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SUMMARY

The length of test cases is a little investigated topic in search-based test generation
for object-oriented software, where test cases are sequences of method calls. While
intuitively longer tests can achieve higher overall code coverage, there is always the
threat of bloat – a complex phenomenon in evolutionary computation, where the length
abnormally grows over time. In this paper, we show that bloat indeed also occurs in the
context of test generation for object-oriented software. We present different techniques
to overcome the problem of length bloat, and evaluate all possible combinations of these
techniques using different starting lengths for the search. Experiments on a set of difficult
search targets, selected from several open source and industrial projects, show that
controlling bloat with the appropriate techniques can significantly improve the search
performance. Copyright c© 2011 John Wiley & Sons, Ltd.

1. Introduction

Deriving test cases for object-oriented software entails generation of sequences of method
calls. Search-based techniques have been demonstrated to be a suitable tool for this task [1, 2],
but raise important questions such as the choice of which length to use for these method
sequences when we start the search. Before starting the search, we do not know what is the
ideal minimal length for a test sequence that maximizes coverage – this is something that needs
to be searched for. Nevertheless, when we start the search with some random test cases we still
need to choose a length for them, and allow the search operators (e.g., crossover and mutation)
to increase/decrease those test cases. The length, however, is not only an important parameter
of the search but also one of its biggest threats: Bloat is a phenomenon in evolutionary search
where the length of individuals increases to the point of making the search impossible.
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(a) Bloat occurring during the search for a test case to
cover a branch of the XMLElement class in NanoXML.
As the evolution progresses, the average length of the
population increases exponentially.

XMLElement xMLElement0 = new XMLElement ();

boolean boolean0 = xMLElement0.getBooleanAttribute(

"", "", "", true);

xMLElement0.setIntAttribute("", 0);

double double0 = xMLElement1.getProperty("F", 0.0);

int int0 = xMLElement0.getProperty("", 0);

int int1 = xMLElement0.getIntProperty("F", (

Hashtable)null , "F");

XMLElement xMLElement1 = new XMLElement ();

xMLElement0.addChild(xMLElement1);

xMLElement1.removeChild(xMLElement0);

xMLElement1.setDoubleAttribute("", 0.0);

xMLElement1.parseString("\\\"R).?>5Xsy");

// ...

(b) Excerpt of a test case for XMLElement that
represents an individual of the search (modified for
readability).

Figure 1: Bloat illustrated.

For example, consider Figure 1a, which shows the average length of the test cases in a
population across generations computed by a genetic algorithm; Figure 1b shows an excerpt
of such a test case. As a typical example of test case generation, the aim of this search is to
find a sequence of method calls that will cover a non-trivial branch of the XMLElement class
in the open source Java project NanoXML. Without any techniques to control bloat, the test
cases become longer and longer after each generation of the search, until all the memory is
consumed.
Bloat is an extremely complex phenomenon in evolutionary computation, and after many

decades of research it is still an open problem whose dynamics and nature are not completely
understood [3]. Unfortunately, in the past the issue of length has largely been neglected in the
context of test case generation, and so there is no conclusive evidence on what starting length
to choose and how to prevent it from being bloated.
This paper extends a previous experiment on the effects of length and bloat in the context of

testing object-oriented software [4]. In particular, here we consider two distinct cases: (1) the
traditional approach of targeting one branch at a time (e.g., as in [5]), and (2) the alternative
approach proposed in [6, 7] of evolving whole test suites.
The evaluation of this paper considers a set of 100 difficult branches selected from six open

source projects and an industrial case study. These 100 branches originate from 39 different



classes, which we use for the experiments on whole test suite generation. Experiments are
performed on 96 different bloat control configurations considering three different starting
lengths, repeated with 25 random seeds each. This resulted in a significant amount of data
backing up our results that took weeks to compute even when using a large cluster of computers.
The contributions of this paper are as follows:

Bloat: We propose and evaluate a set of different techniques to control bloat, identifying
which combinations of techniques work best and should therefore be used in the future.

Length: We analyze the effect of the test case length on the results and on bloat, showing
that the length plays a different role based on whether we evolve single test cases or
whole test suites.

This paper features a very large empirical study, where the data have been rigorously
analyzed with an appropriate statistical process to reduce threats to both internal and external
validity. We took particular care in the data analysis, hoping that this paper can serve as a
concrete reference example of how data should be collected and analyzed for randomized
algorithms in software engineering – an area where there often is a lack of sound empirical
evidence [8].
This paper is organized as follows: First, we give an overview of the bloat and length problems

as well as previous work in Section 2. In Section 3 we provide details on how the EvoSuite tool
automatically generates test cases for object-oriented software. Section 4 describes different
techniques that can be applied to control bloat. Section 5 describes the experiments and
discusses the results in detail. Finally, Section 6 discusses threats to the validity of our study,
and Section 7 concludes the paper.

2. Background

2.1. Test Data Generation Techniques

As the number of possible test cases is usually infinite, a practical solution is to choose
a coverage criterion, which represents a finite set of coverage goals. The objective of test
generation is to obtain a test suite that, once executed, covers as many as possible of these
goals. Unfortunately, for non-trivial software, writing such test suites by hand is a complex
and tedious task. Therefore, automated techniques have been developed to address this task. A
predominant criterion in the literature on structural testing is branch coverage, but in principle
any other coverage criterion (e.g., dataflow based criteria or mutation testing [9]) is amenable
to automated test generation.
For some testing goals it can be easy to find test input data to cover them, but for other

goals it might be very difficult to find such data. Therefore, a common approach is to use
random testing as a first step to cover the easy branches [10, 11]. After this initial phase, more
sophisticated techniques are applied in a second phase to target all the remaining uncovered
goals. A common approach in the literature is to target one such goal at a time, generating
test inputs either symbolically [12] or with a search-based approach [1]. In this paper, we



focus our analyses on this second phase: finding test data to cover difficult to reach testing
goals, in particular for branch coverage. We further consider an alternative approach [6] we
presented together with the EvoSuite tool, where all goals are targeted at the same time,
thereby avoiding any problems related to how difficult individual goals are.

Meta-heuristic search techniques have been suggested as a possible solution to automate
test case generation [1, 2]. In the context of object-oriented software, test cases are essentially
small programs exercising the classes under test. Search-based techniques have been applied
to test object-oriented software evolving method sequences with a genetic algorithm [5, 9] and
strongly typed genetic programming [13, 14]. A promising avenue seems to be the combination
of evolutionary methods with dynamic symbolic execution (e.g., [15, 16]), alleviating some of
the problems both approaches have.

2.2. Effects of Size in Test Generation

While we aim to obtain the highest achievable coverage, it is also important that the resulting
test suites are small. In this paper we assume the general case in which no automated oracle
is available. In such a case, the output of each test case needs to be manually checked (e.g.,
by writing appropriate assert statements). Therefore, it is not feasible to ask a software tester
to manually write assert statements for thousands of test cases. Similarly, long test sequences
are intuitively more difficult to analyze and to understand than short sequences. This has led
to work in which the goal was still obtaining highest coverage of the desired testing criterion,
but with the secondary goal of obtaining a test suite that is as small as possible (e.g., [17–19]).

Effectively, this means that there are two conflicting goals: maximizing coverage C while
minimizing the length of the test cases, which can be calculated by counting the number of
statements S in them. How to combine these two measures? An approach would be to use a
pareto-based multi-objective algorithm [20], but the problem is that the length is less important
than coverage. Arcuri and Yao [17] used the following fitness function to maximize coverage:
C + (1/S + 1). In this way, in a comparison between two test cases, better coverage is always
preferred regardless of length. On the other hand, Andrews et al. [19] used (C × 1000) − S,
which means that an increase of one point in coverage is better only if it does not result in
a test case that is 1000 function calls longer. Baresi et al. [18] included the length of test
sequences in the fitness function as well, but they do not specify how this was done. Notice
that these approaches try to find single test sequences that cover as many testing goals as
possible. This can lead to potential problems if there are conflicting goals, such that a single
sequence cannot cover all goals at once. Another common approach that does not suffer such a
problem of conflicting goals is to target one coverage goal at a time, each one with a different
test case which will be combined in a final test suite [1, 5, 9, 21].

Arcuri [22] studied the role of test sequence length on branch coverage. In that work,
container classes and an industrial integration testing problem were used as case study. Using
longer sequences made the testing of these container classes trivial even with naive techniques
such as random testing. A simple post processing was very effective to minimize such sequences
without compromising their coverage. There has been other related work to shed light on the
role of length of test sequences. Andrews et al. [23] studied whether for the fault detection of



random testing it is better to have few long sequences or many short ones. Similar work has
been carried out by Fraser and Gargantini [24].

2.3. Bloat in Evolutionary Computation

Evolutionary computation has been used to solve many kinds of scientific/engineering
problems [25], where software engineering is just one example among many [26]. Given a
problem to solve, and a fitness function to guide the search, the idea is to evolve the solutions
through genetically inspired operators such as crossover and mutation. Each candidate solution
has a representation (i.e., chromosome) that is dependent on the addressed problem (e.g.,
sequences of function calls in software testing problems). In some cases, the representation is
of variable length, and the right choice for this length is something that needs to be searched
for. This is a typical example in Genetic Programming [27], where programs are evolved, and
those are usually represented with syntactic trees.
One problem with evolving individuals with variable length is bloat [3] where, generation

after generation, the individuals become bigger and bigger without any particular improvement
in the fitness values. This has several problems, as for example:

• The evolving population might end up consuming all the available RAM of the machine
in which the evolutionary algorithm is run, which can crash the algorithm. Even with
an upper limit to the maximum length, and by choosing a population size such that the
available memory cannot be exceeded, this could result in very small population sizes.

• Longer/bigger individuals are more computationally expensive to run, which leads to
less generations for the search given the same amount of time.

• Very long/big individuals will be difficult to analyze and understand for a practitioner.
This is a serious issue when, for the given addressed problem, the solutions produced
as output by the evolutionary algorithm need such a manual inspection. For example,
very long test sequences, even if they find faults in the SUT, might be of little use for
debugging because too complex to understand.

