
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. (2016)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.1601

Seeding strategies in search-based unit test generation

José Miguel Rojas1,*,† , Gordon Fraser1 and Andrea Arcuri2

1Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello, Sheffield, S1 4DP, UK
2Scienta, Norway, and SnT Centre, University of Luxembourg, Luxembourg City, Luxembourg

SUMMARY

Search-based techniques have been applied successfully to the task of generating unit tests for object-
oriented software. However, as for any meta-heuristic search, the efficiency heavily depends on many factors;
seeding, which refers to the use of previous related knowledge to help solve the testing problem at hand, is
one such factor that may strongly influence this efficiency. This paper investigates different seeding strate-
gies for unit test generation, in particular seeding of numerical and string constants derived statically and
dynamically, seeding of type information and seeding of previously generated tests. To understand the effects
of these seeding strategies, the results of a large empirical analysis carried out on a large collection of open-
source projects from the SF110 corpus and the Apache Commons repository are reported. These experiments
show with strong statistical confidence that, even for a testing tool already able to achieve high coverage,
the use of appropriate seeding strategies can further improve performance. © 2016 The Authors. Software
Testing, Verification and Reliability Published by John Wiley & Sons Ltd.

Received 29 April 2015; Revised 16 December 2015; Accepted 10 January 2016

KEY WORDS: test case generation; search-based testing; testing classes; search-based software engineer-
ing; JUnit; Java

1. INTRODUCTION

Search-based techniques have been shown to be a promising approach to tackle many kinds of
software engineering tasks [1], particularly software testing [2]. Although automated generation of
test cases for structural coverage has received particular attention, for example, in the case of object-
oriented software (e.g. [3]), such testing techniques are still not widely adopted by practitioners. This
is partially due to current limitations in these techniques (e.g. in terms of efficiency and applicability)
and because many of the different parameters that influence search-based software testing (SBST)
are not well understood. Investigating these techniques is therefore of practical value.

One specific aspect requiring further investigation is seeding, which loosely refers to any tech-
nique that exploits previous related knowledge to help solve a search problem. For example, when
generating unit tests for object-oriented software, there often arises the need to create specific string
or numeric values to pass in as parameters. If there is existing knowledge about the class under test
in terms of sample values, then these can be used instead of randomly generated values. This may
lead to an improvement of the overall performance of the test generation, which is typically mea-
sured in terms of the achieved code coverage. However, it is not clear what influence seeding has on
the achievable results and what are the best seeding strategies.

To study the influence of seeding on search-based generation of unit tests in detail, this paper
considers different strategies targeting the Java language and using branch coverage as effective-
ness measure; however, the presented techniques can be extended to other programming languages

*Correspondence to: Jose Miguel Rojas, Department of Computer Science, University of Sheffield Regent Court, 211
Portobello S1 4DP Sheffield, UK.

†E-mail: j.rojas@sheffield.ac.uk
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd.

http://creativecommons.org/licenses/by/3.0/


J. M. ROJAS, G. FRASER AND A. ARCURI

as well and are not specific to any particular coverage criterion. In particular, this paper studies
seeding strategies that are applied when generating new or modifying existing test cases throughout
the search:

� Seeding of constants extracted from source code or bytecode (e.g. numbers and strings).
� Seeding of values observed at runtime during test executions required for fitness evaluation.
� Seeding of type information for dynamic or generic type instantiation.
� Reuse of previous solutions (e.g. previously generated or hand crafted test cases).

To study these seeding techniques, they have been integrated in the automated testing tool
EVOSUITE [4]. EVOSUITE is an advanced tool based on a genetic algorithm (GA), featuring for
example the whole test suite optimization approach to test data generation [5]. Evaluation of these
seeding techniques is performed with a large case study, including the SF110 corpus of open-
source Java projects [6] and a subset of projects from the Apache Commons repository [7]. The
results show, with high statistical confidence, that seeding strategies improve the performance of the
employed SBST technique. However, different strategies provide different ranges of improvement,
and in some cases, this effect can be correlated with the type of the tested software (e.g. when the
class under test makes strong use of string objects).

This paper extends previous work on seeding strategies in search-based unit test generation [8]
in several ways. Three additional seeding strategies have been implemented and evaluated, that is,
dynamic seeding of constants encountered at runtime, seeding of statically collected type informa-
tion and seeding of instantiated objects from existing manually written test suites. Moreover, a more
ambitious experimental evaluation is carried out on a much larger set of real-world Java projects.

The organization of the paper is as follows. Section 2 sets up the context of seeding strate-
gies in SBST, and Section 3 discusses different seeding strategies when testing object-oriented
classes. Section 4 describes the experiments, presents and interprets the results and provides detailed
examples. Threats to validity are discussed in Section 5. Finally, the paper is concluded in Section 6.

2. BACKGROUND

2.1. Evolutionary testing of classes

When generating tests for object-oriented code, the aim is to produce small sets of tests that max-
imize the coverage of the underlying code in the classes under test. A test suite for a class is a set
of test cases, where each test case in turn is a sequence of statements (e.g. a simple JUnit test case).
Each statement in a test case can generate objects through constructors and can access fields and
methods. The length of test cases is typically variable, as is the number of test cases in a test suite,
as it is highly dependent on the class being tested.

The experiments described in this paper use the EVOSUITE test generation tool [4], which imple-
ments a GA to derive test suites for classes. Individuals of the population of the GA are test suites as
described earlier. The GA works by iteratively selecting individuals from the population based on
their fitness with respect to the search objective and then applying crossover and mutation operators
to the selected individuals. From generation to generation, the fitness of the individuals gradually
improves, until either a solution has been found or the search is terminated another way (e.g. when
it hits a fixed bound on the number of generations or fitness evaluations). Crossover and mutation
operators have to be defined specifically for each type of chromosome; in the case of test suite
chromosomes, crossover amounts to exchange of test cases between two parent test suites, while
mutation can arbitrarily update the set of test cases by adding new ones or discarding or modify-
ing existing ones. In turn, modifying an existing test case involves deletion, change and insertion of
statements (e.g. method calls).

The search is guided by a fitness function that aims to maximize coverage [5]. For example,
to measure the fitness of a test suite with respect to the well-known branch coverage criterion,
the minimum branch distance [2] (estimate how close the branch was to being executed based on
the guarding predicate) is calculated for each of the branches in the class under test, and then the
normalized branch distance values are essentially summed up. An optimal solution thus has fitness

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

0.0, meaning all branches have been covered. In practice, classes often have difficult branches that
require the generation of complex sequences of method calls as well as specific constant values
(e.g. numbers or strings). In the standard case, the initial population is generated randomly, and any
constants generated during this initialization step or during the search are chosen randomly out of
their respective value domains.

2.2. Seeding in evolutionary search

In this paper, the term seeding is used to loosely refer to any technique that exploits previous related
knowledge to help solve the testing problem at hand. The presence of this previous knowledge
should not be a requirement to address the problem at hand (i.e. in theory, the problem should be
solvable even without using such knowledge).

The literature on evolutionary computation contains several papers on seeding strategies to
improve the search. For example, in genetic programming, seeding strategies have been used in the
context of improving different aspects of programs, which the search should optimize: in the con-
text of machine learning, Langdon and Nordin [9], for example, studied a seeding strategy in order
to improve the ability of a classifier/regressor to generalize. Westerberg and Levine [10] studied dif-
ferent strategies to seed the initial population for a genetic planner, an AI planning system based on
genetic programming. Similarly, White et al. [11] studied several different seeding strategies to ini-
tialize a genetic programming population for optimizing execution time of a given input program.
If every individual in the initial population is an exact copy of the input program, then the search
could get stuck in a sub-optimal area of the search landscape. Therefore, there is the need to use
smart seeding strategies to reuse good ‘building blocks’ from the original input program without
hampering the search progress.

2.3. Seeding in search-based software testing

In the context of SBST, the most common case of seeding regards the case when testing targets
(e.g. branches to cover) are sought one at a time, as for example in the work of Wegener et al. [12].
The control dependence graph can be used to choose an order in which the targets are sought, and
so reuse input data from previous runs when seeking to cover a dependent target. For example, if
several targets are nested inside the same difficult branch, when generating test data for one of them,
the result can later be reused as starting solution when seeking to cover other targets, instead of
re-starting the search from scratch (which can be expensive considering the difficulty of the parent
branch in which they are nested).

In the context of testing real-time systems to find worst case execution times, Tlili et al. [13]
applied seeding strategies as well. Given the execution time of the system under test as the fitness
function to optimize, instead of starting from scratch, they used a test case with high coverage as
seed to start the search from.

In some cases, it can be useful to generate more test data, even if coverage for the chosen testing
criterion is already maximized. This can be the case, for example, when automated oracles are
available or when software testers can afford to manually evaluate more test cases. Starting from a
test case, Yoo and Harman [14] investigated a seeding strategy in which local search is applied on a
solution test case, such that the diversity of the test data is maximized while the achieved coverage
is preserved. The rationale is that more different test cases would have more chances to find faults.

McMinn et al. [15] proposed seeding values taken from source code and documentation with the
objective to reduce the human oracle costs. Similarly, Fraser and Zeller [16] used common object
usage for seeding in the search to reduce the human oracle costs and to improve readability of the
generated test cases.

