
Java Enterprise Edition Support
in Search-Based JUnit Test Generation

Andrea Arcuri1 and Gordon Fraser2

1 Westerdals Oslo ACT, Faculty of Technology, Oslo, Norway, and University of
Luxembourg, Luxembourg

2 Department of Computer Science, The University of Sheffield, UK

Abstract. Many different techniques and tools for automated unit test
generation target the Java programming languages due to its popular-
ity. However, a lot of Java’s popularity is due to its usage to develop
enterprise applications with frameworks such as Java Enterprise Edition
(JEE) or Spring. These frameworks pose challenges to the automatic gen-
eration of JUnit tests. In particular, code units (“beans”) are handled by
external web containers (e.g., WildFly and GlassFish). Without consid-
ering how web containers initialize these beans, automatically generated
unit tests would not represent valid scenarios and would be of little use.
For example, common issues of bean initialization are dependency in-
jection, database connection, and JNDI bean lookup. In this paper, we
extend the EvoSuite search-based JUnit test generation tool to provide
initial support for JEE applications. Experiments on 247 classes (the
JBoss EAP tutorial examples) reveal an increase in code coverage, and
demonstrate that our techniques prevent the generation of useless tests
(e.g., tests where dependencies are not injected).

Keywords: Java enterprise edition, JEE, search-based testing, auto-
mated unit test generation, database

1 Introduction

As the Java programming language remains one of the most popular program-
ming languages, it is one of the dominant languages for research on software
engineering and automated unit test generation. However, there are two main
versions of Java: the Standard Edition (SE), and the one tailored for enterprise
needs, i.e., the so called Java Enterprise Edition (JEE) [8]. JEE extends SE
in various ways, for example by providing APIs for databases, distributed and
multi-tier architectures, web applications (e.g., using servlets) and services (e.g.,
REST and SOAP). The popularity of the Java programming language is in part
due to the use of the latter version of Java. However, there are large differences
between SE and JEE programs.

In a typical Java SE application, there is an entry point class that has a main

method with an array of strings as parameters, which represent the command line
arguments. This main method then typically calls methods from other classes in

the application, and new object instances are created with the new keyword. Once
the application is started, it then interacts with its environment, for example
using a GUI, accessing the network, file system, console, etc. Writing a unit
test for a class in this context usually means to instantiate it, call its methods
with some input parameters, and to mock or simulate its interactions with the
environment.

In JEE, in contrast to SE, the developed applications are not standalone: they
need to be run in a container, like for example WildFly3 or GlassFish4. These
containers scan deployed applications for XML configurations or annotations
directly in the Java classes. Object instances of the applications are created via
reflection, and possibly augmented/extended (e.g., using proxy classes) based on
the container’s configurations. A typical case is access to databases: a Java class
that needs to access the application’s database will not need to have code to
deal directly with all the low level details of accessing databases (e.g., handling
of transactions), or configure it explicitly. In fact, a reference to a handler for
the database can be automatically injected in a class by the container, and each
of its method would be automatically marked for transaction delimiters (e.g.,
create a new transaction when a method is called, commit it once the method
is finished, or rollback if any exceptions are thrown).

All these JEE functionalities make the development of enterprise applica-
tions much easier: engineers just need to focus on the business logic, where
many complex tasks like handling databases and web connections are transpar-
ently delegated to the containers. However, these features make unit testing JEE
classes more complicated. Given a class X, one cannot simply create an instance
using new X() in a unit test, as that way all the dependencies injected by the
container would be missing. This is a challenge for automated unit test genera-
tion: There has been a lot of research on how to automatically generate unit tests
for Java software, and practitioners can freely download research prototypes like
for example T3 [11], JTExpert [12], Randoop [9], or EvoSuite [7]. These tools,
however, all target Java SE, and not JEE software.

To illustrate the effects of this, consider the example class JeeExample in
Figure 1a, which contains a number of JEE features. JeeExample is an Enterprise
Java Bean, as it is annotated with @javax.ejb.Stateless. It has a reference
to an EntityManager, which is used to access the application’s database. This
reference is expected to be injected by the container, because the field em is
annotated with @PersistenceContext. The class has two methods: persist()
to save data, and a boolean checkForMatch() which just does some checking
on the existing state of the database. KeyValuePair is an auxiliary class shown
in Figure 1b.