Already in the first book on Genetic Programming written by Koza [27], evolved solutions
had many subtrees with no impact on the final fitness value (i.e., the so called introns,
where parts of the genotype are not expressed in the phenotype). Although bloat is a typical
problem usually studied in Genetic Programming, it does apply to all evolutionary algorithms
in which the evolving individuals have variable size representation. For example, Langdon [28]
investigated the bloat effect on the Santa Fe trail problem using Simulated Annealing, two
variants of Hill Climbing, and one population-based evolutionary algorithm. Two different
kinds of mutations were employed. Bloat always occurred in the population-based evolutionary
algorithm, whereas it only occurred in Simulated Annealing and Hill Climbing depending on
the mutation operator.
To efficiently solve and avoid bloat, one would need to design novel techniques based on the

understanding of why bloat occurs in the first place. Unfortunately, bloat is a very complex
phenomenon. After several years of investigation, its dynamics are still not fully understood.



During the years, several hypotheses have been presented by the research community to explain
why bloat occurs. In their review [3], Silva and Costa identify the six main theories regarding
the cause of bloat in Genetic Programming. Here we just provide a brief summary, whereas
more detailed information can be found in [3].

Hitchhiking: Introns propagate because they adjoin highly fit building blocks [29].

Defense Against Crossover: Standard crossover (swapping of two subtrees) can be quite
destructive (particularly in the later stages of the search), where the fitness of offsprings
can be much worse than the one of parents. The presence of introns increase the chances
of swapping subtrees (i.e., crossover) that have no impact on final fitness [30, 31], and so
small modifications made by the mutation operator can better guide the search.

Removal Bias: Removing a subtree in an intron can only result in a reduction of nodes that
is equal or lower than the size of the intron itself. On the other hand, we can insert
subtrees of any size inside an intron without affecting the fitness value of candidate
solution. This results in a bias in which it is more difficult to remove nodes rather than
inserting new nodes in an evolving solution [32, 33].

Fitness Causes Bloat: This is the first theory that does not directly involve/rely on the
presence of introns. There are several ways to express the same program/solution (i.e.,
several different genotypes resulting in the same phenotype). But there are many more
ways to express the same functionality with large programs than with small programs.
When it is difficult to find better individuals, the search tends to reward offsprings that
have fitness values equal to the ones of the parents. Because with the same fitness there
are many more individuals that are bigger than shorter, this creates a natural drift
toward bigger solutions [34].

Modification Point Depth: In the latest stages of the search, it is better to have small
modifications than large destructive changes. There is a direct correlation between the
depth in the tree in which a modification occurs and its effect on the fitness. For example,
a mutation on the root node can completely change the entire behavior of the program,
whereas a mutation in a very deep leaf node will have much less impact. Bigger programs
will be more deep and have more leaf nodes than small programs, and so they might be
less affected by too destructive search operators [35].

Crossover Bias: When standard crossover is applied, the amount of genetic material
exchanged between two parents remains constant (i.e., the sum of the sizes of the parents
is equal to the sum of sizes of the offsprings). A population that undergoes several
crossover operations will end up in having the distribution of its tree sizes converging
to a Lagrange distribution of the second kind [36, 37]. In such distributions, small trees
are very likely. On average, the generated very small individuals (e.g., a single node) are
much less fit than the remaining bigger individuals. These small individuals die out in
succeeding generations, and individuals with greater size than the average of the previous
generations remain in the population, thus leading to bloat.



Although bloat has been extensively examined in the field of Genetic Programming, the
problem has not been explored in detail in the context of test generation. It is of particular
relevance for test generation for object-oriented software, where test cases are sequences of
statements. The following section takes a closer look at this problem domain.

3. Evolutionary Testing of Object-Oriented Software

Search-based testing uses meta-heuristic search techniques to evolve an initial set of candidate
test cases towards satisfying a given test objective, for example to reach a certain branch
in the control flow of the software under test. In this section, we describe the techniques
commonly used in search-based testing for object-oriented software, which are also those used
for experimentation in this paper.

3.1. Genetic Algorithms

A genetic algorithm is a meta-heuristic search technique that tries to imitate the mechanisms
of natural adaptation by evolving a population of candidate solutions using genetics-inspired
operations. Algorithm 1 shows a commonly used version of such a genetic algorithm: Starting
with a randomly generated initial population (current population, Line 1), parents P1 and P2

are selected using, for example, rank selection [38] (Line 5), and then crossed over (Line 7) and
mutated (Line 10) with a certain probability, resulting in offspring O1 and O2. Depending on
the fitness values, either the offsprings or the parents are carried over to the next population
(Z, Line 11–16). An iteration is done if the next generation Z has reached the same size as the
current generation, and then Z becomes the new current population (Line 17). This process
is repeated until either an optimal solution has been found, or some other criterion stops the
search (e.g., maximum allowed resources spent).

3.2. Fitness Function

The fitness function of a test case generation search depends on the chosen coverage criterion.
In this paper, we consider branch coverage, which is also the predominant criterion used in
the literature and in practice. A traditional fitness function for branch coverage [1, 2] consists
of the approach level and the branch distance.

The approach level ak is used to guide the search towards the target branch k. It is
determined as the minimal number of control dependent edges in the control dependency
graph between the target branch and the control flow represented by the test case. The branch
distance bk (for a target branch k) is a common heuristic to guide the search for input data to
solve the constraints in the logical predicates of the branches [1]. The branch distance for any
given execution of a predicate can be calculated by applying a recursively defined set of rules
(see [1] for details). For example, for predicate x ≥ 10 and x having the value 5, the branch
distance to the true branch is 10 − 5 + w, with w ≥ 1. In practice, to determine the branch
distance, each predicate of the software under test is instrumented to evaluate and keep track
of the distances for each execution.



Algorithm 1 A genetic algorithm as used for search-based testing.

1 current population← generate random population
2 repeat

3 Z ← elite of current population
4 while |Z| 6= |current population| do
5 P1,P2 ← rank selection from current population
6 if crossover probability then

7 O1,O2 ← crossover P1,P2

8 else

9 O1,O2 ← P1,P2

10 mutate O1 and O2

11 fP = min(fitness(P1),fitness(P2))
12 fO = min(fitness(O1),fitness(O2))
13 if fO ≤ fP then

14 Z ← Z ∪ {O1,O2}
15 else

16 Z ← Z ∪ {P1,P2}
17 current population← Z
18 until solution found or maximum resources spent

To avoid that the branch distance dominates the approach level, the branch distance has
to be normalized in [0,1]. An appropriate normalizing function ν(x) is the one suggested by
Arcuri [39]: ν(x) = x/(x+ 1). The fitness function for test case t and branch coverage goal k
can therefore be defined as follows:

fitness(t,k) = ak + ν(bk) (1)

An alternative to generating a test case for each individual goal is to generate an entire test
suite with respect to all coverage goals [6]. A test suite is represented as a set T of test cases ti.
Given |T | = n, we have T = {t1,t2, . . . ,tn}. The fitness function for a test suite, with respect
to how close a test suite is to covering all branches of a program, measures how close each
branch came to evaluating to true and to false, which can again be estimated using the branch
distance. It is important to consider that each predicate has to be executed at least twice so
that each branch can be taken. Taking this into account, we define the branch distance d(k,T )
for branch k on test suite T as follows:

d(k,T ) =



















0 if the branch has been covered,

ν(dmin(k,T )) if the predicate has been
executed at least twice,

1 otherwise.

Notice that there is a non-trivial reason behind the choice of d(k,T ) = ν(dmin(k,T )) applied
only when the predicate is executed at least twice [17]. For example, assume the case in which
it is always applied. If the predicate is reached, and branch k is not covered, then we would



have d(k,T ) > 0, while the opposite branch kopp would be covered, and so d(kopp,T ) = 0. The
search algorithm might be able to follow the gradient given by d(k,T ) > 0 until k is covered,
i.e., d(k,T ) = 0. However, in that case kopp would not be covered any more, and so its branch
distance would increase, i.e., d(kopp,T ) > 0. Now, the search would have a gradient to cover
kopp but, if it does cover it, then necessarily k would not be covered any more (the predicate
is reached only once) – and so on. Forcing a predicate to be evaluated at least twice, before
assigning ν(dmin(k,T )) to the distance of the non-covered branch, avoids this kind of circular
behavior.
In addition to cover all branches, we require that each method is executed at least once,

as some methods may contain no branches. We denote M as the set of methods of the class
under test, and MT as the set of methods executed by test suite T . With B, we denote the set
of branch distances bk. This results in the following fitness function, which the search aims to
minimize:

fitness(T ) = |M | − |MT |+
∑

bk∈B

d(bk,T ) (2)

3.3. Candidate Solution Representation

In search-based testing for object-oriented software, the candidate solutions are represented
by test cases. In genetic algorithm terminology, each test case represents a chromosome. A test
case is defined by a sequence of statements [5, 9]. A statement can be a call to a constructor,
a method call, a reference to a field or primitive value, or a value assignment. Parameters of
method and constructor calls, and source objects of method calls and field accesses have to be
objects generated in the same test case at a previous position.

Primitive statements represent numeric variables, e.g.,
int var0 = 54, as well as Strings, enumeration variables, and array definitions.

Constructor statements generate new instances of any given class; e.g.,
XMLElement var1 = new XMLElement().

Field statements access public member variables of objects, e.g.,
int var2 = var1.line nr.

Method statements invoke methods on objects or call static methods, e.g.,
int var3 = var1.countChildren().

Assignment statements assign values to array indices or to public member variables of
objects, e.g.,
var2.maxSize = 10.

A test case is a sequence of such statements, and the length of a test case is the number of
statements it consists of. A test suite is a set of test cases, where we define the size of a test
suite as the sum of the lengths of the individual test cases. Note that, given the same size, a
test suite could be composed of a different number of test cases (e.g., a few long or many that
are small).