A GA usually starts from an initial population that is randomly generated. However, domain
knowledge can be used to choose this initial population. For example, in test data generation, there
may be several targets that are not so difficult to cover. So it makes sense to do a first phase of random
testing, before using a complex testing technique. For example, Miraz et al. [17] create the initial
population by selecting the best individuals out of a larger pool of randomly generated individuals.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

When testing software with predicates involving strings, generating the right strings for the input
data can be very challenging, as the space of possible strings is much larger than, for example,
the one of integers. Alshraideh and Bottaci [18] proposed and investigated a seeding technique
in which the code of the system under test is analysed and then string constants are extracted
and used as starting point for generation of string inputs. For example, consider the snippet
if(input.equals("complexAndLongString")): covering this branch becomes trivial,
as the right input data would be present already in the first generation of the GA. As the seeded
strings can be modified during the GA evolution (e.g. through the mutation operator), such seeding
technique can be helpful even in more complex cases [18]. Besides extracting string constants from
the system under test, a recent seeding approach has been investigated by McMinn et al. [19], in
which candidate input strings are extracted from web queries on search engines based on the system
under test information.

Another recent seeding strategy in SBST has been proposed by Alshahwan and Harman [20],
named ‘Dynamically Mined Value’ seeding. In testing web applications, the resulting HTML pages
generated as output of the test cases are then used as source of string inputs for the new test cases in
the search.

3. SEEDING STRATEGIES FOR TESTING OBJECT-ORIENTED CLASSES

This section discusses different seeding strategies that can be applied during test generation for
object-oriented classes. These are considered in the context of the Java language and its bytecode
representation, but the general seeding strategies apply to any language.

3.1. Seeding constants from source code or bytecode

As previous work has shown, reusing constant values appearing in the source code of the system
under test can have positive effects in test data comprehension [15] and code coverage [18]. When
branches are dependent on particular values, the program code often contains values that are similar
to the sought values. For example, branch conditions often contain the boundary values as constants:

Both values, 27 and 250, are candidates for seeding. This information can be easily collected and
integrated into the search. Namely, a constant pool is populated with concrete values during the
loading of the system under test in a so-called instrumentation phase. Then, during the search,
whenever attempting to generate a new constant value (e.g. to satisfy a parameter necessary for a
method call), with a certain probability PConstant, a value from the constant pool is randomly chosen
rather than a random new value. If by chance 27 is assigned to x directly, this would be lucky and
make the condition x == 27 immediately true. If by chance 250 is assigned to y, this would not
immediately make the condition true, but the search would be very close to achieving this. Typically,
there are different numerical types (e.g. 6, 16, 32 and 64 bit integer numbers, and 32 and 64 bit
floating point numbers). A sensible approach is to keep distinct constant pools for each type.

This type of seeding is not only viable for numerical constants, but also for textual constants, that
is, strings:

Again, using the strings "Example" and "foo" as constant seeds when generating string inputs
may help the search to satisfy the branching condition earlier. In general, evolving a randomly
generated string to any concrete value can take a very long time. Therefore, seeding string constants

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

have the potential to significantly reduce the time needed for the search, even if the seeded strings
are just in the proximity of the necessary values.

The EVOSUITE tool operates on bytecode, which is an intermediate representation used by many
modern object-oriented languages: compilation produces a binary representation of the classes that
is close to machine code yet retains parts of the original structure (e.g. classes and methods). Typ-
ically, bytecode also includes constant numerical values and strings. For example, in Java, every
class has a dedicated constant pool as part of its bytecode representation, and so, it is easy to col-
lect these constants from bytecode. In principle, constants can be extracted from source code just as
well, if available.

3.2. Dynamic seeding

Whereas static seeding uses values found through static analysis of the source code or bytecode,
dynamic seeding uses any values observed during execution for seeding. This idea was first proposed
by Alshahwan and Harman [20] in the context of testing web applications, and in this section, we
introduce new techniques to apply it in the context of unit test generation.

3.2.1. Seeding numerical values. Although comparisons with constants are common, very often
comparisons are also made between two variables with values that are not known statically, for
example:

Assume that x contains an input value that can be set but y is a local variable containing the
result of a complex calculation. Here, information cannot easily be extracted statically. However,
at runtime, the exact values of x and y can be observed when this comparison is performed; in
fact, during search-based testing these values are already compared in the context of calculating
the branch distance metric [21]. The idea of dynamic seeding, first proposed by Alshahwan and
Harman [20] in the context of web testing, is to collect these values at runtime and add them to
the constant pool used for seeding. To distinguish between constant values extracted statically and
dynamically, they are kept in two different pools, one for each type of constant. Thus, once the
condition is reached and executed, the values for x and y are added to the dynamic constant pool,
and the next time a variable is initialized with a seeded constant, with a probability PDynamic, these
values in the dynamic pool are candidates.

To enable dynamic seeding, the class under test must be instrumented with instructions to collect
values observed at runtime. In Java bytecode, one has to distinguish between integer datatypes
(int, short, byte), which all use the same bytecode instructions for comparisons, 64-bit long
variables with their own operations, and 32/64-bit floating point numbers float and double,
again with their own comparison instructions. Each numerical type requires specific instrumentation
for their corresponding comparison instructions. The instrumentation typically consists of inserting
a call before the comparison that copies the values to the pool. All dynamic pools are emptied at the
end of each run of the GA.

3.2.2. Seeding strings. Dynamic seeding is also valuable for collecting string values. However, here
one has to distinguish between the different methods of the String class in Java. For example,
consider the following expression:

Static seeding will collect the value "bar", but misses the value of the string variable str2. How-
ever, at runtime when equals is called, it will receive as argument the concatenated version of

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

Table I. Dynamic seeding of strings.

Class Instrumented statement Values added to dynamic pool

String s.equals(obj) s, obj.toString()

s.equalsIgnoreCase(s2) s, s2

s.startsWith(prefix[,start]) prefix + s

s.endsWith(suffix) s + suffix

s.matches(regex)
if matches(s,regex)
then nonMatchingRegexInstance(regex)
else regexInstance(regex)

s.regionMatches([ignoreCase,] s[0,start] + s2[start2,len+start2]+
start, s2, s[start+len,-],
start2,len) s2[0,start2] + s[start,len+start]

+ s2[start2+len,-],
s[start, len+start], s2[start2,
len+start2]�;�

Pattern p.matches(regex,charSeq) if matches(charSeq.toString(),regex)
then nonMatchingRegexInstance(regex)
else regexInstance(regex)

Matcher m.matches() if matches(charSeq(m).toString(),
m.pattern().pattern())

then nonMatchingRegexInstance
(m.pattern().pattern())

else regexInstance(m.pattern().
pattern())�

�If ignoreCase equals true, then both s and s2 are lowercased before adding anything to the pool.
�s[start,end] is short for the Java statement s.subString(start,end) (where ‘-’ means end of the
string).
�charSeq(m) is a function that returns the char sequence stored in m at runtime.

str2 and "bar". Again, this value is valuable for seeding. In order to retrieve this value for seeding,
the bytecode is instrumented such that, rather than String.equals, a helper method is called
that collects the argument string for the constant pool and then evaluates the string equality. Again,
in the case of test generation, this replacement of the equals method may already happen as part
of testability transformation [22], where rather than a boolean value a value providing more fine
grained guidance is returned.

As another example, consider the following expression:

Here, the values of str1, str2 and str3 can be collected at runtime, but unless all three values
are equal, seeding the exact values will not satisfy the branching condition. Thus, rather than seeding
the exact values of these three variables, instead, the concatenated string str2 + str1 is added
for the startsWith condition, and the concatenation of str1 followed by str3, that is, str1
+ str3, for the endsWith condition. Doing this leads the search to choose the right values to
make both conditions evaluate to true. Again this is achieved by replacing the String methods
with custom helper functions that collect the string values for the constant pool before evaluating the
actual method. Table I shows the complete relation of string operations considered and the concrete
values used for dynamic seeding.

Finally, to illustrate dynamic seeding of strings from regular expressions, consider the following
conditional statement:

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

For this condition to evaluate to true, the variable str needs to be assigned a valid email address,
which is what this regular expression checks for. Here, seeding the static value of the regular
expression will be of little help. However, a string variable that matches the regular expression can
be generated.

The algorithm to generate strings that satisfy a regular expression (regex for short) encountered
in the code starts with building an automaton that represents the regex. Then, the automaton is
traversed whenever a matching or non-matching instance of a given regular expression is required,
and such an instance is added to the dynamic pool. As can be seen in Table I, adding a matching or
non-matching instance of a regular expression to the dynamic pool depends on whether the string
(or char sequence) matches the regular expression or not. If the string (or char sequence) matches
the regular expression, a non-matching string value that can potentially be used to cover the false
branch of the conditional statement is added to the pool, and vice versa. In EVOSUITE, regular
expression operations are provided by the dk.brics.automaton Java library [23].

3.3. Type seeding

Consider the following snippet of code:

During test generation, a choice has to be made as to what object to pass in as a parameter to the
testMe method. Given the information provided in the signature, all that is known is that this
method expects an instance of java.lang.Object. However, in Java, every class is a subclass
of java.lang.Object. Thus, how should the test generator be able to select the correct class,
which in this case would be String? A conservative approach would be to perform static type
analysis or to only allow a small, fixed set of classes (e.g. Object, Integer). However, in order
to cover branches like in this example, potentially all known classes would need to be included. Two
main challenges are identified here. First, this requires knowledge about which classes are known
at all, which in Java is not possible via standard API calls but requires inspection of the directories
on the classpath. Second, the number of classes that are available on the classpath of a non-trivial
project can be very large, often in the thousands.

This problem is amplified with Java generics [24]: in Java, a generic class has type parameters and
can be instantiated for different types; for example, a collection can be parameterized with the type
of values it contains. However, the Java compiler removes generic type information (‘type erasure’),
and when accessing type information via Java reflection, generic parameters will be declared of
type Object.

