataFlavor ourJVMLocalObjectFlavor;
static protected DataFlavor[] ourFlavors;

static protected void initializeConstants() {
if (null != ourJVMLocalObjectFlavor || null !=

ourFlavors)
return;

ourJVMLocalObjectFlavor = ...
ourFlavors = new DataFlavor[] {

ourJVMLocalObjectFlavor };
// ...

}
// ...

}

Fig. 1. Static behavior in RecordingEvent: If the test independence assumption is not
satisfied, then results become unpredictable.

variables ourJVMLocalObjectFlavor and ourFlavors. As EvoSuite works at
the level of bytecode, this disjunction results in four branches – two for each of
the conditions. The Whole approach only succeeds in covering one out of these
four branches, i.e., when outJVMLocalObjectFlavor is non-null and the return
statement is taken. This is because in the default configuration of EvoSuite
the static state of a class is not reset, and so once the initializeConstants
method has been executed, the two static variables are non-null. In the case
of OneBranch, if the first chosen coverage goal is to make either of the two
conditions false, then this will be covered in the first test executed by Evo-
Suite, and thus the two true-branches will have a covering test. If, however,
initializeConstants is executed as part of the search for any other branch,
then the coverage will be the same as for Whole. This is a known effect of static
states, and so EvoSuite has an experimental feature to reset static states after
test execution. When this feature is enabled, then both Whole and OneBranch
succeed in covering three out of the four branches. (To cover the fourth branch,
the assignment to ourJVMLocalObjectFlavor would need to throw an excep-
tion such that only one of the two variables is initialized). However, even when
static state is reset, the overall coverage achieved by Whole is significantly lower
than for OneBranch. The “difficult” branches are cases of a switch statement,
and branches inside a loop over array elements. These branches are sometimes
covered by Whole, but less reliably so than by OneBranch.

BlockThread only has a single conditional branch, all other methods con-
tain just sequences of statements (in EvoSuite, a method without conditional
statements is counted as a single branch, based on the control flow graph inter-
pretation). However, the class spawns a new thread, and several of the methods
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Table 2. For each branch, we report how often the Whole approach is better (higher
effect size) than the OneBranch, when they are equivalent, and when it is OneBranch
that is better. We also report the number of comparisons that are statistically signif-
icant at 0.05 level, and when only one of the two techniques ever managed to cover a
goal out of the 1,000 repeated experiments.

# of Branches Statistically at 0.05 Never Covered by the Other

Whole Approach is better: 1631 1402 246
Equivalent: 671 – –
OneBranch is better: 81 58 3

Total: 2383

synchronize on this thread (e.g., by calling wait() on the thread). EvoSuite
uses a timeout of five seconds for each test execution, and any test case or test
suite that contains a timeout is assigned the maximum (worst) fitness value, and
not considered as a valid solution in the final coverage analysis. In BlockThread,
many tests lead to such timeouts, and a possible conjecture for the worse perfor-
mance of the Whole approach may be that the chances of having an individual
test case without timeout are simply higher than the chances of having an entire
test suite without timeouts.

To study the difference between OneBranch and Whole at a finer grained
level, Table 2 shows on how many coverage goals (i.e., branches) one technique
is better than the other. There are 58 cases in which OneBranch led to better
results. Three of them, Whole never manages to cover.

RQ1: There are 58 coverage goals in which OneBranch obtained
better results. Three of them were never covered by Whole.

On the other hand, there are 1,402 cases (out of 2,383) in which Whole gives
better results. For 246 of them, the OneBranch approach never managed to
generate any results in any of the 1,000 runs. In other words, even if there are
some (i.e., three) difficult goals that only OneBranch can cover, there are many
more (246/3 = 82 times) difficult branches that only Whole does cover.

RQ2: Whole test suite generation is able to handle 82 times more
difficult branches than OneBranch.

Once assessed that the Whole approach leads to higher coverage, even for the
difficult branches, it is important to study what are the conditions in which this
improvement is obtained. For each coverage goal (2,383 in total), we calculated
the odds ratio between Whole and OneBranch (i.e., we quantified what are the
odds that Whole has higher chances to cover the goal compared to OneBranch).
For each odds ratio, we studied its correlation with three different properties: (1)
the Â12 effect size between Whole and OneBranch on the class the goal belongs
to; (2) the raw average branch coverage obtained by OneBranch on the class the
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Table 3. Correlation analyses between the odds ratios for each coverage goal and
three different properties. For each analysis, we report the obtained correlation value,
its confidence interval at 0.05 level and the obtained p-value (of the test whether the
correlation is different from zero).

Property Correlation Confidence Interval p-value

Â12 Whole vs. OneBranch 0.275 [0.238, 0.312] < 0.001
OneBranch Coverage 0.016 [-0.024, 0.056] 0.433
# of Branches 0.051 [0.011, 0.091] 0.012

goal belongs to; and, finally, (3) the size of the class, measured as number of
branches in it. Table 3 shows the results of these correlation analyses.