Unit test generation tools intended for Java SE cannot cover any of the
branches in this class. The reason is that the field em is not injected, and so all
calls on it result in a null pointer exception. For example, Figure 2 shows a test
generated by EvoSuite and Figure 3 shows one generated by Randoop. Without

3http://wildfly.org, accessed April 2016
4https://glassfish.java.net, accessed April 2016

2

import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateless
public class JeeExample {

@PersistenceContext
private EntityManager em;

public void persist(String key, String value) {
KeyValuePair pair = new KeyValuePair(key, value);
em.persist(pair);

}

public boolean checkForMatch(String key,
String value) {

KeyValuePair pair = em.find(KeyValuePair.class,
key);

if(pair == null)
return false;

if(pair.getValue().equals(value))
return true;

else
return false;

}
}

(a) Class under test.

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class KeyValuePair {
@Id
private String key;
private String value;

public KeyValuePair(){}

public KeyValuePair(String key,
String value) {

this.key = key;
this.value = value;

}

public String getKey() { return key; }

public void setKey(String key) {
this.key = key;

}

public String getValue() { return value; }

public void setValue(String value) {
this.value = value;

}
}

(b) Dependency entity class.

Fig. 1: Code example showing a stateless enterprise Java bean accessing a
database.

@Test(timeout = 4000)
public void test0() throws Throwable {
JeeExample jeeExample0 = new JeeExample();
try {
jeeExample0.checkForMatch("z", "]#");
fail("Expecting exception: NullPointerException");
} catch(NullPointerException e) {
verifyException("JeeExample", e);
}

}

Fig. 2: Example test generated by the standard version of EvoSuite on the
example class from Figure 1a.

handling dependency injection and database initialization, all tests result in null
pointer exceptions. These tests are not particularly useful, as they test the class
under test (CUT) only when it is not in an initialized, meaningful state.

In this paper, we describe and evaluate an approach to include JEE features
in the search space of the search-based test data generation tool EvoSuite [7].
In particular, in this paper we provide the following contributions:

– Handling of dependency injection, which requires special care on how the
tests are mutated and evolved. By construction, appropriate handling of
dependency injection avoids that useless tests, like the one in Figure 2, are
generated.

3

@Test
public void test1() throws Throwable {
if (debug) { System.out.format("%n%s%n","ErrorTest0.test1"); }

JeeExample jeeExample0 = new JeeExample();
// during test generation this statement threw an exception of
// type java.lang.NullPointerException in error
jeeExample0.persist("hi!", "");

}

Fig. 3: Example test generated by Randoop on the example class from Figure 1a.

– Automated initialization of in memory, embedded databases.
– Handling of some JEE functionalities through environment mocks [3,4], like

for example bean lookup resolution.
– An empirical study on 247 JEE classes, which shows that code coverage

increases.

Using the JEE extension presented in this paper, EvoSuite gener-
ates the tests shown in Figure 4 when applied on the class JeeExample

from Figure 1a (note, there are further initializations done in @Before

and @After methods, but those are not shown due to space limitations).
Seven tests are generated, which achieve full code coverage. Furthermore,
those tests even point to bugs in the class JeeExample, for example by
throwing exceptions like PersistenceException, IllegalArgumentException,
NullPointerException and EntityExistsException. In particular, test0

leads to a PersistenceException because it tries to persist to the database
an entity with null id. test1 leads to an IllegalArgumentException

because the method EntityManager#find cannot be called with a null
key. test5 shows a null pointer exception due to the statement
if(pair.getValue().equals(...)) in the method checkForMatch, where
getValue() returns null. Finally, test6 tries to insert a new entity that al-
ready exists (same id) into the database, leading to a EntityExistsException.
Note that no test was generated in which the field em was not injected (i.e., left
null).

2 Background

2.1 Java Enterprise Edition

JEE aims at fulfilling enterprise needs by making it easier to develop distributed,
multi-tier applications, such as web applications and web services. In this sec-
tion, we briefly describe the main features of Java Enterprise Edition (JEE), in
particular version 7. As this is a very large topic, here we only provide a high
level overview to make the rest of the paper more accessible for readers not
familiar with JEE. For further JEE details and links, we refer to [8].