However, even if parameters are declared to be of type Object, if a specific class is expected,
for example, in order to call a method of that class, then there will be a cast to that type. Hence, the
types of interest can be determined by statically looking at all cast operations in the Java bytecode
of the code under test and creating a pool of relevant types. Furthermore, looking at instanceof
operations also provides types. When an instance of class Object is required by the signature of a
method, then an instance of any of the types stored in the type pool can be used as parameter of an
invocation of the method.

In contrast to the two previous seeding techniques, which build on existing research, the idea of
seeding type information during search-based unit test generation is, to the best of our knowledge,
novel in this paper.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

3.4. Incorporating previous solutions

When testing classes, often one does not start from scratch but already has a certain set of test cases
ready. These might for example originate from previous runs of the test generation tool, or they
might be test cases written by hand by the developer of the class. Pre-existing test cases have been
used in previous work as a starting point for test data generation [13, 14]. Similarly, in the context
of this paper, such information can be useful to seed the initial population and mutation operators.
However, in order to use this information during search, the existing test cases need to be converted
to the representation used in the search algorithm. In the context of testing classes, previous test
cases are also sequences of method calls, which need to be parsed and interpreted. This might be
a non-trivial task, if a developer bases his tests on class hierarchies and inter-procedural test calls.
Previous work [8] used a parser to read test cases without inter-procedural calls and with simple
linear control flow. In this paper, unit tests are reconstructed from execution traces, which makes it
easier to reconstruct inter-procedural sequences of calls: For each class in the project under test, each
method entry is instrumented to add a trace entry consisting of the receiver object, called method,
and parameters. A unit test can then be generated by reproducing the top-level method calls in the
trace, while adhering to the parameter relations. In addition, it is possible to use the execution traces
to generate sequences of calls to generate and exercise parameter objects, or objects created within
other method calls.

3.4.1. Using existing unit tests. Given a set of parsed test cases TP , the question is how to best use
this information in the initial population. If TP is too small, then using this information too much
might lead to the search getting stuck in a sub-optimal area of the search landscape. On the other
hand, if TP is too large, then it may be difficult to use for producing small individual test suites, as
desired in evolutionary testing of classes.

When generating the initial population for the GA in EVOSUITE, each initial test suite is created
with n random tests, where n is selected within predefined bounds. If such a set of parsed test cases
TP is available, then it can be used for seeding the initial population: Each time a new test case is
produced, with probability PClone it is not produced randomly, but by cloning an existing test case
randomly chosen from TP . Then, to promote diversity, a number of mutations are applied to this
clone, chosen randomly in the range of Œ0; NMutation�.

3.4.2. Carving objects from unit tests. Under the assumption that a set of parsed test cases Tp exists,
a potential improvement consists in carving Tp . Carving a test suite consists in executing all its test
cases in order to collect all potentially reusable objects defined therein. The resulting collection is
referred to as the object pool. The following example illustrates how the object pool works.

The following class contains one method foo. In principle, and assuming that constant seeding
is disabled, it is hard for a search-based unit test generation tool to achieve full branch coverage on
this method. The difficulty lies in the need of having one test where the isFive condition is true,
and one where it evaluates to false, which depends on setting the right specific value (5) in the
argument object dep.

Now, let us assume that the following test suite exists, which contains a test case that exercises the
else branch in foo.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Executing this test suite allows to populate the object pool with two objects: one instance of
class DifficultDependency with three invocations to method inc and one instance of class
DifficultWithoutCarving with a call to method foo passing dep as input argument. Then,
at test generation time, with a probability PObjectPool the dep object will be chosen as input argument
for a call to foo. Notice that dep does not exactly make the conditional evaluate to true: because
method inc is only invoked three times, the call to isFive() in foo will still return false. How-
ever, seeding object dep does help in guiding the search towards generating a test case that covers
that branch and hence achieving full branch coverage.

4. EVALUATION

Having defined the different seeding strategies, this section now addresses the following five
research questions:

RQ1 : What is the impact on branch coverage of using constants from the bytecode for seeding?
RQ2 : What is the impact on branch coverage of using values observed at runtime for seeding?
RQ3 : What is the impact on branch coverage of using static type information for seeding?
RQ4 : What is the impact on branch coverage of using previous solutions for seeding?
RQ5 : What is the impact of seeding on fault finding effectiveness?

4.1. Experimental setup

4.1.1. Test generation tool. Five different sets of experiments were conducted, each one addressing
one of the five research questions. In all the experiments, the default settings of EVOSUITE [25]
were used, and individual seeding strategies were enabled based on the research question addressed.
The search is stopped after a 2-min timeout, which is a value that is suitable to achieve high coverage
with EVOSUITE based on past experience, but still permits thorough experiments.

In this paper, the effectiveness of each seeding strategy is measured by the branch coverage
achieved when using it. In general, however, none of the strategies is specific to a particular coverage
criterion. The rest of this paper thus uses the terms coverage and branch coverage interchangeably.

4.1.2. Case study objects. The choice of a case study is of paramount importance for any empirical
analysis in software engineering. This paper uses two sets of benchmarks to evaluate the different
seeding strategies. The SF110 corpus of open-source Java projects [6] is used to address RQ1 to
RQ3 and RQ5. The SF110 corpus consists of 110 open-source Java projects from the SourceForge
database‡, totalling 23,886 Java classes. The corpus includes a statistically representative sample of
one-hundred projects from SourceForge plus the ten most popular projects residing in SourceForge
at the time of the corpus collection (June 2014).

Because of the large amount of classes in the corpus, a systematic approach to study the different
seeding strategies was used, consisting of the following phases. First, a random stratified sample of
100 classes from SF110 was used to perform experiments to find out the best seeding configurations.

‡http://sourceforge.net/

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr

http://sourceforge.net/


J. M. ROJAS, G. FRASER AND A. ARCURI

To construct such a stratified sample of subject classes, iteratively, a random project in SF110 was
selected, and then a random class from that project. This method provides fairness among projects
with different sizes. Table II presents size metrics of the classes in the stratified sample grouped by
project. Second, ten repetitions of the observed best seeding configurations were run on all classes
in SF110, which lead to determine those classes on which seeding has an impact, that is, resulted in
a different coverage value. Third, up to 30 repetitions with the best configuration were run again on
this latter subset of classes to discern statistically significant benefits.

To address RQ4, Java classes with existing and available test suites were needed. The requirement
of having existing test suites available rendered the SF110 corpus unsuitable for RQ4: only 88
classes (0.37%) therein have accompanying test suites. To satisfy this requirement, the Apache
Commons repository of reusable Java components [7] is used, which has a reputation of being well
tested. A sample of 28 Java projects with sizes ranging from 14 to 731 classes was collected, with
127 classes per project on average and 3558 classes altogether. A total of 1212 classes in the selected
projects are accompanied by manually written test suites. Because there is no explicit mapping
between classes and test suites, the following simple algorithm to match test suites and classes under
test automatically was implemented: execute each test suite measuring its coverage on any class in
the classpath; then, select the class on which the test suite achieves the highest coverage and assume
that is the suite’s target. Although not infallible in general, this method suffices for the purposes of
this work.

The same systematic method described before for RQ1-3 was followed. From the set of 1212
classes with test suites available, a first experiment was run on a randomly selected sample of 100
classes. Table III summarizes the resulting list of classes. Running all configurations on this sample
lead us to determine the optimal seeding configurations, which were then applied on the initial
set of 1212 classes. In order to evaluate statistical significance, 30 repetitions with the optimal
configuration were run on the list of classes where seeding made a difference in coverage.

Finally, RQ5 was addressed by means of mutation analysis, comparing the average mutation
scores of test suites generated without seeding and test suites generated using optimal configurations
for the three seeding strategies evaluated in RQ1-3. The analysis was performed on the randomly
selected set of 100 classes from SF110 and refined for the subset of classes for which either of the
three seeding strategies had an impact on branch coverage.

4.1.3. RQ1: Constant seeding. In the first set of experiments, 10 different values for the constant
seeding probability were selected, that is, PConstant 2 ¹0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9º
where, intuitively, PConstant D 0 means no seeding at all (i.e. only random values) and larger val-
ues mean increasing the probability of seeded values being used rather than random values during
test generation. The value PConstant D 1 is omitted because it means no random choice at all, which
would limit the search to exclusively use seeded constants. First, EVOSUITE was run with each pos-
sible PConstant value on the stratified sample of classes from the SF110 corpus described in Table II.
From this experiment, the optimal value for PConstant was chosen, that is, the value with which the
highest overall coverage was achieve on the sample. Then, on a second round of experiments, the
optimal value for PConstant was used to run 10 repetitions on all classes in SF110, with the aim of
identifying classes for which static seeding has an impact on coverage. That is, only classes for
which the average coverage achieved with and without constant seeding varied were included in
the selection. Finally, 30 repetitions of the same configuration, that is, using the optimal value for
PConstant, were run on that selection of classes in order to statistically validate the benefits observed.

4.1.4. RQ2: Dynamic seeding. In the second set of experiments, to answer RQ2, EVO-
SUITE was run with a range of probability values for dynamic seeding, namely, PDynamic D
¹0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1º. The use of dynamically seeded values during
test generation depends on the probability of using seeded primitive values (i.e. PDynamic depends on
PConstant). For example, using the configuration PConstant D 0:4 and PDynamic D 0:8, with probability
0.4, a constant value will be used instead of a randomly generated one. In that case, with probability
0.8, the constant will be a dynamically seeded value and with probability 0.2 (1 � PDynamic); it will
be a statically seeded value. Although the optimal value for PConstant identified in isolation earlier in

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Table II. Number of classes, non-commenting lines of code (calcu-
lated with JavaNCSS [26]), branches and methods for the stratified

sample of 100 classes from the SF110 corpus, grouped by project.