(a) Test case crossover (b) Test suite crossover (c) Mutation

Figure 2: Crossover and mutation are the basic operators for the search using a
genetic algorithm.

3.4. Crossover

Crossover of test cases creates two offsprings from two parent test cases P1, P2. Different
flavors of crossover operators have been defined; in evolutionary testing of classes usually a
single point crossover is used, meaning that each of the parent chromosomes is split at a single
point, and the constituent parts of the parents are merged together (see Figure 2a). Crossover
of test suites creates two offspring test suites by merging subsets of the parent test suites (see
Figure 2b).

Crossover functions can further vary in how the crossover point is chosen. Tonella [5]
chooses a random point in the range of [1,min(length(P1),length(P2))]. Baresi et al. [18]
and Fraser and Zeller [9] choose different random positions for each of the parents in the range
[1,length(P1)] and [1,length(P2)]. In this paper, we call this latter crossover operator Two
Point Crossover (TPX).

In the case of crossing over test cases, statements in the test cases might have dependencies
and so it is necessary to try to satisfy these dependencies when attaching two sub-sequences
from the parents. For example, if a test case contains a statement foo.bar(x), then the
subsequence starting with this statement has dependencies on variables foo and x. If in the
subsequence to which this sequence is attached there are alternative objects of the same type
as foo, then one of these objects is randomly selected and used to replace foo; the same holds
for x. If there is no object that would satisfy the dependency, then additional statements need
to be added to create an alternative instance to replace foo. Crossover of test suites does not
require such repairing, as the individual test cases are not modified.



3.5. Mutation

Mutation introduces local changes into individuals. The mutation operators for test suites and
test cases differ. When applying mutation to sequences of method calls, we distinguish three
main types of mutation (each one applied with probability 1/3), illustrated in Figure 2c:

Deletion: This mutation operator removes a statement from a test case. As there are
dependencies between statements (e.g., a return value might be used as a parameter
in another method call), the dependencies need to be resolved, either by recursively
deleting dependent statements, or by replacing references with different suitable objects.
In a chromosome of length l, each statement is deleted with probability 1/l.

Change: This mutation operator alters a given statement. For example, Tonella [5] lists
a number of different possibilities to change statements. In our experiments, a change
replaces a method call with a randomly chosen method call that has the same return
type and has all dependencies satisfied at the given position in the test case. Primitive
values (e.g., integer numbers) are changed by a random but bounded increase or decrease.
Strings are changed in a more complex way, similar to test cases (i.e., each character in
a string has a probability of being deleted, changed or there is the insertion of new
characters). In a chromosome of length l, each statement is changed with probability
1/l.

Insertion: In terms of bloat analysis insertion is the most interesting operator, as it is the
only mutation operator that contributes to growth of the length. We use the following
strategy to insert statements: With probability σ′, a new randomly chosen statement is
inserted at a random position in the test case. If it is added, then a second statement is
added with probability σ′2, and so on until the ith statement is not inserted. Parameters
of new method calls are either satisfied with existing objects, or lead to addition of
further statements to create necessary objects.

When generating the initial population of the search, we sample test cases at random,
which uses the mutation operators described above. When evolving individual test cases, each
individual is a random test case; when evolving test suites each initial individual consists of
several randomly generated individuals, where the number of individuals is chosen randomly
for each test suite. For each test case, we first choose a value r in 1 ≤ r ≤ W with uniform
probability, where W is a value that needs to be set (e.g., W = 80). Then, on an empty
sequence we repeatedly apply the insertion operator described above until the test case has
a length ≥ r. Because on average we expect r = W/2, the value of W should not be set too
high, otherwise there is the risk of consuming all the available RAM.

When a test suite T is mutated, each of its test cases is mutated with probability 1/|T |,
such that on average only one test case is mutated. Then, a number of new random test cases
is added to T : With probability σ, a test case is added. If it is added, then a second test case
is added with probability σ2, and so on until the ith test case is not added (which happens
with probability 1 − σi). Given an upper limit limit N on the number of test cases |T | = n,
test cases are added only if that limit N has not been reached, i.e., if n < N .



3.6. Generating Test Suites

Any non-trivial class will have a number of different coverage goals, even for simple coverage
criteria. As discussed in Section 2, when one is not targeting all branches at the same time it
is common practice to have a first phase of random testing to cover the easy branches. Then,
each remaining target can be individually sought with more sophisticated techniques. Some
of these remaining coverage goals may be infeasible, which means that there exists no test
case that would cover them. To avoid that all available resources are wasted on infeasible or
difficult coverage goals on which the search fails, it is necessary to limit the resources spent on
a single coverage goal. For this, we apply the following strategy:

• For |B| branches to cover and an initial budget of X statements (or fitness evaluations,
generations, etc.), the execution limit for the search on each branch is X/|B|.

• If a branch is covered, some budget may be left over, and so after the first iteration on
all branches there is a remaining budget X ′. For the remaining uncovered branches B′

a new budget X ′/|B′| is calculated and a new iteration is started on these branches.

• This process is continued until the maximum number of statements is reached.

Test cases are only generated for branches that have not been covered previously by other
test cases, as a test case can cover more than one branch. In contrast, when evolving test
suites with respect to all branches at the same time, one does not need to worry about how to
distribute the search budget on the individual branches. In fact, this is a huge advantage as
one cannot run into the problem that an unreasonably large amount of the budget is wasted
on infeasible branches, such that there is insufficient budget left for the remaining branches.
However, in the presence of infeasible branches the search by definition cannot achieve full
coverage, and so we need to set a limit on the search as well. However, there is no need of any
explicit first phase of random testing to cover the easy branches, as this is directly included in
the first population of the GA which is generated at random.

3.7. Test Case Minimization

The type of testing problems addressed in this paper is to target difficult faults for which
automated oracles are not available – which is a common situation in practice. Because in
these cases the outputs of the test cases have to be verified manually, the generated test suites
need to be of manageable size. There are two contrasting objectives: the “quality” of the test
suite (e.g., measured in its ability to trigger failures once manual oracles are provided) and
its size. The approach we followed in this paper can be summarized as: Satisfy the chosen
coverage criterion (e.g., branch coverage) with the smallest possible test suite.
As discussed throughout the paper, allowing the search to dive into longer test cases can

significantly improve the coverage [22]. But in the end, we need to output to the user only
a smaller test suite with no redundant statement. This means that, when we stop the search
(e.g., after a timeout, or after a predefined number of fitness evaluations), we need to minimize
the test suite to remove unnecessary statements.



A simple minimization technique discussed in [22] is as follow: given a test case of length l,
remove one statement, and re-execute this reduced test case. If the coverage decreases, then
re-insert that statement, otherwise keep this shorter test case. Repeat this process l times for
each statement in the test case.
How long will this minimization process take? For simplicity, let us ignore the case in which a

removal of a statement forces the removal of other statements (defining a complete theoretical
framework to analyze minimization techniques is not in the scope of this paper). For example,
if successive statements have dependency on this removed statement (e.g., it returns a variable
that is successively used as input in other function calls), then we can “repair” these statements
by using different input variables. When we remove a statement from a sequence of length l,
executing this shorter test case would imply executing l−1 statements. On one hand, if the test
case is already minimized, this minimization process would require to execute l×(l−1) = O(l2)
statements. On the other hand, if each time we remove a statement the coverage does not
decrease, then we would need to execute (l−1)+(l−2)+. . .+1 =

∑i=l−1

i=1
i = l(l−1)/2 = Ω(l2)

statements. Therefore, the complexity of this minimization algorithm would be quadratic in the
number of statements, i.e., Θ(l2) (tight bound). Notice that, even if more efficient minimization
algorithms with lower complexity can be designed, their runtime complexity would still be
dependent on the test case length. Consequently, the cost of minimizing a test case might
not be negligible if it is too bloated, which is a further argument in favor of bloat control
techniques.

4. Bloat Control Techniques

Bloat occurs when small negligible improvements in the fitness value are obtained with
larger solutions. This is very typical in classification/regression problems. In software testing
the fitness function is often just the obtained coverage, and so we might not expect bloat
because the fitness would assume only few possible values. However, as soon as other metrics
are introduced with large domains of possible values (e.g., branch distance [1] or mutation
impact [9]), bloat might occur.
As discussed in Section 2.3, bloat can be a particularly harmful phenomenon. Longer

sequences can consume large amounts of memory and take longer to evaluate, which would lead
to less generations in the evolutionary search (within the same amount of time). Furthermore,
very long sequences cannot be directly used for testing purposes unless an automated oracle
is available, which is usually not the case.
Since the problem of bloat is well known, different techniques have been proposed to keep

bloat under control. In this paper, we adapt and tailor bloat control methods from the literature
of Genetic Programming [3] to our testing problem to deal with the possibility of bloat.
However, these techniques may not apply directly to test case generation.

It is also important to note that there is a difference between the length of the test cases
that are given as output after the search is finished and the different length values that the
evolving test cases have during the search itself. On one hand, the output sequences should
be as short as possible (while optimizing coverage). On the other hand, during the search it
can be very useful to have longer sequences [22], because it would make the search able to



Algorithm 2 Adapted genetic algorithm that includes bloat checks, highlighted with gray
background.