4

@Test(timeout = 4000) public void test0() throws Throwable {
JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
try {
jeeExample0.persist((String) null, (String) null);
fail("Expecting exception: PersistenceException");

} catch(PersistenceException e) {}
}
@Test(timeout = 4000) public void test1() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
try {
jeeExample0.checkForMatch((String) null, (String) null);
fail("Expecting exception: IllegalArgumentException");

} catch(IllegalArgumentException e) {}
}
@Test(timeout = 4000) public void test2() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
jeeExample0.persist("#", "#");
boolean boolean0 = jeeExample0.checkForMatch("#", "#");
assertTrue(boolean0);

}
@Test(timeout = 4000) public void test3() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
jeeExample0.persist("#", "#");
boolean boolean0 = jeeExample0.checkForMatch("#", "\"");
assertFalse(boolean0);

}
@Test(timeout = 4000) public void test4() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
boolean boolean0 = jeeExample0.checkForMatch("\"", "#");
assertFalse(boolean0);

}
@Test(timeout = 4000) public void test5() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
jeeExample0.persist("", (String) null);
try {
jeeExample0.checkForMatch("", "");
fail("Expecting exception: NullPointerException");

} catch(NullPointerException e) {}
}
@Test(timeout = 4000) public void test6() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
jeeExample0.persist("", "");
try {
jeeExample0.persist("", "ZuWxZ_0hnf[");
fail("Expecting exception: EntityExistsException");

} catch(EntityExistsException e) {}
}

Fig. 4: Example test suite generated by EvoSuite on the example class from
Figure 1a, when using the JEE improvements presented in this paper.

5

JEE functionalities. JEE can be seen as a series of packages providing different
functionalities, from database access to web communication handling. Among
the main functionalities of JEE, some important examples are the following:

– Java Persistence API (JPA): This is used to automatically map Java classes
to tables in databases, and to read/write those objects. To achieve this, these
classes need to be annotated with the @Entity annotation (see the example
in Figure 1b). Read/write operations are done through an EntityManager

provided by the container.
– Enterprise Java Bean (EJB): These are objects responsible for the busi-

ness logic of the application. Beans are instantiated and managed by the
container. A Java object is made into an EJB by using annotations like
@Stateless, @Stateful and @Singleton (see example in Figure 1a).

– Java Transaction API (JTA): This is used to handle the transactions with the
databases. By default, each call to an EJB method will be in a transaction,
which will be rolled back if any exceptions are thrown in the EJB code.

– Java Naming and Directory Interface (JNDI): This is used to find objects
that were bound by name in the current application or remote servers.

– JavaServer Faces (JSF): This is used to create component-based user inter-
faces for web applications. A web page would be developed in the xhtml

format, mixing together Html/CSS/JS elements with calls to the backend
Java beans.

– Java Message Service (JMS): This is used to make asynchronous point-to-
point and publish-subscribe communications between distributed compo-
nents.

– Web Services: These are used to develop and query web services like REST
and SOAP.

Convention over configuration. To simplify development, JEE follows the con-
vention over configuration approach: A typical JEE application is not a stan-
dalone process packaged as a jar (Java Archive) file, but rather as a war (Web
Application Archive) file that has to be deployed on a server container (e.g.,
WildFly or GlassFish). When such a war file is deployed on a server, the server
will do a series of operations and initialization based on the war’s content. The
developers do not need to configure them, unless they want to do something
different from the standard convention.

For example, an entity Java class will be mapped to a database table with
the same name as the Java class. The developers just need to use the annotation
@Entity, and the server will take care of rest. However, if, for example, a given
entity class needs to be mapped to a table with a different name (e.g, when using
JPA on a legacy database that cannot be changed), further annotations/settings
can be added to change that default naming convention. Similarly, all methods
in an EJB are automatically marked for required transactions: the container
will create a new transaction if the method is called from a non-transactional
client. If this default behavior is not the desired one, JTA annotations (e.g.,
@TransactionAttribute) can be added to the EJB methods to achieve a dif-
ferent behavior.

6

On one hand, the use of convention over configuration makes development
easier and quicker, as the engineers need to specify only the non-conventional
cases. On the other hand, debugging and code understanding might become
more difficult, as the container might do a lot of hidden operations behind the
scenes that are not obvious for a non-expert in JEE.