Project Classes Lines of Code Branches Methods

a4j 2 44 28 12
apbsmem 1 78 30 18
beanbin 2 16 10 4
biblestudy 1 108 34 33
bpmail 1 15 0 10
byuic 2 19 0 11
celwars2009 2 60 18 7
corina 1 5 2 2
dash-framework 3 13 4 7
db-everywhere 2 14 0 9
dsachat 2 67 12 8
dvd-homevideo 1 1061 160 14
falselight 1 6 0 1
fixsuite 1 21 4 2
fps370 1 16 8 3
freemind 2 32 6 6
gae-app-manager 1 15 4 7
gaj 1 22 2 13
geo-google 3 64 10 39
gfarcegestionfa 3 82 28 13
greencow 1 2 0 1
heal 1 17 8 3
ifx-framework 1 2 0 2
imsmart 1 4 0 4
inspirento 1 3 0 2
io-project 2 84 66 17
ipcalculator 3 318 38 6
javabullboard 1 69 58 22
javathena 1 8 0 3
javaviewcontrol 3 1585 2444 52
jaw-br 1 41 16 2
jclo 1 8 0 1
jdbacl 3 91 34 34
jhandballmoves 2 108 94 27
jiggler 1 261 122 57
jmca 1 37 22 3
jni-inchi 1 65 8 3
jsecurity 1 46 10 7
jwbf 3 106 48 17
lavalamp 1 2 0 2
lilith 3 49 20 10
mygrid 2 91 60 18
nekomud 2 10 0 7
netweaver 3 261 108 53
newzgrabber 1 129 34 17
noen 2 19 6 10
nutzenportfolio 2 161 22 26
objectexplorer 1 9 0 6
omjstate 1 10 0 4
openhre 1 15 4 6
petsoar 1 11 4 5
quickserver 1 234 90 41
resources4j 1 60 14 14
rif 1 18 0 2
sfmis 1 78 26 5
shop 2 86 28 18
sugar 1 72 32 7

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

Table II. Continued.

Project Classes LOC Branches Methods

summa 1 2 0 2
sweethome3d 1 64 22 21
templatedetails 1 41 12 9
tullibee 1 20 20 3
twfbplayer 1 4 0 2
vuze 1 1 0 2
water-simulator 2 35 10 13
weka 1 145 76 22
xbus 2 117 48 13

Grand total 100 6357 3964 820

Table III. Number of classes, non-commenting lines of code (calculated
with JavaNCSS [26]), branches, methods and test suites available for the
random sample of 100 classes from the Apache Commons repository,

grouped by project.

Project Classes LOC Branches Methods Test suites

beanutils-1.9.2 4 73 32 24 4
chain-1.2 2 182 104 28 3
cli-1.2 1 30 10 9 1
codec-1.7 4 184 108 47 5
collections-3.2.1 19 709 274 245 20
compress-1.4.1 4 427 226 82 7
configuration-1.10 2 104 32 14 2
dbcp-1.4 1 123 34 52 2
dbutils-1.5 2 170 24 64 2
digester3-3.2 1 34 14 11 1
email-1.3.1 2 341 180 75 2
exec-1.1 2 65 70 22 2
imaging-1.0 1 3 0 2 1
io-2.4 6 888 466 156 11
jxpath-1.3 3 181 104 54 14
lang3-3.3.2 10 1417 1056 275 11
logging-1.1.1 1 81 28 15 1
math3-3.3 24 1858 798 206 26
net-3.3 1 548 64 118 2
pool-1.6 1 54 0 26 1
scxml-0.9 3 105 36 33 7
validator-1.4.0 3 319 152 69 3
vfs-2.0 3 67 10 42 8

Total 100 7963 4022 1669 136

RQ1 could have been used, a more interesting scenario is to evaluate several combinations of both
probability variables. In total, 1C9�11 D 100 combinations were tested (the first one corresponds
to PConstant D 0, whose combination with any value for PDynamic would be redundant). The results of
these experiments are used to find the combination of PConstant and PDynamic that achieves the high-
est average coverage. Having identified this optimal combination of constant and dynamic seeding,
two more experiments were conducted. In the first one, 10 repetitions were run to filter out SF110
classes for which dynamic seeding has no influence on the achieved coverage (i.e. the average cov-
erage equals the average coverage achieved using the baseline configuration with no seeding). In the
second experiment, 30 repetitions were completed for this selection of classes in order to evaluate
the extent of the benefits observed.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Table IV. Ranking of PConstant val-
ues according to the average cover-

age they achieve.

PConstant Avg. Branch Coverage

0.5 0.7273
0.7 0.7263
0.6 0.7261
0.8 0.7261
1.0 0.7260
0.9 0.7260
0.3 0.7258
0.1 0.7252
0.2 0.7249
0.4 0.7245
0.0 0.7155

4.1.5. RQ3: Type seeding. The third set of experiments looks at the impact of type seeding on
coverage, in order to answer RQ3. The same set of combinations of values for PConstant and PDynamic

described for RQ2, that is, 1C 9 � 11 D 100, was used to run EVOSUITE on the stratified sample
from SF110, but this time with type seeding enabled. Again, the optimal values were identified on
the stratified sample, and then 10 repetitions were applied on all classes to gather the list of classes
where type seeding matters (there is some difference in the average coverage with and without type
seeding) and, finally, 30 repetitions completed on that list of classes to assess statistical significance.

4.1.6. RQ4: Reusing previous solutions. To gather empirical evidence for answering RQ4, a sim-
ilar methodology as for RQ1 to RQ3 was followed. This time, however, classes from the Apache
Commons collection, which contains considerably more test suites than the SF110 corpus, were
used as subjects.

As an experimental design decision, and to prevent the combinatorial explosion of possible con-
figurations, for these experiments, the optimal constant and dynamic seeding values with type
seeding enabled were used. The combinations of possible values for PClone and NMutation were con-
sidered, in particular PClone 2 ¹0:3; 0:5; 0:7; 0:9º and NMutation 2 ¹0; 4; 8º. This resulted in
12 configurations for EVOSUITE. Running this experiment resulted in the selection of the optimal
combination of PClone and NMutation, which was then used to run EVOSUITE on the complete set
of classes in the Apache Commons collection for which hand-written test cases were available. As
discussed in Section 3.4, existing test suites can be reused not only to initialize test suites during
test generation (using PClone and NMutation) but also to seed objects carved from the execution of the
existing tests. Therefore, the experiments for RQ4 were replicated to find out the optimal probabil-
ity of reusing carved objects PObjectPool and its impact on the search. In this case, both PClone and
NMutation were reset to 0.

4.1.7. RQ5: Fault finding effectiveness. RQ1–4 considered the effects of seeding in terms of code
coverage, which often serves as the primary objective of test generation. However, ultimately, the
purpose of these generated tests is to detect faults. Intuitively, higher branch coverage means higher
fault detection potential: if erroneous code is not covered, then the fault cannot be detected. How-
ever, the relation between coverage and fault detection effectiveness is far from trivial [27] as fault
detection might require the faulty code to be covered in a specific way. To investigate whether seed-
ing has any effects on fault finding effectiveness, the major mutation framework [28] was used to
perform mutation analysis. As customary, the mutation score is calculated as the ratio of the number
of mutants killed by the generated test suite to the total number of mutants for the class under test,
that is, MS D jMutants Killedj = jMutants Generatedj. The values for PConstant and PDynamic were
set to those determined optimal in combination with type seeding in RQ3 and used as subjects the
randomly sampled set of 100 classes from SF110.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

4.1.8. Experiment analysis. All experiments were repeated 30 times to take the randomness of the
employed algorithms into account, and the results were analysed following the guidelines proposed
by Arcuri and Briand [29]. When the performance of two different algorithms/configurations is
compared (e.g. which seeding strategy leads to higher branch coverage?), the effect sizes of the
comparisons are quantified with the Vargha–Delaney OA12 statistics. In the context of this paper, the
OAxy is an estimation of the probability that, if EVOSUITE is run with seeding configuration x, it will

result in better coverage than running it with configuration y. When two randomized algorithms are
equivalent, then OA12 D 0:5. A high value OAxy D 1 means that, in all of the 30 runs of EVOSUITE

with configuration x, higher coverage values were obtained than those in all of the 30 runs with
configuration y.

Statistical difference between two algorithms/configurations on the same class has been measured
with a two-tailed Mann–Whitney U-test. When analysing a whole project, we collected all the A12
values (one per class) and still used a U-test on the symmetry of the A12 around 0.5 (e.g. to check
if it is the case if there are as many values above 0.5 in the succeeding text).

Table V. For each project with statistically significant results, average coverage on all of its
classes when no bytecode/source code constant is seeded (PConstant D 0) and when they are

used with probability PConstant D 0:5.