There is correlation between the odds ratios and the Â12 effect sizes. This
is expected: on a class in which the Whole approach obtains higher coverage on
average, then it is more likely that on each branch in isolation it will have higher
chances to cover those branches. However, this correlation is weak, at only 27%.

On classes with many infeasible branches (or too difficult to cover for both
Whole and OneBranch), one could expect higher results for Whole (as it is not
negatively affected by infeasible branches [11]). It is not possible to determine if
branches are feasible or not. However, we can somehow quantify the difficulty of
a class by the obtained branch coverage. Furthermore, one would expect better
results of the Whole approach on larger, more complex classes. But the results
in Table 3 show no significant correlation of the odds ratios with the obtained
average branch coverage, and only very small (just 5%) with the class size. In
other words, the fact that Whole approach has higher chances of covering a
particular goal seems irrelevant from the overall coverage obtained on such class
and its size.

The analysis presented in Table 3 numerically quantifies the correlations
between the odds ratios and the different studied properties. To study them in
more details, we present scatter plots: Figure 2 for the Â12 effect sizes, Figure 3
for the OneBranch average coverage and, finally Figure 4 for class sizes.

Figure 2 is in line with the 27% correlation value shown in Table 3. There
are two main clusters, where low odds ratios lead to low Â12 effect sizes, and the
other way round for high values. There is also a further cluster of values around
Â12 = 0.5 for which higher odds are obtained.

Although there is no clear correlation between the odds ratios and the ob-
tained coverage of OneBranch (only 1% in Table 3), Figure 3 shows an interesting
trend: the only coverage goals for which Whole perform worse (i.e., logarithms of
the odds ratios are lower than zero) are in classes for which OneBranch obtains
high coverage (mostly close to 100%). This is visible in the top-left corner in
Figure 3. There are coverage goals for which Whole approach has much higher
odds (logarithms above 30), and those appear only in classes for which the
OneBranch approach obtains an overall low branch coverage (see the rightmost
values in Figure 3).
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Fig. 2. Scatter plot of the (logarithm of) odds ratios compared to the Â12 effect sizes.
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Fig. 3. Scatter plot of the (logarithm of) odds ratios compared to average class
coverage obtained by OneBranch.

When looking at the effects of size, in Figure 4 we can see that the only cases
in which OneBranch has better odds ratios are when the SUTs are small. This
is visible in the bottom-left corner of Figure 4.

RQ3: Our data does not point to a factor that strongly influences
the relative performance between Whole and OneBranch.
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Fig. 4. Scatter plot of the (logarithm of) odds ratios compared to the sizes of the
classes.

Interestingly, the few cases in which OneBranch obtains better results seem
located in small classes in which both approaches obtain relatively high code
coverage.

5 Threats to Validity

Threats to internal validity might come from how the empirical study was carried
out. To reduce the probability of having faults in our testing framework, it has
been carefully tested. But it is well known that testing alone cannot prove the
absence of defects. Furthermore, randomized algorithms are affected by chance.
To cope with this problem, we ran each experiment 1,000 times, and we followed
rigorous statistical procedures to evaluate their results. For the comparisons be-
tween theWhole approach and the OneBranch approach, both were implemented
in the same tool (i.e., EvoSuite) to avoid possible confounding factors when
different tools are used.

There is the threat to external validity regarding the generalization to other
types of software, which is common for any empirical analysis. Because of the
large number of experiments required (in the order of hundreds of days of com-
putational resources), we only used 100 classes for our in depth evaluations.
These classes were randomly chosen from the SF100 corpus, which is a random
selection of 100 projects from SourceForge. We only experimented for branch
coverage and Java software. Whether our results do generalise to other pro-
gramming languages and testing criteria is a matter of future research.
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6 Conclusions

Existing research has shown that the whole test suite approach can lead to higher
code coverage [11,12]. However, there was a reasonable doubt on whether it would
still perform better on particularly difficult coverage goals when compared to a
more focused approach.

To shed light on this potential issue, in this paper we performed an in-depth
analysis to study if such cases do indeed occur in practice. Based on a random
selection of 100 Java classes in which we aim at automating test generation for
branch coverage with the EvoSuite tool, we found out that there are indeed
coverage goals for which the whole test suite approach leads to worse results.
However, these cases are very few compared to the cases in which better results
are obtained (nearly two orders of magnitude in difference), and they are also
located in less “interesting” classes: i.e., small classes for which both approaches
can already achieve relatively high code coverage.

The results presented in this paper provides more support to the validity and
usefulness of the whole test suite approach in the context of test data generation.
Whether such an approach could be successfully adapted also to other search-
based software engineering problems will be a matter of future research.

To learn more about EvoSuite, visit our website at:

http://www.evosuite.org/study
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