Dependency Injection. One of the main characteristics that distinguish JEE from
SE is Dependency Injection. If an object X needs to use Y , instead of instanti-
ating Y directly (or calling an external method to get an instance of it), it will
delegate the container to provide an instance of Y . This is particularly useful to
decouple components, as an enterprise application could be deployed on different
containers (e.g., WildFly and GlassFish) that have different implementations for
resources like database management. Furthermore, dependency injection entails
different wiring of the application based on different contexts without the need of
recompilation. For example, in a testing scenario a container could rather inject
a mocked bean instead of a production one. In JEE, there are different ways to
do dependency injection. A typical case is to use annotations on private fields.
See for example the em field in Figure 1a, which is automatically injected by the
container because it is annotated with @PersistenceContext.

2.2 JUnit Test Generation with EvoSuite

The EvoSuite tool [7] automatically generates JUnit test suites optimized to
achieve high code coverage. Test generation uses a search-based approach, where
a genetic algorithm evolves a population of candidate solutions (test suites),
guided by a fitness function that captures the target coverage criteria. A test
suite in EvoSuite is a variable size set of test cases, and a test case, in turn,
is a sequence of statements that instantiate or manipulate objects. The initial
population consists of randomly generated tests, and then search operators are
applied throughout the search. First, the fitness value for each candidate test
suite is calculated. Then, individuals are selected for reproduction based on their
fitness value; fitter individuals are more likely to be selected. With a certain prob-
ability, crossover is applied to the selected individuals, and then, with a certain
probability, mutation is applied. Mutation consists of adding new (random) test
cases to a test suite, and modifying existing tests (e.g., by adding, removing, or
changing some of the statements). The search operators are applied until a new
generation of individuals has been produced, and this then becomes the next
generation. At the end of the search (e.g., when the allocated time has been
used up), the resulting test suite goes through several post-processing steps such
as minimization (i.e., removal of redundant statements) or assertion generation
(i.e., addition of JUnit assert statements to check the observed behavior).

The search algorithm and the post-processing steps are both applicable re-
gardless of whether the underlying Java class under test is Java SE or JEE
code. Nevertheless, EvoSuite up to now was not able to generate tests for JEE
specific code; the main reason for this lies in restrictions to EvoSuite’s search
space that result from the design of the mutation operators for the test cases. In

7

particular, consider the insertion of statements (which is also used to generate
random test cases): EvoSuite either inserts a randomly selected method call
of the class under test, or inserts a random method call to a randomly chosen
object generated in the current sequence of calls. If the method takes parame-
ters, these are either satisfied with existing objects in the test, or EvoSuite will
recursively insert statements that generate the required objects.

Consider class JeeExample from Figure 1a: The candidate methods of the
class under test are persist, checkForMatch, and the implicitly defined default
constructor. All parameters are of type String, and EvoSuite will generate
random or seeded strings. Although EvoSuite can also read from and write
to public fields, the standard operators will not access the private field em, and
thus EvoSuite has no means of initializing the EntityManager. Note that, if
JeeExample would do dependency injection by providing a constructor with an
EntityManager, then EvoSuite would attempt to explicitly instantiate one.
However, this does not guarantee that EvoSuite would be able to create and
configure a valid instance.

3 JEE Support in EvoSuite

In this section, we describe an approach to enable search-based tools like Evo-
Suite to generate unit tests for JEE software. We do not cover the whole JEE
specification, as that is simply too large to cover in a single study, but rather
focus on some of the most common features, in particular dependency injection,
JPA and JNDI.

Support for these features is added via two techniques: First, the search space
of call sequences is modified to include relevant JEE calls, for example to handle
injection. The challenge lies in constraining these calls to result in valid JEE
scenarios. Second, the code under test is instrumented to ensure that the JEE
environment set up by EvoSuite is used, for example by directing all database
accesses to an in-memory database automatically initialized by EvoSuite.

3.1 Dependency Injection

If dependency injection is not handled, then the tests generated by automated
tools will just throw useless null pointer exceptions (recall Figure 2 and Figure 3).

One possibility would be to use an embedded container running on the same
JVM of the tests, and to delegate all the dependency injections to it. However,
such an embedded container would still need to be configured, e.g., to specify
which beans should be used for injection when there is more than one alternative,
and it would be difficult to customize for unit testing purposes (e.g., replace
with mocks some beans using external resources). A simpler alternative, which
we implemented, is to do the injection directly in the unit tests using support
methods we developed. For example, in every test in Figure 4 the instantiation of
the class JeeExample is followed by calls to Injector#injectEntityManager,
which is a helper method that sets the entity manager.