Project # of classes Base Constant seeding OA12 % > 0:5 % < 0:5

apbsmem 16 0.62 0.76 0.70 0.50 0.00
caloriecount 202 0.72 0.74 0.59 0.18 0.01
corina 106 0.53 0.55 0.58 0.19 0.03
db-everywhere 13 0.31 0.36 0.75 0.54 0.00
dsachat 9 0.39 0.42 0.73 0.56 0.00
firebird 62 0.51 0.55 0.64 0.29 0.02
fixsuite 10 0.45 0.47 0.70 0.50 0.00
follow 13 0.70 0.71 0.63 0.15 0.00
freemind 141 0.50 0.50 0.55 0.11 0.04
heal 43 0.62 0.66 0.66 0.33 0.02
hft-bomberman 51 0.67 0.71 0.59 0.22 0.02
javaviewcontrol 7 0.62 0.68 0.72 0.29 0.00
jcvi-javacommon 116 0.63 0.65 0.58 0.20 0.00
jiggler 97 0.69 0.77 0.71 0.43 0.00
jiprof 37 0.61 0.66 0.68 0.35 0.05
jmca 27 0.56 0.81 0.85 0.67 0.00
jwbf 12 0.75 0.77 0.66 0.25 0.00
lagoon 22 0.56 0.62 0.76 0.50 0.00
liferay 1380 0.67 0.69 0.58 0.19 0.02
lilith 114 0.64 0.65 0.58 0.18 0.04
noen 58 0.69 0.77 0.68 0.40 0.02
openhre 27 0.58 0.62 0.69 0.41 0.00
openjms 194 0.56 0.60 0.62 0.27 0.02
pdfsam 89 0.60 0.67 0.70 0.42 0.00
quickserver 43 0.53 0.56 0.59 0.21 0.07
schemaspy 27 0.38 0.45 0.72 0.56 0.00
squirrel-sql 205 0.63 0.67 0.63 0.29 0.01
summa 234 0.51 0.54 0.59 0.22 0.01
twfbplayer 30 0.57 0.64 0.65 0.37 0.00
vuze 1060 0.41 0.42 0.54 0.10 0.02
weka 587 0.54 0.56 0.59 0.19 0.01
wheelwebtool 55 0.62 0.65 0.61 0.25 0.00
xbus 35 0.43 0.50 0.67 0.34 0.00

Average 155 0.57 0.62 0.59 0.32 0.01

The OA12 of these comparisons are calculated by averaging all runs of all classes per project.
On higher granularity, it is reported the percentage % of classes for which there is a significant
(p-value lower than 0.05) OA12 > 0:5 and OA12 < 0:5.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Because of the large number of experiments, we could not report the p-values of all the compar-
isons. Therefore, at times, we rather report only how often they are significant at ˛ D 0:05 level.
Note that a statistically significant result (e.g. p-value very close to 0) might not have much ‘practi-
cal relevance’(e.g. effect size A12 close to 0.5). In the extreme case, with very large sample sizes, it
would be possible to obtain statistical difference on any compared distribution, as it is unlikely that
they would be exactly the same.

4.2. RQ1: Seeding constants from bytecode

Table IV ranks the values for PConstant according to the average coverage achieved by EVOSUITE

using each of them on the stratified sample described in Table II. Consequently, PConstant D 0:5 is
chosen as the optimal probability.

Table V compares the coverage obtained with the optimal value PConstant D 0:5 versus the con-
figuration with no seeding at all, that is, PConstant D 0, on the selection of 5270 classes where
constant seeding has some effect. These results show that seeding primitive values from the byte-
code or source code is beneficial for the search, with an average OA12 D 0:59, where the coverage is
increased from 57% to 62%. The magnitude of improvement is in line with expectations: non-trivial
software often has infeasible branches, in which case 100% coverage is impossible. Without a man-
ual verification (which would not be possible because of the large number of classes involved), it
may very well be the case that 62% might already be the maximum (or close to) achievable aver-
age bytecode coverage in the analysed set of classes. Some branches, even if feasible, could not
be coverable (yet) by a tool such as EVOSUITE, because they rely on environment interactions
like GUI and network connections (EVOSUITE currently has only limited support for environ-
ment interactions, like for example using files as test data [30]). Furthermore, not all software
relies on primitive constants, and even when they do, those might affect the control flow of only
few branches.

Depending on how the case study is chosen, there can be a lot of variation in the results. This
is why this paper uses a large and variegated case study and why the results are also grouped
by project. For example, the details in Table V reveal that the improvements for a project such
as jmca are huge. Average coverage increases from 56% to 81%, with a statistically significant
OA12 D 0:85. Improvements are statistically significant for 67% of the classes in jmca, and there

is no case for which the results are statistically worse. Overall, the results in Table V show that,
even on a large and variegated case study, seeding is beneficial, and there are cases in which
it can be extremely beneficial. This can, for example, be seen for projects that heavily rely on
string manipulations; for example, the Java Method Cohesion Analyzer project (jmca) performs
many different manipulations on parse tree nodes by checking the node type through explicit string
comparisons.

Note also that seeding, as any heuristics, can be less beneficial or even harmful in some cases.
Table V reports only classes where statistical significance was observed, but there are 74 projects,
totalling 870 classes, for which no statistically significant difference was observed and where using
constant seeding was better on average in 24% of the classes and worse in 1% of them. A reduction
in coverage can result if the constants used for seeding are irrelevant for the search and worse than
randomly generated values (for example, if a branch requires very large numerical values, but the
constant pool only contains small values).

4.2.1. Example of seeding numeric constants. The following is an excerpt from class
com.lts.pest.gatherer.TimeConstants from the caloriecount SF110 project.
The method toDurationString takes as input argument a long integer value and returns its
representation as a duration string:

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

The four numeric constants defined in this class can be statically seeded as potentially useful val-
ues when generating tests for this class. In concrete and as a result of the constant folding compile-
time optimization, the values 60000 (MSEC_PER_MINUTE), 3600000 (MSEC_PER_HOUR),
86400000 (MSEC_PER_DAY) and 31536000000 (MSEC_PER_YEAR) are available in the
class’s bytecode constant pool. By seeding these constants, the probabilities of reaching each of
the conditional branches in the method improve notably, enabling EVOSUITE to increase the cover-
age achieved on this class from 36% to 88% on average. The following are examples of test cases
generated thanks to the seeding of constant values:

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Interestingly, observe that the third test case reveals what seems to be a fault in the method
toDurationString: there is a missing space between the numeric representation and the
"msec" string.

4.2.2.Example of seeding string constants.Class org.exolab.jms.selector.Identifier
from the SF110 project openjms provides an example of when seeding string constants is ben-
eficial. Covering the then branch of the if-statement in the constructor of the class requires
evaluating method Identifiers.isJMSIdentifier to true, which can only happen if the
string input argument starts with a specific prefix.

Through seeding of string constants, EVOSUITE is able to generate test cases that exercise the
desired branch, for example,

4.3. RQ2: Seeding values at runtime

Figure 1 presents a heatmap that shows the coverage achieved for each combination of static and
dynamic seeding on the SF110 stratified sample (Table II). Plotted coverage values are calculated as
means of all classes and all runs for each class. Although other combinations, for instancePConstant D
0:8 and PConstant D 0:6, also achieve similar coverage values, the optimal values are PConstant D 0:9
and PDynamic D 0:9.

The average coverage values obtained on the 5303 classes on which dynamic seeding makes a
difference using the best combination, PConstant D 0:9 and PDynamic D 0:9, are compared with
those obtained with no seeding at all. Table VI presents the results of this experiment. Moreover,
Table VII reports on the comparison between the best combination of PConstant and PDynamic and the
best configuration for constant seeding in isolation (i.e. PConstant D 0:5).

When compared with the default configuration of EVOSUITE with no seeding, constant and
dynamic seeding together achieve an overall average coverage increase of 5% on 41 projects, with
32% of classes in each project showing statistically significant positive difference on average. The

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

Figure 1. Heatmap showing the average coverage achieved by each combination of PConstant and PDynamic
with type seeding disabled. The lighter the colour, the higher the coverage achieved.

Table VI. For each project with statistically significant results, comparison of average cov-
erage between the base configuration with no seeding and the best configuration with both

constant and dynamic seeding enabled (PConstant D 0:9 and PDynamic D 0:9).

Project # of classes Base Constant+dynamic OA12 % > 0:5 % < 0:5

caloriecount 202 0.72 0.74 0.60 0.22 0.03
corina 106 0.53 0.56 0.62 0.25 0.00
db-everywhere 13 0.31 0.34 0.64 0.31 0.00
diebierse 8 0.64 0.77 0.73 0.38 0.00
echodep 24 0.40 0.48 0.63 0.29 0.00
fim1 18 0.52 0.54 0.60 0.22 0.00
firebird 62 0.51 0.55 0.64 0.31 0.00
freemind 141 0.50 0.51 0.56 0.15 0.04
heal 43 0.62 0.67 0.68 0.37 0.02
hft-bomberman 51 0.67 0.71 0.58 0.22 0.02
inspirento 9 0.72 0.74 0.60 0.11 0.00
javabullboard 24 0.59 0.61 0.63 0.25 0.00
javathena 16 0.63 0.69 0.71 0.44 0.00
javaviewcontrol 7 0.62 0.70 0.78 0.43 0.00
jcvi-javacommon 116 0.63 0.67 0.63 0.28 0.03
jdbacl 52 0.69 0.74 0.65 0.35 0.00
jhandballmoves 27 0.66 0.67 0.59 0.22 0.04
jiggler 97 0.69 0.80 0.75 0.55 0.02
jiprof 37 0.61 0.66 0.68 0.41 0.08
jmca 27 0.56 0.81 0.86 0.78 0.00
jsecurity 53 0.59 0.61 0.57 0.15 0.02
jwbf 12 0.75 0.78 0.67 0.33 0.00
lagoon 22 0.56 0.63 0.76 0.50 0.00
liferay 1380 0.67 0.69 0.59 0.20 0.01
lilith 114 0.64 0.65 0.58 0.19 0.00
newzgrabber 8 0.41 0.46 0.68 0.50 0.00
noen 58 0.69 0.73 0.63 0.38 0.16
openhre 27 0.58 0.63 0.68 0.44 0.04
openjms 194 0.56 0.60 0.63 0.28 0.01
pdfsam 89 0.60 0.67 0.69 0.44 0.02

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Table VI. Continued.