1 current population← generate random population
2 repeat

3 Z ← elite of current population
4 while |Z| 6= |current population| do

5 P1,P2 ← select with extended rank selection
6 if crossover probability then

7 O1,O2 ← crossover P1,P2 with RPX
8 else

9 O1,O2 ← P1,P2

10 mutate O1 and O2 with size check
11 fP = min(fitness(P1),fitness(P2))
12 fO = min(fitness(O1),fitness(O2))
13 lP = length(P1) + length(P2)
14 lO = length(O1) + length(O2)
15 TB = best individual of current population

16 if fO < fP ∨(fO = fP ∧ lO ≤ lP ) then

17 for O in {O1,O2} do

18 if length(O) ≤ 2× length(TB) then

19 Z ← Z ∪ {O}
20 else

21 Z ← Z ∪ {P1 or P2}
22 else

23 Z ← Z ∪ {P1,P2}
24 current population← Z
25 until solution found or maximum resources spent

explore larger areas of the search landscape without being trapped in fitness plateaus. Once
the search for maximum coverage is finished, a post-processing can be used to easily remove
the unnecessary function calls.
Considering all these differences, the dynamics of bloat in the case of testing object-oriented

software might not be the same as the ones in Genetic Programming. Therefore, the methods
coming from the literature of Genetic Programming to contrast bloat might need to be adapted.
In this paper we want to shed light on this research problem, and to this extent this section
describes bloat control techniques that can be applied to test case generation. Algorithm 2
shows an adapted version of the genetic algorithm presented earlier (Algorithm 1). It contains
five different techniques to control bloat: First, the rank selection algorithm is updated to
take length into account (Line 5); second, the crossover is an important source of bloat
and can be adapted (Line 7); third, mutation can increase the length, but a straightforward
countermeasure is to introduce a size limit (Line 10); fourth, a common source of length bloat
is when offspring has the same fitness as its parents but is longer – this case is handled in



Line 16; finally, rather than just fixing an upper bound it is also possible to restrict the rate
of growth dynamically (Line 18). In the following, we discuss these five techniques in detail.

4.1. Integrating Length During Rank Selection

A straight-forward approach to prevent bloat is to penalize the length directly in the fitness
function [9, 17–19]. However, as discussed in Section 2, combining two different objectives that
have different order of measure is not easy. Furthermore, because the branch distance might
obtain any possible continuous value, it would not be possible to combine it with the length
such that the length would be less important. The fitness function C + (1/S + 1) (where S is
the number of statements of the test case, i.e., its length) discussed in Section 2 works because
the coverage C can only assumes integer values.
Instead of combining the length in the fitness function in Equations 1 and 2, we use a different

approach. In general, the fitness function is only used to select individuals for reproduction. In
this paper, we use rank selection [38] (see Line 5 in Algorithm 2). Test cases/suites are ranked
based on their fitness value. Individuals with better fitness will receive a better rank, and so
will have higher chances of being selected for reproduction. To penalize longer test sequences
without penalizing a better fitness value regarding coverage (e.g., branch distance), in case of
ties in the ranking (i.e., same fitness value), we resolve the ties by giving a better rank to the
test cases/suites that are shorter.

4.2. Relative Position Crossover

One possible source of bloat is the crossover function, in which one of the offsprings can grow
in size (length when the crossover is applied between two parent test cases, and number of test
cases when it is applied on two parent test suites). If we choose two different splitting points
in the parents (e.g., P1 and P2) at random using TPX, then the size of the offsprings can
be very unbalanced when the splitting points are at the opposite edges of the chromosomes.
For example, when crossover is applied on test cases, the length of the offsprings would vary
between 0 and length(P1) + length(P2), with average value (length(P1) + length(P2))/2.
Another version of the crossover operator generates two offsprings O1 and O2 from two

parent test cases P1 and P2. A random value α is chosen from [0,1]. On one hand, the first
offspring O1 will contain the first α|P1| genes (i.e., statements or test cases) from the first
parent, followed by the last (1− α)|P2| genes from the second parent. On the other hand, the
second offspring O2 will contain the first α|P2| genes from the second parent, followed by the
last (1 − α)|P1| test cases from the first parent. In this paper, we call this operator Relative
Position Crossover (RPX), and it is shown in Line 7 in Algorithm 2. In contrast to TPX, in
RPX the offsprings will never have greater size than the biggest of the parents.

For crossover applied on test cases, regardless of the crossover operator (i.e., TPX and
RPX) the test cases can still grow in size, as additional statements might be added to satisfy
dependencies of merged parts of the parents. In addition, test cases can grow as part of the
mutation operator.
For RPX applied on test suites, even if no offspring can have more test cases than the

“biggest” of the parents, its size (defined as the sum of lengths of each of its test cases, recall



Section 3.3) might significantly increase. This can happen for example if one of the offsprings
inherits the longest test cases from both parents, while the other offspring inherits the shortest.
In other words, RPX guarantees that the number of test cases in a test suite does not increase,
but the total length might increase.

4.3. Fixed Maximum Length

A very common approach to contrast bloat is to put an upper limit L to the length of the test
cases, e.g., L = 100 function calls. This constraint can be enforced in several ways: First, by
having search operators that do not sample offspring test cases that are longer than L (Line 10
in Algorithm 2). For example, an insertion mutation could be avoided if the length already
equals L. Second, offsprings that are longer than L (e.g., when we use TPX) can be rejected,
and the parents will be copied to the next generation instead of the offsprings. Finally, the
limit can be given implicitly by specifying a maximum amount of resources to be spent per
individual. For example, one can define a timeout for the execution of test cases.

But how to choose a maximum length L? Should it be equal to 100 or 1,000? Too small a
value might make the search very unlikely to succeed. With a large value there might be the
risk of running out of memory and being severely affected by bloat. In Genetic Programming,
a rule of thumb is to have trees of maximum depth equal 17. In the case of testing object-
oriented software, we are aware of no work that tries to analyze and give an answer to this
research problem.
As previously mentioned in Section 2.3, bloat is a very complex phenomenon. This is

illustrated by the fact that, counterintuitively, using a limit L might actually favor the raise
of bloat [37]. As a detailed discussion of this would go beyond the scope of this paper, we refer
the interested reader to the literature [3, 37].

4.4. Length Dependent Parent Replacement

A potential source of bloat concerns the relation between the performance of the parents and
its offsprings. If one offspring has a fitness value strictly better than the fittest of its parents,
then both offsprings will be accepted in the new generation independently of their length
(but other bloat control methods might still prevent it). However, in case of equal fitness,
the offsprings will be accepted only if they are not longer than their parents; see Line 16 in
Algorithm 2. In other words, we accept longer test sequences in the new generations if and
only if at least one of the offsprings has strictly better fitness value than both the parents.

4.5. Dynamic Upper Bounds

Choosing a proper value for the upper limit L might not be easy, and there might be side-
effects due to the use of a fixed L. Beside L, one further approach discussed by Silva and
Costa [3] is to use a dynamic limit based on the best individual TB in the current generation.
For example, an offspring O could be rejected if length(O) > 2 × length(TB) (Line 18 in
Algorithm 2). In this way, we would not need the burden of fixing a value for L, and would
allow a less constrained search of the solution space. For example, if the current best solution



has length 10, we would still be able to explore sequences up to length 20. Notice that such a
dynamic limit can be used in conjunction with the static limit L.

In whole test suite generation, we can still apply exactly the same dynamic upper bound,
where the length of an individual (i.e., a test suite in this context) is the sum of the lengths
of its test cases (recall Section 3.3).

5. Experimental Evaluation

To study the effects of both the test case length and the bloat control techniques, we performed
a set of experiments. In detail, this evaluation aims to answer the following research questions:

RQ1: How does the maximum starting length W influence the search results?

RQ2: How do the bloat control methods impact the achieved coverage?

RQ3: Which techniques to control bloat are most effective?

RQ4: How do the bloat control methods affect whole test suite evolution?

RQ5: How likely are the presented results to generalize to other case studies?

5.1. Case Study

As subject for our experiments, we selected a set of open source Java libraries: Java Collections
(a subset of the java.util library, as used in the Randoop [40] experiments), Apache Commons
Collections (version 3.2.1) and Commons Primitives (version 1.0), NanoXML (version 2.2.3
“light”), and a Java translation of the String case study subjects used by Alshraideh and
Bottaci [41]. We also use a set of numerical applications used in [42] and a subset of classes
from an industrial application [43]. This resulted in a large and variegated case study.
This case study resulted in nearly 1,000 classes and more than 15,000 branches— far too

many for an in-depth analysis of bloat control methods. We needed a way to filter out the easy
branches, and identify the difficult ones. This is also of practical interest: If a testing technique
A is twice as fast as another technique B, then solving an easy problem in one millisecond
instead of two milliseconds would be an improvement of no value from a practical stand point.
On the other hand, solving a problem in one hour instead of two hours would be of practical
interest.
In our case study, we applied the following filtering phase to choose a selection of difficult

branches: We applied our test case generation tool with a search limit of 200,000 statements
per branch (of which there were more than 15,000) with all bloat control techniques enabled,
collecting information for each branch about the number of statements executed until a solution
was found (one run per branch). Given this information, we selected the subset of those
branches which resulted in a solution (i.e., are feasible), but required between 100,000 and
200,000 statements for this solution (i.e., are non-trivial). This resulted in a set of exactly 100
difficult but feasible branches, which we used for further experimentation.



For experiments with whole test suite generation we require not only individual branches
but entire classes, as the optimization targets all branches at the same time. We therefore
chose the set of classes that contained the 100 selected branches for experiments with whole
test suite generation; these 39 classes together with information on the number of branches
and lines of code are listed in Table I. Note that the number of branches can be higher than
the number of lines of code as branches are counted on the bytecode, and each compound
condition is compiled to several independent branches in the bytecode. It is also interesting to
see that many data structures, and in particular many classes related to map data structures,
ended up in the final set of classes. However, this choice was not made deliberately, and simply
resulted because of the most complex branches, as described above.

5.2. Experimental Setup

For the experiments we consider the five bloat control techniques described Section 4. In
particular, we use the following labels to indicate whether a bloat technique is employed:

Bo: the maximum length for the test cases is bounded from above, i.e., if we set an upper
limit L. In particular, we chose L = W , where [1,W ] is the range in which the length of
new random test cases is chosen from.

Xo: the crossover RPX is used instead of TPX.

Ra: use the length of the test cases/suites to resolve the ties in the rank selection of the
parents for reproduction.

Pa: check length of offsprings against parents’ length.

Be: check the length of offsprings against best solution’s length in the current population.