8

Every time a new object is created as part of the search, EvoSuite checks
if it, or any of its superclasses, has fields that should be injected. To check
for injection, we look at JEE annotations like @Inject, @PersistenceContext,
@PersistenceUnit, @Resource, @EJB, @WebServiceRef, @ManagedProperty,
and @Context. We also look at annotations used in popular frameworks like
@Autowired in Spring5. For each of these types of injections, the helper class
Injector provides helper methods. For each injectable field, the corresponding
helper methods are inserted in the test.

We distinguish between two kinds of injected objects: pre-defined and new.
For some types of objects, EvoSuite defines specific, pre-defined instances that
can be injected inject. These are, for example, customized entity managers, as
done with Injector#injectEntityManager. The use of these pre-defined in-
stances allows EvoSuite to more easily explore complex scenarios, where the
random object initialization is unlikely to lead to interesting scenarios.

If for an injectable field f , of type F in a class X, we have no pre-defined
instance in EvoSuite, we add a call to a more generic Injector#inject. This
method takes not only X as input, but also an object i of type F , i.e., this new
object i will be injected in the field f of object X. The new object i will be
created as part of the search, just like standard method parameters, and will
evolved like any other objects (e.g., mutation operators might add new calls on
it). Note that this new object i might itself need injection for some of its fields,
and this will be handled recursively.

After a class X has all of its injectable fields injected, EvoSuite checks for
methods marked with @PostConstruct in the class hierarchy of X, and also add
calls to Injector#executePostConstruct.

Adding Injector methods in the tests has major consequences their evolu-
tion during the search. Recall from Section 2.2 that EvoSuite performs several
kinds of operations to evolve tests, such as deleting statements, changing func-
tion calls, creating new statements at any position in the test, etc. These can
change the tests to an inconsistent state, e.g., EvoSuite could delete all calls to
Injector methods. To avoid this issue, we defined constraints on the test state-
ments, and modified all EvoSuite search operators to enforce these constraints.
Given a class X with injectable fields, these constraints are for example:

– No call to Injector can be deleted until X is in the test.
– If X is deleted, then delete all its calls to Injector.
– Fields cannot be injected more than once.
– Calls to Injector should be automatically added when a new object is

instantiated. Search operators should not add new unnecessary calls to
Injector, or modify existing ones.

– Calls to Injector methods cannot take null as input. This might prevent
the deletion of objects that are used as input.

– Between the statement where X is instantiated and its last call on Injector,
X cannot be used as input in any method that is not an injector, and no
call can be added on X (as X is not fully initialized yet).

5https://spring.io, accessed April 2016

9

One drawback of injecting fields directly in the unit tests is test maintenance.
Assume tests are generated for a class X with some injected fields. Assume also
that, in a future release of X, a new injected field is added, although the external
behavior (i.e., its semantics) of X has not been changed. Now, it might well
be that the previously generated tests for X will now fail due to null pointer
exceptions on this new field, although no regression bugs were introduced. To
avoid this kind of false positives, after each bean initialization we add a call to
Injector#validateBean (recall Figure 4). This method checks if all injectable
fields have indeed been injected. If not, an AssumptionViolatedException is
thrown, which prevents the tests from failing (JUnit will consider a test throwing
this exception as ignored, as if it was marked with @Ignore).

3.2 Database Handling

JEE applications tend to depend on databases. To test applications that access a
database, a database needs to be configured and running. As this is typically not
within the scope of capabilities of a unit test generation tool, this configuration
would typically need to be done manually. To avoid this issue, we extended
EvoSuite to be able to perform the initialization automatically. In particular,
we use the Spring framework to scan the classpath for @Entity classes, and
automatically start an embedded database (HyperSQL6) for those entities, using
Hibernate7 as JPA implementation.

When beans need entity managers, we inject custom ones that
are configured for this embedded database. Furthermore, we mock
javax.persistence.Persistence, which consists of only static methods to ac-
cess entity managers, to return our custom entity manager.

The embedded database is cleaned up after each test execution, in order to
avoid dependencies among tests. Starting/resetting the database is done in the
@Before and @After methods in the tests. However, initializing a database is
time consuming, and may potentially take several seconds to complete. There-
fore, it is not initialized by default, but only if the CUT really uses the database.