Project # of classes Base Constant+dynamic OA12 % > 0:5 % < 0:5

schemaspy 27 0.38 0.43 0.64 0.30 0.00
shop 19 0.47 0.49 0.58 0.11 0.00
squirrel-sql 205 0.63 0.67 0.65 0.33 0.02
sugar 11 0.49 0.57 0.75 0.45 0.00
summa 234 0.51 0.54 0.62 0.29 0.03
sweethome3d 86 0.47 0.48 0.55 0.14 0.03
twfbplayer 30 0.57 0.67 0.73 0.50 0.00
vuze 1060 0.41 0.42 0.53 0.11 0.05
weka 587 0.54 0.56 0.61 0.21 0.02
wheelwebtool 55 0.62 0.66 0.61 0.27 0.04
xbus 35 0.43 0.49 0.64 0.31 0.06

Average 132 0.57 0.62 0.60 0.32 0.02

The OA12 are in respect to the latter configuration and are calculated by averaging all runs of all
classes per project. On higher granularity, it is reported the percentage % of classes for which
there is a significant (p-value lower than 0.05) OA12 > 0:5 and OA12 < 0:5.

Table VII. For each project with statistically significant results, comparison of average coverage
between the best configuration for constant seeding (PConstant = 0.5) and the best configuration

with both constant and dynamic seeding enabled (PConstant D 0:9 and PDynamic D 0:9).

Project # of classes Constant Constant+dynamic OA12 % > 0:5 % < 0:5

apbsmem 16 0.76 0.63 0.39 0.00 0.25
corina 106 0.55 0.56 0.54 0.12 0.04
javathena 16 0.65 0.69 0.60 0.31 0.06
jcvi-javacommon 116 0.65 0.67 0.55 0.14 0.05
jdbacl 52 0.70 0.74 0.62 0.31 0.04
jhandballmoves 27 0.68 0.67 0.55 0.15 0.04
jiggler 97 0.77 0.80 0.55 0.11 0.03
lagoon 22 0.62 0.63 0.59 0.23 0.05
schemaspy 27 0.45 0.43 0.41 0.04 0.19
squirrel-sql 205 0.67 0.67 0.55 0.16 0.03
sugar 11 0.54 0.57 0.67 0.45 0.00
sweethome3d 86 0.47 0.48 0.55 0.08 0.02
twfbplayer 30 0.64 0.67 0.62 0.23 0.00
vuze 1060 0.42 0.42 0.49 0.05 0.07
weka 587 0.56 0.56 0.52 0.09 0.04

Average 164 0.61 0.61 0.52 0.16 0.06

The OA12 are in respect to the latter configuration and are calculated by averaging all runs of all classes
per project. On higher granularity, it is reported the percentage % of classes for which there is a
significant (p-value lower than 0.05) OA12 > 0:5 and OA12 < 0:5.

coverage increase using this configuration seems to be more moderate in general, but, at the same
time, more consistent across projects. There are more projects for which combining constant and
dynamic seeding helps in achieving higher coverage. On the downside, there are some projects, for
example, dsachat and fixsuite, for which a significant benefit was observed when using only
constant seeding (Table V) but that increase is not observed when combining constant and dynamic
seeding, which suggests that the globally ‘optimal’ combination of probabilities for PConstant and
PDynamic is sometimes detrimental.

The results observed in Table VII are in line with the observation that there is not one specific
combination of probabilities that provides optimal values on all projects. There are only 12 projects
for which the combination of both techniques with PConstant D 0:9 and PDynamic D 0:9 achieves
significantly better results than constant seeding only (PConstant D 0:5 and PDynamic D 0), which
also suggests that constant seeding often contributes the most of the two techniques to coverage

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

increase. In fact, for three projects, namely, apbsmem, schemaspy and vuze, constant seeding
is significantly better than the combination of both techniques. For example, this may be a result of
too many irrelevant values being added to the constant pool; in our implementation, all string values
are added to the pool, although values observed in the class under test may be more relevant than
values observed in other classes. Nevertheless, in the presence of regular expressions and pattern
matching, as in project sugar for instance, only dynamic seeding can help enhance coverage.

4.3.1. Example of dynamically seeded strings. The utility class org.jcvi.jillion.trace.
fastq.IlluminaUtil from the JCVI Java Common project (jcvi-javacommon) exem-
plifies the potential of using dynamic seeding of strings to increase code coverage. Method
isIlluminaRead receives a string as input argument, and its output depends on whether the
input string matches the pattern NAME_PATTERN or the pattern CASAVA_1_8_PATTERN.

Seeding matching strings for both patterns, as described in Table I, allows EVOSUITE to achieve
full coverage of method isIlluminaRead by generating, for example, the following test case:

For this particular class, the average coverage obtained in the experiments without dynamic seeding
is 69%. However, dynamically seeding strings matching the patterns in the class leads EVOSUITE

to achieve a substantial coverage increase, reaching 100% on average.

4.4. RQ3: Seeding types

Figure 2 shows the average coverage achieved for each combination of PConstant and PDynamic

when type seeding is enabled. The heatmap shows that with type seeding enabled, PConstant D
0:9 and PDynamic D 0:6 obtained the highest average coverage. Using these values, an experi-
ment is run on the selection of 5491 classes where type seeding had some impact. Tables VIII
and IX compare the results obtained using this optimal configuration and those obtained using,

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Figure 2. Heatmap shows the average coverage achieved by each combination of PConstant and PDynamic with
type seeding enabled. The lighter the colour, the higher the coverage achieved.

Table VIII. For each project with statistically significant results, comparison
of average coverage between the best configuration with constant, dynamic
and type seeding enabled (PConstant D 0:9 and PDynamic D 0:6) and the base

configuration with no seeding.

Project # of classes Base Types OA12 % > 0:5 % < 0:5

apbsmem 16 0.62 0.73 0.66 0.38 0.00
beanbin 13 0.59 0.67 0.72 0.54 0.00
caloriecount 202 0.72 0.77 0.65 0.31 0.03
checkstyle 32 0.44 0.53 0.60 0.34 0.03
corina 106 0.53 0.57 0.62 0.25 0.02
db-everywhere 13 0.31 0.36 0.78 0.54 0.00
diebierse 8 0.64 0.77 0.77 0.50 0.00
dsachat 9 0.39 0.45 0.77 0.67 0.11
echodep 24 0.40 0.52 0.67 0.42 0.00
ext4j 9 0.63 0.86 0.86 0.67 0.00
fim1 18 0.52 0.57 0.65 0.39 0.06
firebird 62 0.51 0.55 0.66 0.35 0.02
fixsuite 10 0.45 0.48 0.68 0.40 0.00
freemind 141 0.50 0.51 0.55 0.14 0.05
heal 43 0.62 0.68 0.71 0.47 0.02
hft-bomberman 51 0.67 0.73 0.61 0.22 0.02
javabullboard 24 0.59 0.64 0.67 0.38 0.04
javathena 16 0.63 0.68 0.68 0.44 0.06
jcvi-javacommon 116 0.63 0.69 0.69 0.49 0.03
jdbacl 52 0.69 0.74 0.66 0.38 0.02
jhandballmoves 27 0.66 0.71 0.64 0.37 0.00
jiggler 97 0.69 0.80 0.75 0.56 0.00
jiprof 37 0.61 0.67 0.71 0.46 0.05
jmca 27 0.56 0.82 0.83 0.74 0.00
jsecurity 53 0.59 0.63 0.61 0.26 0.02
jwbf 12 0.75 0.79 0.75 0.42 0.00
lagoon 22 0.56 0.64 0.76 0.55 0.00
lhamacaw 35 0.58 0.68 0.65 0.34 0.06
liferay 1380 0.67 0.70 0.59 0.24 0.05
lilith 114 0.64 0.70 0.68 0.40 0.03

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

Table VIII. Continued.

Project # of classes Base Types OA12 % > 0:5 % < 0:5

netweaver 52 0.80 0.83 0.58 0.21 0.02
newzgrabber 18 0.41 0.46 0.64 0.33 0.06
noen 58 0.69 0.76 0.72 0.53 0.14
objectexplorer 21 0.64 0.66 0.61 0.24 0.05
openhre 27 0.58 0.63 0.70 0.48 0.00
openjms 194 0.56 0.62 0.67 0.36 0.02
pdfsam 89 0.60 0.69 0.71 0.47 0.01
quickserver 43 0.53 0.58 0.63 0.30 0.02
schemaspy 27 0.38 0.46 0.76 0.56 0.00
squirrel-sql 205 0.63 0.68 0.64 0.38 0.04
sugar 11 0.49 0.67 0.85 0.64 0.00
summa 234 0.51 0.56 0.64 0.32 0.03
sweethome3d 86 0.47 0.49 0.55 0.15 0.02
tullibee 8 0.72 0.77 0.77 0.50 0.00
twfbplayer 30 0.57 0.68 0.75 0.47 0.03
vuze 1060 0.41 0.43 0.55 0.16 0.04
weka 587 0.54 0.59 0.67 0.35 0.01
wheelwebtool 55 0.62 0.67 0.65 0.33 0.02
xbus 35 0.43 0.53 0.72 0.49 0.03
xisemele 6 0.82 0.87 0.78 0.67 0.00

Average 112 0.58 0.65 0.62 0.41 0.03

The OA12 are in respect to the latter configuration and are calculated by averaging
all runs of all classes per project. On higher granularity, it is reported the per-
centage % of classes for which there is a significant (p-value lower than 0.05)
OA12 > 0:5 and OA12 < 0:5.

Table IX. For each project with statistically significant results, comparison of average cov-
erage between the best configuration with constant, dynamic and type seeding enabled
(PConstant D 0:9 and PDynamic D 0:6) and the best configuration for constant and dynamic

seeding with type seeding disabled (PConstant D 0:9 and PDynamic D 0:9).