5.2.1. Bloat Control Configurations

For all experiments with whole test suite generation, we use the EvoSuite tool [6]. EvoSuite
also supports generating individual test cases for individual coverage goals, which we use for
the experiments on individual goals. However, we use EvoSuite synonymously for whole
test suite generation in the following sections. For the initial length of random test cases, we
consider three values for W , specifically W ∈ {20,50,80}. For the experiments in this paper,
the total number of configurations for the genetic algorithm is hence 25 × 3 = 96. Because we
run the search on each branch independently, this means a total of 96× 100 = 9,600 different
experiments. In all the experiments, we give a budget of 100,000 statement evaluations (a
typical value in the literature, e.g. [21]). The search can finish for two reasons: either a test
case that covered the target branch is found (a so called global optimum), or the entire execution
budget has been consumed.



Table I. Details of the classes used for experimentation with whole test suite generation;
the 100 branches used for the first set of experiments is contained in these classes. Lines
of non-commenting source code (LOC) in the case study classes were calculated with

JavaNCSS (http://javancss.codehaus.org/)

Library Class #Branches LOC

String Casestudy Costfuns 21 16
String Casestudy Ordered4 29 11
String Casestudy Title 43 18
Commons Primitives adapters.AbstractFloatCollectionCollection 21 46
Commons Primitives RandomAccessFloatList 81 205
NanoXML XMLElement 310 661
Java Collections AbstractList 78 255
Java Collections AbstractMap 121 190
Java Collections Arrays 629 843
Java Collections HashMap 203 394
Java Collections Hashtable 217 403
Java Collections IdentityHashMap 208 435
Java Collections LinkedHashMap 49 120
Java Collections LinkedList 113 247
Java Collections SubList 48 110
Java Collections WeakHashMap 206 395
Java Collections Collections 509 1,021
Java Collections TreeMap 402 663
Commons Collections bidimap.AbstractDualBidiMap 110 289
Commons Collections bidimap.DualTreeBidiMap 54 149
Commons Collections buffer.PriorityBuffer 82 168
Commons Collections collection.CompositeCollection 60 118
Commons Collections collection.UnmodifiableCollection 9 27
Commons Collections CursorableLinkedList 290 642
Commons Collections functors.AnyPredicate 14 31
Commons Collections functors.ChainedClosure 16 38
Commons Collections functors.SwitchTransformer 25 57
Commons Collections iterators.ArrayListIterator 16 42
Commons Collections iterators.CollatingIterator 56 125
Commons Collections keyvalue.TiedMapEntry 26 33
Commons Collections list.AbstractLinkedList 189 438
Commons Collections list.TreeList 180 357
Commons Collections map.AbstractHashedMap 243 520
Commons Collections map.AbstractInputCheckedMapDecorator 21 62
Commons Collections map.AbstractLinkedMap 94 206
Commons Collections map.AbstractReferenceMap 163 351
Commons Collections map.StaticBucketMap 144 261
Commons Collections map.UnmodifiableEntrySet 24 62
Commons Collections map.UnmodifiableSortedMap 17 59



5.2.2. Procedure for Individual Test Case Generation

To compare whether a configuration A is better than another configuration B on a branch, we
apply the following procedure, as described in more detail by Arcuri and Briand [8]. We run the
genetic algorithm n times for both configurations on that branch (so 2n runs), and we record
the number of times a out of n an optimal solution is found with the first configuration A,
and the number of times b it is found with the other configuration B. The success rate for A is
defined as a/n. If a > b, then it would seem that A is better then B, and the other way round if
a < b. However, because genetic algorithms are randomized, we need rigorous statistical tests
to assess whether there is enough empirical evidence to claim with high confidence that the two
success rates are indeed different. We apply a Fisher exact test at significance level α = 0.05.
If the p-value is above the chosen α level, then there would not be enough evidence to claim
a difference in the success rates of A and B. Still, the performance of the two algorithms can
be statistically different, as we will now discuss in more detail.

In case there is no statistical difference in the success rates, we can analyze the time an
algorithm takes to finding an optimal solution for the runs in which it is successful [8]. For
example, assume that a = b = n, i.e., for the given budget of statements the algorithm finds
an optimal solution in all the 2n runs. This would happen if the target branch is easy and/or
the given computational budget is very high. In these cases, we might want to know how fast
the algorithm finds a solution. This is of practical importance, because we can stop the search
as soon as we find an optimal solution. For each run that leads to finding an optimal solution,
we can monitor how much computational effort has been spent, measured in the number of
statements executed before finding the optimal solution for each run. We can hence compare
the computational effort of A (based on a observations/values) with the effort of B (based on
b observations/values). As discussed in [8], we use a Mann-Whitney U-test (with α = 0.05) to
asses which configuration requires less computational effort to find optimal solutions.

5.2.3. Procedure for Whole Test Suite Generation

When we analyze the results for whole test suite generation, we need a slightly different
procedure to compare A with B. An algorithm is better than another if the test suites it
generates have higher coverage. Differences in coverage are quantified with the Vargha-Delaney
Â12 effect size (see [8, 44]), which indicates the probability that an algorithm (e.g., A) gives
higher values (in this case the number of covered branches) than another algorithm (e.g., B).
If there is no difference between two algorithms, then Â12 = 0.5. A high value Â12 = 1 means
that, in all of the n runs of the analyzed algorithm, we obtained coverage values higher than
the ones obtained in all of the n runs of the other algorithm. When Â12 6= 0.5, we evaluated
whether the effect size is statistically significant with a Mann-Whitney U-test (with α = 0.05).

Whenever there is no difference in the obtained coverage (i.e., Â12 = 0.5), then in general
it is not reasonable to evaluate how long the algorithm took to obtain that coverage. In most
cases, there are infeasible testing targets (branches in our context) and the search is stopped
after either a predefined number of fitness evaluations or a timeout. Therefore, in general we
do not know when an optimal solution has been found, and so stop the search. Even if an
algorithm A is faster than B to achieve the same coverage, in practical contexts both would



be run for the same time anyway. However, in these cases A and B can be differentiated based
on the size of the generated test suites. If an algorithm generates smaller test suites but with
the same coverage, then it can be considered as better. To evaluate whether differences in test
suite sizes are different, we used a Mann-Whitney U-test (with α = 0.05).

Notice that, when coverage values are different, it does not make much sense to consider the
size of the test suites, because in general higher coverage might require longer test cases (e.g.,
some branches could be executed only if the internal state is put in a precise configuration,
and if to do that the only way is a particular sequence of function calls). However, it is possible
(and we have seen it in the experiments in some cases), that a technique not only achieves
higher coverage, but at the same time it also generates smaller test suites.

5.2.4. Search Parameters

The genetic algorithm was configured with a population size of 100, and a rank bias of 1.7.
The crossover probability was set to 0.75, and test case mutation is applied with probability
1/3 each for insertion, deletion, and change. When mutating test suites, the initial probability
for test case insertion was set to σ = 0.1, while the initial insertion probability of inserting
statements in test cases σ′ was set to 0.5. The maximum number of test cases in a test suite
was set to N = 100, although their initial number was set randomly in the range of [1,10] test
cases for each test suite. These settings are in line with common practice in the literature and
our past experience with genetic algorithms. In general, although “default” values as the ones
above work well in practice, parameter tuning could lead to better results [45].

5.3. Bloat Control Techniques Illustrated

To illustrate the effects of the individual bloat control techniques, we performed a set of
experiments on the branch used to generate the plot in Figure 1a. We generated test cases
for this branch using 25 different random seeds and a maximum of 100,000 statements, and
averaged the results. Figure 3a shows the behavior of the length without any bloat control
techniques activated—the length grows, as expected. Figure 3b shows how the average test
case length behaves over the evolution of test generation when we use RPX for the same
branch. The average size of the test cases increases, but at a much slower rate than with TPX.
Figure 3c shows how the average test case length converges when a fixed maximum length is
used. Figure 3d shows how the average test case length first shrinks as the long individuals
of the initial population are removed, and then grows only slowly. Figure 3e shows how the
use of length in the rank reduces the average test case length for the usual example branch.
Finally, Figure 3f shows how the average length increases slowly when using the parent check.

5.4. Analysis of Individual Bloat Control Techniques

To study the effects of the individual bloat control techniques in detail, we ran a first set of
experiments in which, for each W ∈ {20,50,80}, we ran a genetic algorithm with no bloat
control activated (No) and with the five bloat control activated one at a time, for a total of
3 × (1 + 5) = 18 configurations for each branch (i.e., a subset of the total 96 configurations).
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(a) No bloat control (No)
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(b) RPX crossover function (Xo)
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(c) Fixed upper bound (Bo)
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(d) Check against best (Be)
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(e) Length in rank (Ra)
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(f) Check against parents (Pa)

Figure 3: Evolution for the same branch as in Figure 1a, using the different bloat
control techniques one at a time. Evolution is bounded by 100,000 executed
statements for these graphs, results are averaged for 25 runs. Note that y-axis
have different scales to make the graphs more readable.



Table II. Comparisons (better, equivalent and worse) of bloat control methods when
considering each method in isolation. Each method is compared with the other five,
with three different values for W , on all the 100 problem instances. In total we have
5× 3× 100 = 1500 comparison results per bloat control technique (i.e., per column).

No Bo Xo Ra Pa Be

Statistically Better 8 49 15 268 51 29
Statistically Equivalent 1347 1393 1392 1224 1402 1402
Statistically Worse 145 58 93 8 47 69

This first set of experiments is used to assess the implication of each bloat control method
in isolation. In fact, the case of multiple combinations of bloat control methods is harder to
analyze and visualize.
For each configuration and for each branch, we ran the genetic algorithm n = 25 times, for

a total of 100 × 18 × 25 = 45,000 runs. Figure 4 shows 18 boxplots, one for each analyzed
configuration. Each boxplot shows the distribution of success rates on the 100 branches
for that configuration. Table II and III summarize the statistical analyses we carried out
on these data. In particular, in Table II for each W ∈ {20,50,80} we report the results
of the statistical comparisons of each configuration against the other five (for a total of
100 × 6 × 5 × 3 = 9,000 comparisons). On the other hand, in Table III we report the results
of the statistical comparisons regarding the choice of the value W ∈ {20,50,80}. For the five
bloat control and no control at all configurations, we compared each choice of W with the
other two (hence 3× 2 = 6 combinations), for a total of 100× 6× 6 = 3,600 comparisons.
As we can see in those tables and figure, all the controlling bloat techniques have a beneficial

effect for obtaining higher success rate. In particular, penalizing longer lengths in rank selection
(Ra) seems to be the most effective technique regardless of the choice of W .
Regarding the choice of W , we do not see any particular trend in the data. Having short

starting sequences (W = 20) or long ones (W = 80) can have an effect, but that is dependent
on the chosen bloat control method (see Table III).