3.3 JNDI Mocking

When unit testing a class, the CUT might use JNDI to access objects that
have been initialized in other classes since the application was started, or re-
mote ones outside the running JVM. This is a problem for unit testing, as
JNDI lookups might fail. To avoid this issue, we mock JNDI, similarly to
how EvoSuite already mocks environment interactions with the file system [3]
and the network [4]. In particular, we provide a mock version of the class
javax.naming.InitialContext. During EvoSuite’s bytecode instrumentation
phase, all calls to the original class are automatically replaced with calls to
the mocked version. Furthermore, EvoSuite maintains information about the

6http://hsqldb.org, accessed April 2016.
7http://hibernate.org, accessed April 2016

10

known classes, their methods, and how to generate them (referred to as test
cluster). This information is derived statically during initialization, and all ref-
erences to the original class are replaced with references to the mock class.

By default, the mock class for InitialContext will fail to resolve any object
lookups, i.e., it will return null. However, it also keeps track of all objects that
have been requested during the search. If any objects were requested, then Evo-
Suite’s test cluster is extended with additional methods to instantiate these
objects and to make them accessible through JNDI. The mocked JNDI resolu-
tion is re-initialized at each new test execution, in order to avoid dependencies
among tests.

4 Empirical Study

The techniques presented in this paper enable tools like EvoSuite to be applied
on JEE software. By construction, tests with non-initialized beans (which are
not useful; recall Figure 2 and Figure 3) are no longer generated. However, in
order to understand the effects of this change, it is also important to see what is
the impact on code coverage. In particular, in this paper we address the following
research question:

RQ: What is the effect of the JEE extensions on branch coverage?

Note that looking at fault detection (e.g., the throwing of undeclared ex-
ceptions) is not trivial to do automatically, as the lack of dependency injection
might lead to many failing tests that are just false positives (recall Figure 2 and
Figure 3), because they would throw exceptions when non-injected fields are
accessed. However, even when injection is handled, the CUT could lead to null
pointer exceptions that show actual bugs (e.g., recall test5 in Figure 4).

4.1 Experimental Setup

Open-source repositories like GitHub8 and SourceForge9 host a large amount of
Java SE software, like libraries and applications. However, as JEE is targeted at
enterprises, the amount of JEE software on open-source repositories is obviously
lower. Furthermore, a JEE project might be simply marked as “Java”, and so a
systematic search for JEE projects is not necessarily trivial.

As JEE specifications are very large, and we are only interested in classes
that use JEE features, we chose the set of JEE examples used to demonstrate
JBoss EAP / WildFly application servers as case study. These consist of a total
of 247 Java classes, hosted on GitHub10.

On each of these 247 classes, we ran EvoSuite with and without our JEE
extension, 30 times per CUT, for a total of 247 × 2 × 30 = 14,820 runs. For

8https://github.com, accessed April 2016.
9https://sourceforge.net, accessed April 2016.
10https://github.com/jboss-developer/jboss-eap-quickstarts, accessed April 2016

11

the experiments, we used the default configuration of EvoSuite, which is as-
sumed to show good results on average [2]. In each experiment, the search phase
for EvoSuite was executed until either 100% branch coverage was achieved,
or a timeout of two minutes was reached. For each run we collected data on
the achieved branch coverage as reported by EvoSuite. Results were analyzed
based on standard guidelines [1]. In particular, to assess statistical difference we
used the non-parametric Mann-Whitney-Wilcoxon U-test, whereas we used the
Vargha-Delaney Â12 as effect size.

4.2 Results

Without JEE support, the default version of EvoSuite achieves an average of
77% branch coverage on these 247 classes. When using the techniques presented
in this paper, branch coverage increases to 80%.

This modest +3% increase warrants closer inspection: Only 102 out of the 247
classes have some kind of JEE annotation for dependency injection. In contrast,
many classes are trivial (e.g., skeletons with empty bodies representing some
business logic), and might only be needed to compile other classes in which the
JEE features are really used. In particular, @Entity classes (e.g, recall Figure 1b)
usually have just basic setters and getters, and pose no challenge for unit test
generation. This explains the already high coverage of 77% that EvoSuite can
achieve even without any JEE support.

If we assume that a class, on which EvoSuite can achieve 90% or more
branch coverage even without JEE support, does not depend on JEE, then the
average coverage on the remaining 88 classes increases from 37.7% to 46.0%, i.e.,
a 8.3% improvement.