Project # of classes Constant+dynamic Types OA12 % > 0:5 % < 0:5

caloriecount 202 0.74 0.77 0.54 0.10 0.02
checkstyle 32 0.46 0.53 0.57 0.16 0.03
db-everywhere 13 0.34 0.36 0.64 0.38 0.00
ext4j 9 0.64 0.86 0.80 0.56 0.00
hft-bomberman 51 0.71 0.73 0.54 0.06 0.02
jcvi-javacommon 116 0.67 0.69 0.56 0.17 0.02
jtailgui 11 0.56 0.66 0.65 0.27 0.00
lilith 114 0.65 0.70 0.62 0.28 0.04
noen 58 0.73 0.76 0.59 0.14 0.00
openjms 194 0.60 0.62 0.56 0.15 0.02
schemaspy 27 0.43 0.46 0.62 0.30 0.00
squirrel-sql 205 0.67 0.68 0.48 0.11 0.14
summa 234 0.54 0.56 0.52 0.07 0.05
vuze 1060 0.42 0.43 0.53 0.08 0.02
weka 587 0.56 0.59 0.57 0.16 0.02
wheelwebtool 55 0.66 0.67 0.54 0.07 0.00

Average 186 0.59 0.63 0.55 0.19 0.02

The OA12 are in respect to the latter configuration and are calculated by averaging all runs of all
classes per project. On higher granularity, it is reported the percentage % of classes for which there
is a significant (p-value lower than 0.05) OA12 > 0:5 and OA12 < 0:5.

respectively, no seeding at all and the best combination for constant and dynamic seeding with type
seeding off.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Figure 3. Boxplots comparing best seeding configurations versus base configuration with no seeding.

On average, significantly higher coverage is obtained for 41% of the classes in these 50 projects,
with an overall coverage increase of 7% (from 58% to 65%) and an average 0.62 effect size. As
per Table IX, when type seeding is compared with the best combination of constant and dynamic
seeding without type seeding, significantly better results are observed for 15 projects, and signifi-
cantly worse results are observed for one project (squirrel-sql). This indicates that there are
cases where static and dynamic seeding together are more beneficial than type seeding alone. On
average, a 5% increase is observed in these projects with 19% of classes reaching significantly bet-
ter results. An interesting case is project ext4j, for which the average coverage increases by 22%
when using type seeding. Overall, these results show that seeding type information also contributes
towardsreaching higher coverage. As the next example will help demonstrate, type seeding can be
useful, if not essential, in the presence of object-oriented features such as polymorphism, method
overloading or object typecasting.

To conclude the analysis of the results obtained for RQ1, RQ2 and RQ3, Figure 3 presents
boxplots that summarize the comparison of the average coverage obtained for the four seeding
configurations evaluated on all 5992 classes where some difference was observed for any of the
seeding techniques. The plots show that all the seeding techniques discussed improve the coverage
achieved by the baseline configuration without seeding. Type seeding in combination with dynamic
seeding seems to offer the most noticeable improvements, and dynamic seeding results in only
moderate enhancement over constant seeding.

4.4.1. Example of type seeding. Consider the following class ListChannelHelper from the
SF110 project caloriecount:

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

Without type seeding, EVOSUITE is unable to cover any of the cases in the switch-statement in
method notifyListener. On the contrary, using type seeding information, EVOSUITE realises
that the input arguments client and data must be of type ListChannelListener and
ListChannelEvent, respectively, which is enough to generate tests covering all of the cases
in the switch. The following is thus one of the test cases EVOSUITE generates for class
ListChannelHelper. Notice that although there is no direct call to ListChannelHelper,
an instance of the class is created in the constructor of class ListChannel, and a call to its
notifyListener method is triggered by the ListChannel.add method.

4.5. RQ4: Incorporating previous solutions

Figure 4 plots the results obtained for each combination of values for PClone and NMutation when
running EVOSUITE on the random sample from Apache Commons described in Section 4.1.2
(Table III). The plot suggests that higher values for NMutation are preferable, whereas PClone does not
show a clear trend. Based on these results, PClone D 0:9 and NMutation D 8 were chosen as the com-
bination of values that achieves the highest coverage benefits. Furthermore, Table X provides the
optimal value for the probability of reusing objects carved from existing tests PObjectPool D 0:9.

Using these optimal configurations obtained on the list of classes from Table III, EVOSUITE was
run on the complete set of classes for which hand-written test cases were available (1212 classes).
The performance of the optimal test initialization configuration was compared with the case of no
seeding from hand-written test cases, that is, PClone D 0 and NMutation D 0, that is, the default
“random” initialization strategy. Table XI presents the results of these experiments; Figure 5(a) sum-
marizes these results in a boxplot. To study the effects of reusing objects carved from existing test
suites, the performance of the optimal probability PObjectPool D 0:9 and the baseline configuration

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Figure 4. Heatmap that shows the average coverage achieved by each combination of values for PClone
and NMutation. Best values are used for PConstant, PDynamic and PTypes. The lighter the colour, the higher the

coverage achieved.

Table X. Ranking of PObjectPool
values according to the average

coverage they achieve.

PObjectPool Avg. Coverage

0.9 0.8161
0.8 0.8154
0.6 0.8140
0.7 0.8127
0.4 0.8122
0.5 0.8106
0.3 0.8103
0.2 0.8099
0.1 0.8086
1.0 0.7887
0.0 0.7856

Table XI. For each project, comparison of coverage achieved using the baseline configuration with random
test initialization (PClone D 0:0 and NMutation D 0) and the best configuration for test initialization from

previous solutions (PClone D 0:9 and NMutation D 8).

# of Coverage Seeded test suites
Project classes Baseline Seeding OA12 % > 0:5 % < 0:5 Average # of tests Average coverage

beanutils-1.9.2 65 0.86 0.88 0.57 0.23 0.03 11 0.50
chain-1.2 12 0.75 0.75 0.48 0.08 0.25 9 0.33
cli-1.2 12 0.93 0.96 0.63 0.42 0.00 13 0.49
codec-1.7 37 0.98 0.98 0.49 0.05 0.11 6 0.60
collections-3.2.1 144 0.80 0.83 0.57 0.25 0.06 65 0.41
compress-1.4.1 40 0.71 0.72 0.54 0.10 0.03 3 0.28
configuration-1.10 61 0.78 0.83 0.61 0.31 0.07 16 0.32
dbcp-1.4 21 0.72 0.70 0.52 0.19 0.14 9 0.14

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

Table XI. Continued.

# of Coverage Seeded test suites
Project classes Baseline Seeding OA12 % > 0:5 % < 0:5 Average # of tests Average coverage

dbutils-1.5 20 0.50 0.51 0.51 0.05 0.05 5 0.24
digester3-3.2 15 0.83 0.85 0.54 0.13 0.00 4 0.10
discovery-0.5 1 0.93 0.93 0.47 0.00 0.00 12 0.50
email-1.3.1 10 0.72 0.71 0.46 0.10 0.20 4 0.32
exec-1.1 7 0.77 0.69 0.58 0.29 0.00 5 0.27
fileupload-1.2.2 8 0.59 0.59 0.51 0.12 0.00 1 0.36
imaging-1.0 22 0.64 0.62 0.45 0.00 0.23 2 0.12
io-2.4 65 0.88 0.90 0.56 0.23 0.05 5 0.36
jexl-2.1.1 9 0.49 0.50 0.50 0.00 0.11 8 0.18
jxpath-1.3 10 0.65 0.73 0.69 0.40 0.00 17 0.22
lang3-3.3.2 95 0.85 0.88 0.61 0.29 0.04 14 0.50
logging-1.1.1 5 0.87 0.87 0.49 0.00 0.00 3 0.37
math3-3.3 388 0.82 0.86 0.57 0.26 0.04 7 0.43
net-3.3 34 0.68 0.80 0.66 0.38 0.03 6 0.50
pool-1.6 13 0.52 0.51 0.49 0.00 0.15 1 0.02
proxy-1.0 22 0.54 0.65 0.61 0.23 0.00 3 0.50
scxml-0.9 26 0.73 0.74 0.51 0.08 0.12 4 0.27
validator-1.4.0 34 0.84 0.89 0.64 0.32 0.00 6 0.52
vfs-2.0 29 0.56 0.57 0.53 0.07 0.00 0.2 0.03

Average 45 0.74 0.76 0.57 0.17 0.06 9 0.33

In both configurations, PConstant D 0:9 and PDynamic D 0:6. Bold OA12 indicate statistically significance (p-value
lower than 0.05). On higher granularity, it is reported the percentage % of classes for which there is a significant
(p-value lower than 0:05) OA12 > 0:5 and OA12 < 0:5.

Figure 5. Boxplots comparing techniques for seeding from previous solutions.

with PObjectPool D 0 was compared. The results of this experiment are presented in Table XII;
Figure 5(b) summarizes these results in a boxplot. Recall that in all these two sets of experiments
for RQ4, the optimal constant and dynamic seeding values PConstant D 0:9 and PDynamic D 0:6 with
type seeding enabled were used.

For 10 projects, there is statistically significant evidence that seeding from existing test suites pro-
vides better results either by reusing statement sequences or by reusing instantiated objects (projects
with bold OA12 in Tables XI and XII, respectively).

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Table XII. For each project, comparison of coverage achieved using the baseline configuration with no
seeding (PObjectPool D 0:0) and the best object seeding configuration (PObjectPool D 0:9).