5.5. Investigations on All Bloat Control Techniques

There can be subtle interactions within the different bloat control methods when more than
one is used at the same time. To study these interactions, we carried out the same type of
experiments on the remaining 96−18 configurations, for a total of 100×96×25 = 240,000 runs
of the algorithm. This is a very large set of experiments that took several days to complete
even when run on a cluster of computers.

5.5.1. Analysis Procedure

To analyze and visualize the results of this large set of data, we used the following procedure:
For each branch, we compared the effectiveness of each configuration against all other
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Figure 4: Success rate for 18 configurations, each applied on all the 100 branches.
Left six boxplots are for W = 20, W = 50 in the centre and W = 80 for the six
boxplots on the right of the figure.

Table III. For each bloat control method in isolation, this table reports the number of
times a particular choice of W provides statistically better performance than any of
the other two choices. Therefore, each cell can assume values between 0 (never better)

and 2× 100 (always better on all the 100 problem instances).

Bloat Control W = 20 W = 50 W = 80

No 8 13 24
Bo 20 12 14
Xo 11 17 15
Ra 32 10 18
Pa 18 15 14
Be 16 17 14



configurations, one at a time (so, 96×95 comparisons, which can be reduced by half due to the
symmetric property of the comparisons). Initially, we assign a score of 0 to each configuration.
For each comparison in which a configuration is statistically better, we increase its score by one,
and we reduce it by one in case it is statistically worse. Therefore, in the end each configuration
has a score between −95 and 95. The higher the score, the better the configuration is.

After this first phase, we rank these scores, such that the highest score has the best rank,
where better ranks have lower values. In case of ties, we average the ranks. For example, if we
have five configurations with scores {10,0,0,20,− 30}, then their ranks will be {2,3.5,3.5,1,5}.
We repeat this procedure for all the 100 branches, and we calculate the average of these ranks
for each configuration, for a total of 100× 96× 95/2 = 456,000 statistical comparisons.

This a very large number of comparisons, which can lead to a high probability of Type I
error [8] if we consider the hypothesis that all tests are significant at the same time. We do
not use corrections such as the Bonferroni one, for reasons that are discussed in detail and at
length in [8]. The configurations with lower average ranks can be considered better than the
others. Table IV shows the performance of all the 96 configurations, ordered by their ranks.

5.5.2. Results

The results in Table IV confirm some of our hypotheses, but also point out some unexpected
behaviors. The worst configuration is when no bloat control is activated, and the search starts
from small lengths (see last row). This is a particular configuration, with an average success
rate 0.190 that is much lower than the 0.464 of the top configuration.

On one hand, regarding the bloat control techniques, the one that has most effect is Ra.
Activating Ra always produces better results, whatever the setting of the other parameters.

On the other hand, it came as a surprise that RPX is actually giving bad results (i.e., Xo

does not appear in the top rankings). It seems that an unbalanced length crossover such as
TPX, which can produce very long as well as very short test cases, is actually beneficial. We can
provide a conjecture to give a plausible explanation to such an unexpected behavior: In some
cases, longer test sequences can have more chances to achieve higher coverage [22], so sampling
longer test sequences is beneficial. However, when during the search a fitness plateau is reached,
longer test sequences would not have better fitness. Smaller offsprings generated with TPX
will likely have the same fitness (plateau), but if Ra is activated they will be preferred. The
search will hence have a sudden drift toward smaller test sequences. Smaller test sequences
are quicker to evaluate, and so more generations would be possible. More generations would
lead to a more focused search of the test data in input to those sequences, which might help to
find the right input data to escape from the plateau. Although this is a plausible explanation,
more research will be required to verify whether that is actual the case, and no other subtle
dynamics are involved.

Regarding the other three bloat control methods, they seem beneficial, but they are not as
important as Ra. When we look at the bottom of the table, it seems that Pa is better than
Bo and Be. But at the top, there is not much difference.

The role of W is rather particular: In the best seven configurations, it is set to W = 50.
But then, for other configurations it does not seem that the choice of W has any particular



effect (i.e., we do not see any particular pattern in the data). At the moment, we do not know
whether there is any specific reason for why that is the case.

Regarding the first three of our initially posed research questions, this leads us to the
following conclusions:

RQ1: How does the maximum starting length W influence the

search results?

The results of our experiments show that the choice of the maximum
starting length W is not particularly important.

Our results have also clearly shown that all bloat control techniques have a large effect of the
achieved coverage. In particular, in our experiments the configuration without bloat control
was only successful in 19 out of the 100 branches on average, while the best configuration of
bloat control techniques lead to coverage of 46 branches on average.

RQ2: How do the bloat control methods impact the achieved

coverage?

Applying bloat control techniques
increases coverage significantly.

Among the bloat control methods, Ra has a strong beneficial effect, whereas Xo decreases
the performance. The other three methods are useful, but not as important as Ra. Because
using only Ra alone does not give good enough results (see Table IV), based on our results
we can suggest the practitioners to use all bloat control methods but Xo at the same time.

RQ3: Which techniques to control bloat are most effective?

Rank selection with length has the best effect, and should be used together
with all other techniques but RPX.

5.6. Bloat in Whole Test Suite Evolution

Evolving whole test suites for testing object-oriented software is a alternative approach
introduced in [6, 7] with the EvoSuite tool. Obviously, test suites are larger and consume more
memory than single test cases. Therefore, it is necessary to study the role of bloat in whole
test suite generation as well. In previous sections, we have evaluated different bloat control
methods in the common context of targeting branches one at a time. It is hence important
to see whether those results carry over to EvoSuite, or if evolving whole test suites requires
different mechanisms to control bloat.



Table IV. Performance of the 96 configurations on single target strategy, ordered from
top (best performance) to bottom (worst performance). Symbols are used to indicate

whether a particular bloat control method is activated.
Bo Xo Ra Pa Be W Av. Rank Av. Success Rate