To get a better picture of the importance of handling JEE features, Table 1
shows detailed data on the 25 challenging classes where JEE handling had most
effect: On these classes, the average branch coverage nearly doubles from 43.8%
to 74.6%. All comparisons are statistically valid (p-values very close to zero),
and the average effect size for Â12 is nearly maximal, i.e., 0.98.

RQ: JEE support significantly increases branch coverage (average +3%), with
substantial increases in JEE relevant classes.

5 Threats to Validity

Threats to internal validity result from how the experiments were carried out.
The techniques presented in this paper have all been implemented as part of the
EvoSuite tool. Although EvoSuite is a mature tool used by practitioners, no
system is guaranteed to be error free. Furthermore, because EvoSuite is based
on randomized algorithms, each experiment has been repeated several times, and
the results have been evaluated with rigorous statistical methods.

To avoid disseminating flawed results, repeatability and reproducibility are
cornerstones of the scientific process [5]. To address this issue, we released the

12

Table 1: Branch coverage comparison of EvoSuite with (JEE) and without
(Base) support for JEE, on the 25 classes with the largest increase. Note, some
classes have the same name, but they are from different packages.

Class Base JEE Â12 p-value

ManagedComponent 14.3% 41.2% 0.96 ≤ 0.001
UnManagedComponent 47.0% 51.6% 0.80 ≤ 0.001
ItemBean 89.7% 100.0% 1.00 ≤ 0.001
HATimerService 57.1% 93.3% 1.00 ≤ 0.001
SchedulerBean 60.0% 97.3% 0.98 ≤ 0.001
IntermediateEJB 33.3% 66.7% 1.00 ≤ 0.001
SecuredEJB 80.0% 98.7% 0.97 ≤ 0.001
AsynchronousClient 20.0% 29.3% 0.97 ≤ 0.001
RemoteEJBClient 25.0% 58.3% 1.00 ≤ 0.001
TimeoutExample 60.0% 99.3% 1.00 ≤ 0.001
GreetController 66.7% 100.0% 1.00 ≤ 0.001
HelloWorldJMSClient 4.9% 23.1% 1.00 ≤ 0.001
MemberResourceRESTService 19.1% 69.2% 1.00 ≤ 0.001
MemberResourceRESTService 19.3% 67.7% 0.96 ≤ 0.001
MemberRegistrationServlet 18.2% 87.1% 1.00 ≤ 0.001
HelloWorldMDBServletClient 26.0% 61.3% 0.99 ≤ 0.001
TaskDaoImpl 55.6% 77.8% 1.00 ≤ 0.001
AuthController 30.0% 100.0% 1.00 ≤ 0.001
TaskController 42.9% 100.0% 1.00 ≤ 0.001
TaskDaoImpl 55.6% 75.0% 0.96 ≤ 0.001
TaskListBean 75.0% 96.7% 0.93 ≤ 0.001
TaskDaoImpl 55.6% 77.8% 1.00 ≤ 0.001
TaskResource 55.4% 84.3% 1.00 ≤ 0.001
Servlet 40.0% 60.9% 0.92 ≤ 0.001
XAService 44.7% 49.3% 0.96 ≤ 0.001

Average 43.8% 74.6% 0.98

implementation of all the techniques presented in this paper as open-source
(LGPL license), and we made it available on a public repository11.

Threats to construct validity come from what measure we chose to evaluate
the success of our techniques. We used branch coverage, which is a common
coverage criterion in the software testing literature. However, it is hard to auto-
matically quantify the negative effects of tests that do not handle dependency
injection, as the presence of false positive tests on software maintenance is a
little investigated topic in the literature.

Threats to external validity come from how well the results generalize to
other case studies. To have a variegated set of classes showing different features
of JEE, we chose the JEE examples used to demonstrate the JBoss EAP /
WildFly application servers, which consist of 247 Java classes. Larger case studies
on industrial systems will be needed to further generalize our results.

11www.github.com/EvoSuite/evosuite

13

6 Related Work

While there are numerous tools and techniques to generate unit tests for Java
classes and programs, we are not aware of any work targeting unit tests for JEE
classes directly.

Some of the problems caused by JEE are related to its use of databases.
Emmi et al. [6] use dynamic symbolic execution to collect constraints on database
queries and populate a database with data to satisfy these queries. The MODA
framework [13] instruments database-driven programs to interact with a mock
database instead of a real database. A test generator based on dynamic symbolic
execution is then applied to insert entries into the database. A refined version of
this approach [10] correlates various constraints within a database application.
The code coverage increase reported by these approaches is comparable to the
increases we observed in our experiments in this paper.