20 50 80

△ ⊕ ▽ ⊞ W 31.475 0.464

△ ⊕ ▽ W 31.840 0.456

△ ⊕ ⊞ W 32.595 0.482

⊕ ▽ ⊞ W 32.670 0.456

⊕ ▽ W 34.725 0.447

△ ⊕ W 35.415 0.448

⊕ ⊞ W 36.070 0.442

△ ⊕ ⊞ W 37.335 0.423

△ ⊠ ⊕ ▽ ⊞ W 37.430 0.430

△ ⊕ ⊞ W 37.605 0.459

⊠ ⊕ ⊞ W 37.615 0.418

△ ⊠ ⊕ ⊞ W 38.080 0.422

⊠ ⊕ ▽ ⊞ W 39.325 0.419

⊠ ⊕ ⊞ W 39.455 0.423

⊠ ⊕ ▽ W 39.580 0.413

△ ⊕ W 39.790 0.431

⊕ ⊞ W 39.815 0.431

⊠ ⊕ W 40.050 0.414

△ ⊕ ▽ W 40.140 0.420

△ ⊠ ⊕ ▽ W 40.330 0.425

△ ⊕ ▽ ⊞ W 40.670 0.413

△ ⊕ ▽ ⊞ W 40.700 0.432

△ ⊠ ⊕ ⊞ W 40.835 0.405

⊕ ⊞ W 40.940 0.438

△ ⊕ ▽ W 41.200 0.455

△ ⊠ ⊕ W 41.350 0.410

⊕ ▽ ⊞ W 41.695 0.423

⊕ ▽ ⊞ W 41.890 0.405

⊕ ▽ W 41.925 0.413

⊠ ⊕ ▽ W 42.150 0.399

⊠ ⊕ ▽ ⊞ W 42.195 0.401

⊠ ⊕ ▽ ⊞ W 42.470 0.388

△ ⊠ ⊕ ▽ W 42.500 0.395

⊠ ⊕ ⊞ W 42.800 0.422

⊕ W 43.075 0.407

⊠ ⊕ W 43.095 0.421

△ ⊠ ⊕ W 43.255 0.420

△ ⊠ ⊕ ▽ ⊞ W 43.635 0.377

⊕ W 45.160 0.398

⊠ ⊕ ▽ W 45.205 0.393

⊕ ▽ W 45.285 0.412

△ ⊠ ⊕ ▽ W 45.450 0.392

△ ⊕ W 45.850 0.418

⊕ W 46.460 0.401

△ ⊠ ⊕ W 46.625 0.388

△ ⊠ ⊕ ⊞ W 46.700 0.409

△ ⊠ ⊕ ▽ ⊞ W 47.760 0.379

⊠ ⊕ W 47.850 0.384

△ ▽ ⊞ W 48.985 0.342

▽ W 49.585 0.329

▽ ⊞ W 49.705 0.334

△ ▽ ⊞ W 49.995 0.369

△ ⊠ ▽ ⊞ W 50.290 0.313

△ ▽ W 50.740 0.356

△ ⊠ ▽ W 51.295 0.313

△ ▽ W 51.350 0.340

△ ⊞ W 51.570 0.327

△ ▽ ⊞ W 52.215 0.326

△ ⊞ W 52.800 0.330

▽ ⊞ W 53.260 0.330

⊠ ▽ ⊞ W 53.610 0.309

△ ▽ W 53.845 0.321

⊠ ▽ ⊞ W 54.040 0.310

⊠ ▽ W 54.475 0.312

▽ ⊞ W 54.835 0.296

▽ W 55.080 0.306

⊞ W 55.290 0.317

⊠ ▽ W 55.390 0.313

⊠ ▽ ⊞ W 55.605 0.304

△ W 55.635 0.305

▽ W 55.695 0.324

△ ⊠ ▽ W 56.065 0.310

△ W 56.160 0.309

⊠ ⊞ W 56.200 0.304

△ ⊠ ▽ ⊞ W 56.255 0.301

⊠ ▽ W 56.295 0.312

△ ⊠ ▽ ⊞ W 56.655 0.312

△ ⊠ ▽ W 56.835 0.291

△ ⊠ W 57.095 0.279

△ ⊠ ⊞ W 57.135 0.291

△ ⊞ W 57.180 0.319

⊞ W 57.390 0.306

W 58.955 0.285

△ ⊠ ⊞ W 59.085 0.297

⊞ W 59.190 0.297

△ ⊠ ⊞ W 59.270 0.285

⊠ W 59.595 0.279

△ W 59.995 0.300

⊠ ⊞ W 60.145 0.281

⊠ W 60.150 0.289

△ ⊠ W 60.675 0.278

⊠ ⊞ W 60.705 0.289

△ ⊠ W 60.975 0.292

W 61.655 0.267

⊠ W 65.220 0.238

W 71.765 0.190



5.6.1. Analysis Procedure

For each of the 39 classes selected as described in Section 5.1, we ran EvoSuite with the same
96 configurations used in the previous experiments in Section 5.5; the data were also analyzed
in a similar way. For each class, we compared the effectiveness of each configuration against
all other configurations, one at a time, and calculated a performance rank per configuration.
These ranks were averaged over the 39 classes. In total, we had 39 × 96 × 95/2 = 177,840
statistical comparisons. Data of these analyses are visualized in Table V, in a similar way as
previously done in Table IV.

Recall that, when we evolve single test cases to cover specific branches (as done in the
experiments discussed in the previous sections), bloat control methods aim to keep the length
of these test sequences under control. On the other hand, when we evolve whole test suites,
we try to keep under control their size, defined as the sum of the lengths of each of their test
cases.

5.6.2. Results

Unexpectedly, the data for EvoSuite in Table V show quite a few differences compared to
the previous experiments in Table IV for single test cases. Regarding the obtained coverage
averaged across the experiments, there is a large gap from the best configurations (around 87%
of coverage) and the worst (around 56%). Although controlling bloat has a positive impact,
there is a clear trend in the performance based on the starting length rangesW . For EvoSuite,
we have that W is quite important, and this is in clear contrast to the answer we gave for
RQ1 regarding single test cases in Section 5.5. In particular, the performance of EvoSuite is
better for shorter lengths.

In contrast with previous experiments, not only now RPX is better than TPX (i.e., Xo

is activated in all the top 29 configurations), but its influence on the performance is even
higher than Bo and Be. Enforcing a check on the parents lengths (Pa) has a harmful effect,
although small (e.g., Pa does not appear in the best configuration, and it is set in the six
worst configurations). Finally, although Ra is still the most important bloat control method,
it does not always give better results (as it was in Table IV).

The search problem addressed in EvoSuite is very complex, and the software used as case
study was non-trivial. Therefore, it is not possible to provide exact explanations (e.g., formal
proofs) for the results presented in Table V. However, a reasonable explanation to interpret
some of these data is as follows. As it was originally presented in [6, 7], the only operator in
EvoSuite to decrease the length of a test case is through mutation, where a removal happens
with probability 1/3, and on average only one statement is removed (see Section 3.5). A random
test suite (e.g., in the first generation of the genetic algorithm) would be quite large and time
consuming to evaluate. If for example the optimal length for a test case is 15, then starting
from long test sequences (e.g., W = 80) would require a lot of generations before reducing
the length. In all these generations, evaluating so big test suites could consume most of the
search budget. Having long test sequences is important, but even more important is it to have
mechanisms to increase and decrease them when most appropriate.



Table V. Performance of the 96 configurations for EvoSuite, ordered from top (best
performance) to bottom (worst performance). Symbols are used to indicate whether a

particular bloat control method is activated.
Bo Xo Ra Pa Be W Av. Rank Av. Coverage

20 50 80

△ ⊠ ⊕ ⊞ W 5.987 0.867

△ ⊠ ⊕ ▽ ⊞ W 6.833 0.860

△ ⊠ ⊕ ▽ W 6.936 0.860

△ ⊠ ⊕ W 7.167 0.867

⊠ ⊕ ⊞ W 7.487 0.870

⊠ ⊕ W 8.769 0.866

⊠ ⊕ ▽ ⊞ W 9.423 0.858

⊠ ⊕ ▽ W 9.590 0.859

△ ⊠ ⊕ ⊞ W 11.808 0.857

△ ⊠ ⊕ ▽ W 13.679 0.849

⊠ ⊕ ⊞ W 13.756 0.855

⊠ ⊕ ▽ ⊞ W 14.013 0.848

△ ⊠ ⊕ ▽ ⊞ W 14.064 0.848

⊠ ⊕ W 14.423 0.855

△ ⊠ ⊕ W 14.590 0.858

⊠ ⊕ ▽ W 15.846 0.848

△ ⊠ ⊕ ⊞ W 23.897 0.837

⊠ ⊕ ⊞ W 25.385 0.837

⊠ ⊕ ▽ ⊞ W 25.679 0.829

△ ⊠ ⊕ W 25.949 0.838

⊠ ⊕ W 26.154 0.837

△ ⊠ ⊕ ▽ W 26.833 0.831

△ ⊠ ⊕ ▽ ⊞ W 27.397 0.828

⊠ ⊕ ▽ W 27.987 0.828

△ ⊠ ▽ ⊞ W 33.154 0.835

△ ⊠ ▽ W 33.397 0.834

⊠ ▽ ⊞ W 36.090 0.832

⊠ ▽ W 36.218 0.832

⊠ ⊞ W 37.590 0.847

△ ⊕ ⊞ W 37.705 0.747

⊠ W 37.897 0.846

⊕ ▽ ⊞ W 38.000 0.746

⊕ ⊞ W 38.641 0.746

△ ⊕ ▽ ⊞ W 39.051 0.746

△ ⊠ W 41.551 0.836

△ ⊕ ▽ ⊞ W 41.705 0.742

△ ⊠ ⊞ W 42.077 0.833

⊕ ⊞ W 43.474 0.741

△ ⊠ ⊞ W 44.628 0.835

⊠ ⊞ W 44.987 0.833

△ ⊠ W 45.218 0.835

⊕ ▽ ⊞ W 45.590 0.741

⊠ W 45.679 0.831

△ ⊕ ▽ W 45.923 0.719

△ ⊕ ⊞ W 46.077 0.739

⊕ W 46.179 0.720

⊠ ▽ W 47.026 0.808

△ ⊕ W 47.359 0.721

⊠ ▽ ⊞ W 47.628 0.804

△ ⊠ ▽ W 47.769 0.803

⊕ ▽ W 48.423 0.719

△ ⊠ ▽ ⊞ W 48.513 0.800

△ ⊕ W 50.192 0.715

△ ⊕ ▽ ⊞ W 50.756 0.726

⊕ W 51.038 0.714

△ ⊕ ⊞ W 51.051 0.729

⊕ ⊞ W 51.192 0.730

△ ⊕ ▽ W 51.346 0.717

⊕ ▽ W 52.269 0.716

⊠ ⊞ W 53.487 0.818

⊕ ▽ ⊞ W 53.551 0.726

△ ⊠ ⊞ W 54.385 0.818

⊠ W 54.705 0.816

△ ⊠ W 55.128 0.816

△ ⊠ ▽ W 57.462 0.772

⊠ ▽ W 57.538 0.771

△ ⊠ ▽ ⊞ W 57.654 0.774

⊠ ▽ ⊞ W 57.782 0.772

⊕ ▽ W 58.397 0.704

⊕ W 58.628 0.704

△ ⊕ W 59.192 0.702

△ ⊕ ▽ W 59.218 0.702

⊞ W 72.974 0.638

△ ⊞ W 74.256 0.639

△ ⊞ W 74.321 0.634

⊞ W 74.910 0.640

△ ⊞ W 76.795 0.631

⊞ W 76.897 0.634

▽ ⊞ W 80.718 0.617

▽ ⊞ W 81.859 0.612

△ ▽ ⊞ W 82.256 0.611

△ ▽ ⊞ W 82.667 0.617

▽ ⊞ W 83.564 0.611

W 83.590 0.589

W 83.692 0.587

W 83.782 0.584

△ W 84.167 0.578

△ W 84.205 0.587

△ ▽ ⊞ W 84.231 0.607

△ W 84.679 0.583

▽ W 88.333 0.578

▽ W 89.628 0.572

△ ▽ W 90.154 0.574

▽ W 90.269 0.567

△ ▽ W 90.449 0.575

△ ▽ W 91.423 0.560



The great difference in performance between RPX and TPX at test suite level in comparison
with test case level can be explained as follows. An unbalanced crossover operator such as
TPX can generate a long test case, and such a new test case might cover branches that were
uncovered before. On the other hand, a crossover operator at test suite level never produces any
new test cases. Even if a crossover operator can produce an offspring test suite that is better
than both its parents (i.e., by choosing and combine the right test cases), its importance can
decrease during the generations. In other words, when after some generations all the test suites
achieve similar coverage, crossover loses its power to improve the coverage of a test suite. In this
context, TPX is particularly harmful, as bigger test suites will be more expensive to evaluate
(with no possible higher coverage), and too small test suites might have lower coverage.

Why does activating Pa lead to worse results? It might be related to the crossover operator
properties. The used crossover operator only swaps test cases between the parent test suites, so
it does not modify their combined total size. As it does not produce any new test case, its effects
on fitness might be minimal in the later stages of the search. Search will be driven only by the
mutation operator. But, if Pa is activated, small modifications that insert new statements but
that do not improve fitness will be rejected. So, the search might be too restricted (i.e., not
allowing the exploration of fitness plateaus, which would lead to the search getting stuck in
local optima). On the other hand, in the one branch at a time approach, the crossover could
make large changes (many new statements inserted) to an individual test case. So, potentially
it could improve fitness in one single step in the cases where small steps do not have gradient.