Besides database applications, other external dependencies such as filesys-
tem [3], networking [4], or cloud services [14] have been integrated into test gen-
eration, typically by making test generators configure mock objects. For some of
the JEE features, the approach presented in this paper also follows this strategy.

7 Conclusions

Jave Enterprise Edition (JEE) applications pose challenges that have not previ-
ously been handled by Java unit test generation tools. In order to address this
problem, we have extended the EvoSuite unit test generation tool in order to
support the core JEE features of (1) dependency injection, (2) database access,
and (3) JNDI object lookups. This posed several technical challenges in order to
ensure that several constraints on the validity of tests are maintained at all time
during the search-based test generation. These techniques are fully automated,
and require no human intervention (not even to initialize/run the databases).
We are aware of no other tool that handles JEE specific functionalities.

An empirical study on 247 Java classes shows that, with high statistical
confidence, our techniques improve branch coverage (+3% on average), espe-
cially on challenging classes heavily dependent on JEE functionalities (increase
from 43.8% to 74.6%). Importantly, this approach prevents, by construction, the
generation of misleading tests that throw null pointer exceptions just because
dependency injections are not handled.

JEE has a very large set of specifications, and what has been addressed
in this paper is just a first step. Future work will focus on handling other JEE
components, like for example JMS and REST/SOAP web services. Furthermore,
there is large space for improving the handling of databases, like for example
extending the search to directly create objects in the database based on the
class under test’s queries.

All techniques discussed in this paper have been implemented as part of the
EvoSuite test data generation tool. EvoSuite is open-source (LGPL license)
and freely available to download. To learn more about EvoSuite, please visit
our website at: http://www.evosuite.org.

14

Acknowledgments. This work is supported by the EPSRC project
(EP/N023978/1) and by the National Research Fund, Luxembourg (FN-
R/P10/03).

References

1. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. Software Testing, Verification and
Reliability 24(3), 219–250 (2014)

2. Arcuri, A., Fraser, G.: Parameter tuning or default values? an empirical investiga-
tion in search-based software engineering. Empirical Software Engineering 18(3),
594–623 (2013)

3. Arcuri, A., Fraser, G., Galeotti, J.P.: Automated unit test generation for classes
with environment dependencies. In: IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE). pp. 79–90 (2014)

4. Arcuri, A., Fraser, G., Galeotti, J.P.: Generating TCP/UDP network data for
automated unit test generation. In: ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (FSE). pp. 155–165. ACM (2015)

5. Collberg, C., Proebsting, T.A.: Repeatability in computer systems research. Com-
munications of the ACM 59(3), 62–69 (2016)

6. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database
applications. In: Proceedings of the 2007 international symposium on Software
testing and analysis. pp. 151–162. ACM (2007)

7. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: ACM SIGSOFT International Symposium on the Foundations of Soft-
ware Engineering (FSE). pp. 416–419. ACM (2011)

8. Goncalves, A.: Beginning Java EE 7. Apress (2013)
9. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test

generation. In: ACM/IEEE Int. Conference on Software Engineering (ICSE). pp.
75–84 (2007)

10. Pan, K., Wu, X., Xie, T.: Guided test generation for database applications via
synthesized database interactions. ACM Transactions on Software Engineering and
Methodology (TOSEM) 23(2), 12 (2014)

11. Prasetya, I.S.W.B.: T3i: A Tool for Generating and Querying Test Suites for Java.
In: ACM SIGSOFT International Symposium on the Foundations of Software En-
gineering (FSE) (2015)

12. Sakti, A., Pesant, G., Gueheneuc, Y.G.: Instance generator and problem represen-
tation to improve object oriented code coverage. IEEE Transactions on Software
Engineering (TSE) (2015)

13. Taneja, K., Zhang, Y., Xie, T.: Moda: Automated test generation for database
applications via mock objects. In: IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). pp. 289–292. ACM (2010)

14. Zhang, L., Ma, X., Lu, J., Xie, T., Tillmann, N., De Halleux, P.: Environmental
modeling for automated cloud application testing. IEEE Software 29(2), 30–35
(2012)

15

	Java Enterprise Edition Support in Search-Based JUnit Test Generation