The analysis of these data (Table V compared to Table IV) shows that there can be subtle
interactions among the different techniques to control bloat. Regarding EvoSuite, for future
work it might be a reasonable idea to use a crossover both at test suite and at test case levels.
But in this case, considering all the subtle interactions among parameters, we would need
to repeat these experiments (i.e., different combinations of bloat control methods), as new
unexpected behaviors could arise.

Another interesting difference between Table V and Table IV is the range of the ranks. In
Table IV the average ranks go from 31.4 to 71.7, whereas for Table V the ranges go from 5.9
to 91.4. Although there might be several explanations (e.g., strong variance in the relative
performance of the configurations among different case study artifacts), the most likely one
is related to the statistical power of the employed statistical tests. In fact, we state that a
configuration is better than another one (and so better, lower rank) only if there is enough
statistical evidence to claim it (in our case if the obtained p-values are lower than α = 0.05).
In general, given the same amount of data, a Fisher exact test (used for the analyses in
Table IV regarding success rates) produces higher p-values than a Mann-Whitney U-test (used
in Table V for comparisons of coverage values).

In summary, the impact of bloat control methods is significant: In our experiments, the
configuration without bloat control achieved an average coverage of only 56%, whereas the
best configuration of bloat control techniques lead to 86.7% coverage.



RQ4: How do the bloat control methods affect whole test suite

evolution?

Bloat control methods significantly improve performance, but there are
subtle interactions among the different methods.

5.7. Generalization

A common problem in empirical research is the generalization of the obtained results. When
the proposed techniques are applied to new instances that were not present in the original case
study (e.g., a practitioner that uses a research prototype in practice), will these techniques
still behave in a similar way? Or are we going to obtain very poor results? In general, to cope
with these threats to external validity, case studies should be large and representative of the
addressed problem (for more discussions on this topic tailored to software testing, see [2]).

5.7.1. Analysis Procedure

Given an empirical analysis in which several techniques/configurations are compared with the
aim of identifying which one is the best, there is the problem of over-fitting. In other words,
there might be a specific configuration that is too specialized for the case study at hand. It will
be the best for the case study, but then it would have poor performance on any other instance.
This is a typical problem in machine learning [46] (e.g., in the training of regressors and
classifiers). It is also a general problem in search-based software engineering, where parameter
tuning (e.g., choice of population size and crossover rate in a genetic algorithm) could lead to
over-fitted parameters [45]. Because bloat control techniques can be seen as parameters of the
search algorithm, we follow the guidelines in [45] to analyze possible issues with over-fitting.
This is done to increase our confidence in the external validity (i.e., generalization to other
problem instances) of the results discussed in the previous sections.

As discussed in [45], a common approach in machine learning to address generalization issues
is k-fold cross validation [46]. In our empirical analysis, we have two distinct data sets. The
first data set was generated from applying a search for single targets on 100 different branches,
whereas the second data set by applying EvoSuite on 39 classes. In both cases, 96 bloat
control configurations were analyzed and compared in the previous section. We apply k-fold
cross validation on the two data sets separately. Before discussing the results of these analyses,
we briefly explain how k-fold validation works. For more information, we refer to machine
learning text books such as [46].

To apply k-fold cross validation, we randomly partitioned the case study (e.g., in our two
cases, 100 branches and 39 classes) in k non-overlapping subsets (a common value, which we
use in this paper, is k = 10). We used one of these groups as test set, and merged the other k−1
subsets to use them as training set. We applied the tuning (i.e., identify which combination
of bloat control techniques gives best results) only on the training set, and then evaluate the
performance on the test set (the instances in the test set are not used and play no role in
the decision of which configuration is tagged as best). We repeated this process k times, every
time with a different subset for the test set, and remaining k − 1 for the training set. We



Table VI. K-fold analysis for one branch at a time approach. For each group in k-fold
analysis, reported best configuration chosen on training set. Results (average success
rate) are calculated on both the training set (Training) and the test set for validation

(Validation).

Group Bo Xo Ra Pa Be W Training Validation

20 50 80

1 △ ⊕ ▽ ⊞ W 0.446 0.639

2 △ ⊕ ▽ ⊞ W 0.466 0.503

3 △ ⊕ ▽ ⊞ W 0.474 0.444

4 △ ⊕ ⊞ W 0.500 0.351

5 △ ⊕ ▽ ⊞ W 0.472 0.459

6 △ ⊕ ▽ ⊞ W 0.489 0.216

7 △ ⊕ ▽ ⊞ W 0.476 0.404

8 △ ⊕ ▽ W 0.471 0.368

9 △ ⊕ ▽ ⊞ W 0.471 0.466

10 △ ⊕ ▽ W 0.452 0.594

Average 0.472 0.444

Table VII. K-fold analysis for whole test suite approach (i.e., EvoSuite). For each
group in k-fold analysis, reported best configuration chosen on training set. Results
(average coverage) are calculated on both the training set (Training) and the test set

for validation (Validation).

Group Bo Xo Ra Pa Be W Training Validation

20 50 80

1 △ ⊠ ⊕ ⊞ W 0.864 0.896

2 △ ⊠ ⊕ ⊞ W 0.862 0.915

3 △ ⊠ ⊕ ⊞ W 0.858 0.950

4 △ ⊠ ⊕ ⊞ W 0.864 0.898

5 △ ⊠ ⊕ ⊞ W 0.866 0.873

6 △ ⊠ ⊕ ⊞ W 0.869 0.854

7 △ ⊠ ⊕ ⊞ W 0.890 0.671

8 △ ⊠ ⊕ ⊞ W 0.866 0.880

9 △ ⊠ ⊕ ⊞ W 0.876 0.786

10 △ ⊠ ⊕ ⊞ W 0.862 0.965

Average 0.868 0.869

averaged the performance on all the results obtained from all the k test sets, which gives a
value describing the performance of the algorithm (e.g., success rate for the 100 branches, and
coverage for the 39 classes).

These values averaged from the test sets can be used to estimate how well a configuration
tuned on the entire data set would perform on new data. In particular, this process is a way
to see whether the chosen best configuration suffers of over-fitting problems.

5.7.2. Results

The data in Table VI and Table VII, compared with the first rows (i.e., best configurations)
in Table IV and Table V, clearly show that the results are consistent. The choice of the best
bloat control methods does not over-fit the data.



RQ5: How likely are the presented results to generalize to other

case studies?

The choice of best bloat control methods
does not over-fit the used case study.

6. Threats to Validity

Threats to internal validity might come from how the empirical study was carried out. To
reduce the probability of having faults in our testing framework, it has been carefully tested.
But it is well known that testing alone cannot prove the absence of defects. Furthermore,
randomized algorithms are affected by chance. To cope with this problem, we ran each
experiment 25 times, and we followed rigorous statistical procedures to evaluate their results.
The selection of the set of 100 difficult branches (and their respective 39 classes) was based on

only one run for practical reasons (total number of branches was more than 15,000). Therefore,
it might be possible that some of them would not be difficult on average, and we could have
missed some other difficult branches. However, once the set was selected, all experiments on
that set were valid and independent from the chosen selection mechanism.
We used both open source projects and industrial software as case studies, for a total

of nearly 1,000 classes. We selected different types of applications, such as for example
implementations of data structures, complex manipulations of string data and numerical
applications. Nevertheless, there is still the threat to external validity regarding the
generalization to other types of software, which is common for any empirical analysis.
Furthermore, due to the large amount of experiments, only 100 branches and 39 classes were
used as case study. To reduce possible issues regarding conclusions that over-fit the data
used in the empirical analysis, we employed machine learning techniques such as k-fold cross
validation.

7. Conclusions

Evolutionary search with variable size representation is susceptible to bloat—that is, a
disproportional growth of the length of individuals that quickly uses up all resources and so
seriously harming the search. Unfortunately, this also means it applies to search-based testing
for object-oriented software, although this has not been sufficiently treated in the literature so
far.
In this paper, we performed a set of experiments, using a genetic algorithm, on the properties

of test sequence length and how to counter the effects of length bloat in the context of branch
coverage. We studied two different but related testing strategies: generating test sequences to
cover specific branches one at a time (as commonly done in the literature), and evolving whole
test suites (an alternative promising approach introduced in EvoSuite [6, 7])
Interestingly, our results showed that there are complex subtle interactions among the bloat

control methods and, if bloat is not properly taken care of, then there is the danger of running



into problems such as using up all memory and drastically increasing execution times. However,
our experiments showed that the success rate and coverage for the same amount of resources
are significantly higher when applying the bloat control techniques described in this paper.
Our experiments clearly point to which bloat control techniques to use and which ones

should not be used in practical contexts. In particular:

• In a scenario where coverage goals are targeted one at a time the recommended
configuration is to use all presented bloat control techniques except for relative position
crossover, while the starting length is of minor importance.

• In a scenario of whole test suite generation, all bloat control techniques except for the
parent check are recommended; the starting length in this scenario should be short (e.g.,
20).

To support our claims, we carried out a very large empirical study on several types of
applications (e.g., data structures, string processing, numerical applications), using both open
source and industrial software. A rigorous statistical method (i.e., experiments repeated 25
times, statistical tests and k-fold cross validation) has been employed to verify with high
confidence that our results are scientifically sound.
As future work, we plan to repeat our experiments with a larger set of case studies (e.g.,

the SF100 Corpus [47]), and include further coverage criteria in addition to branch coverage.
Furthermore, we will need to consider the effects on length bloat of other parameters such as
the population size in genetic algorithms (e.g., to avoid running out of memory, we should
study dynamic techniques to reduce population size during search if single individuals get
too bloated). As our experiments show that the crossover operator can have a large impact
on bloat and subtle interactions with other bloat control methods, further developments in
EvoSuite (e.g., crossover operators that work both at test case and test suite levels) will
require dedicated analyses on their effects on test length bloat.
To learn more about EvoSuite, visit our Web site:

http://www.evosuite.org/
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