# of Coverage Seeded test suites
Project classes Baseline Seeding OA12 % > 0:5 % < 0:5 Average # of tests Average coverage

beanutils-1.9.2 65 0.85 0.90 0.56 0.14 0.03 11 0.55
chain-1.2 12 0.74 0.76 0.51 0.08 0.08 8 0.33
cli-1.2 12 0.94 0.96 0.61 0.33 0.00 13 0.48
codec-1.7 37 0.98 0.98 0.50 0.03 0.03 6 0.59
collections-3.2.1 144 0.80 0.83 0.54 0.20 0.10 66 0.41
compress-1.4.1 40 0.72 0.74 0.55 0.17 0.10 3 0.28
configuration-1.10 61 0.78 0.82 0.62 0.31 0.07 10 0.30
dbcp-1.4 21 0.72 0.75 0.65 0.48 0.05 8 0.14
dbutils-1.5 20 0.49 0.50 0.50 0.05 0.00 5 0.24
digester3-3.2 15 0.84 0.86 0.55 0.07 0.00 5 0.10
discovery-0.5 1 0.94 0.92 0.39 0.00 1.00 12 0.50
email-1.3.1 10 0.72 0.75 0.54 0.10 0.00 3 0.35
exec-1.1 7 0.77 0.78 0.52 0.14 0.00 5 0.31
fileupload-1.2.2 8 0.60 0.62 0.55 0.12 0.00 1 0.36
imaging-1.0 22 0.61 0.60 0.49 0.09 0.18 2 0.13
io-2.4 65 0.88 0.90 0.54 0.17 0.05 5 0.36
jexl-2.1.1 9 0.51 0.51 0.56 0.22 0.11 2 0.17
jxpath-1.3 10 0.65 0.66 0.45 0.20 0.20 6 0.16
lang3-3.3.2 95 0.85 0.87 0.56 0.15 0.00 14 0.51
logging-1.1.1 5 0.86 0.86 0.57 0.20 0.00 3 0.37
math3-3.3 388 0.83 0.85 0.54 0.18 0.06 7 0.43
net-3.3 34 0.69 0.79 0.66 0.35 0.00 6 0.50
pool-1.6 13 0.51 0.51 0.49 0.00 0.00 1 0.02
proxy-1.0 22 0.53 0.53 0.50 0.00 0.00 3 0.49
scxml-0.9 26 0.72 0.73 0.52 0.12 0.08 4 0.26
validator-1.4.0 34 0.84 0.85 0.54 0.09 0.03 6 0.52
vfs-2.0 29 0.56 0.57 0.52 0.07 0.00 0.2 0.03

Average 45 0.74 0.76 0.55 0.15 0.08 8 0.33

In both configurations, PConstant D 0:9 and PDynamic D 0:6. Bold OA12 indicate statistically significance (p-value
lower than 0.05). On higher granularity, it is reported the percentage % of classes for which there is a significant
(p-value lower than 0.05) OA12 > 0:5 and OA12 < 0:5.

On average, both cloning and mutating existing test cases and seeding objects constructed in these
test cases led to a 2% increase in coverage. However, it is important to notice that in this case, in
contrast to the experiments that were run for the other research questions, there is a human factor
involved, that is, the quality of the hand-written test cases. On one hand, if the test cases are poor,
then even the best seeding strategy would likely have little impact on performance. On the other
hand, if the hand-written test cases are optimal, then it would be pointless to try to improve upon
them. An alternative conjecture is that manually written tests tend to cover the ‘easy’parts of the
code under test, which state-of-the-art test generation techniques can routinely cover as well.

When run on the set of classes considered for this research question, EVOSUITE can achieve 74%
average coverage even without any seeding enabled. The existing hand-written test suites, on the
other hand, cover much less of the code under test (average 33%). Because of the limitation of the
current implementation of the carving approach, this coverage is not necessarily equivalent to the
real coverage of the existing test suites. Nevertheless, reusing even these limited-coverage carved
test cases can already help EVOSUITE reach 76% coverage (a 2% increase). To gain more insight
on the relation between the coverage achieved using seeding and the carved coverage of the existing
test suites, Figures 6 and 7 present plots depicting how the performance of EVOSUITE with seeding
(labelled ‘Coverage’ on the y -axis) is affected by the coverage of the existing test suites (labelled
‘Carved Coverage’ on the x -axis). Overall, these results can be seen as a proof of concept that
shows the ability of SBST techniques to successfully exploit existing solutions and improve upon
them. The boxplots indicate that seeding existing test suites, both for test initialization and for reuse

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

Figure 6. Boxplots comparing the best test initialization configuration (PClone D 0:9 and NMutation D 8) and
the baseline configuration with random test initialization (PClone D 0:0 and NMutation D 0) for each interval

of coverage achieved by the test suites available for carving.

Figure 7. Boxplots comparing the best object seeding configuration (PObjectPool D 0:9) and the baseline
configuration with no object seeding (PObjectPool D 0:0) for each interval of coverage achieved by the test

suites available for carving.

of instantiated objects, helps in augmenting the coverage of the generated test suites, even when the
carved coverage is low.

4.5.1. Example of reusing existing tests. Class KohonenUpdateAction from the Apache Com-
mons Mathematics library (project math3-3.3) implements the method update(Network
net, double[] features);, which updates the neural network net in response to the
training sample features. Automatically generating test cases for this class is a far from triv-
ial job. As can be observed in the following existing test case, setting up a testing scenario for
this class requires instantiating a neural network, a distance measure, a learning factor function, a
neighbourhood size function and an array of features.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Using its default configuration without seeding, EVOSUITE is incapable of generating any test for
the KohonenUpdateAction class. On the contrary, when given the chance to clone and mutate
existing test cases such as earlier, EVOSUITE is able to achieve full coverage of the class, enhancing
the coverage of the original test suite by 2.5%. The following is an example of a generated test,
which is an evolved version of the previous existing one.

Observe that this generated test case in essence corresponds to the first iteration of the loop in the
existing test testUpdate().

4.5.2. Example reusing objects carved from existing tests. Initializing objects with concrete
states such that they can be used as useful parameters to trigger method calls, thus increasing cover-
age, is a complex task for EVOSUITE. When previously created test suites are available, EVOSUITE

can execute them in a pre-processing step to collect for reuse all the class instances they create. A
suitable example results from generating tests for class org.apache.commons.beanutils.
RowSetDynaClass from the Apache project beanutils-1.9.2.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

The constructor of class RowSetDynaClass initializes the new object, creating a copy of the
input argument resultSet, only if resultSet is not null; otherwise, it throws an exception.
Therefore, to fully cover the constructor, at least two tests are needed: one in which resultSet
equals null (trivial) and one in which is different from null. The latter is not trivial, because the
type of the argument (ResultSet) is an interface, not an instantiable class. Fortunately, a manually
written test suite for class RowSetDynaClass exists and can be carved:

Observe that both in the test case, testLimitedRows contains a call to the constructor of class
RowSetDynaClass in which a call to TestResultSet.createProxy() is passed as argu-
ment. Using this test case, EVOSUITE is able to quickly generate the necessary test case to fully
cover the constructor.

In fact, for this particular class, seeding existing tests allows EVOSUITE to cover eight goals that
otherwise are much harder to cover, that is, all goals in method RowSetDynaClass.copy.

4.6. RQ5: Fault finding effectiveness

Table XIII presents the results of comparing the mutation scores achieved without seeding (baseline)
and with the tuned seeding configuration (seeding) determined in the previous research questions.
For brevity, only the 21 classes with statistical significance are listed. These results are also presented
graphically as boxplots in Figure 8(a), which also shows the OA12 effect size. There are only minor
differences in the achieved mutation scores, with 39 classes having higher mutation scores with

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

Table XIII. For each class with statistically significant results (p-value < 0.05), average mutation score
when the baseline configuration, that is, no seeding, is used (PConstant D 0, PDynamic D 0, type seed-
ing off), and when the best seeding configuration is used (PConstant D 0:9, PDynamic D 0:6, type

seeding on).

Project Class Baseline Seeding OA12 �Coverage

a4j Accessories 0.49 0.55 0.66 no
a4j Directors 0.51 0.55 0.62 no
celwars2009 CatmullRomSpline 0.33 0.37 0.65 no
celwars2009 CubicSpline 0.14 0.16 0.72 no
fps370 KeyUpBehavior 0.18 0.27 0.78 no
gfarcegestionfa DaoFactoryException 0.97 0.29 0.06 no
io-project ClientGroup 0.40 0.38 0.31 no
io-project Server 0.12 0.11 0.41 no
javaviewcontrol JVCParserTokenManager 0.05 0.07 0.69 yes
javaviewcontrol SimpleCharStream 0.42 0.46 0.68 yes
jaw-br Abrir 0.07 0.13 0.98 yes
jhandballmoves MoveEvent 0.47 0.50 0.65 yes
jmca Statement 0.10 0.27 1.00 yes
jwbf Get 0.43 0.44 0.61 no
lilith LoggingEventWrapperProtobufEncoder 0.74 0.85 0.69 yes
mygrid ArrayOfString 0.36 0.38 0.60 no
quickserver BlockingClient 0.28 0.29 0.61 yes
sfmis Base64 0.26 0.24 0.26 no
shop JSSubstitution 0.51 0.56 0.65 yes
sugar FSPathResultListImpl 0.31 0.50 0.96 yes
xbus XSLTTransformer 0.29 0.25 0.35 no

The OA12 of these comparisons are calculated by averaging all runs on the class.�Coverage indicates whether a
significant increase in coverage was observed for a class in the previous research questions.

Figure 8. Boxplots comparing mutation scores for seeding versus no seeding.

seeding (16 significant at p < 0:05), and 18 having lower mutation score with seeding (5 significant
at p < 0:05). The average effect size is 0.54, which is similar to the effect size on coverage for this
particular configuration (0.55). Thus, overall, the influence of seeding on the fault finding capability
of test suites is similarly positive as the influence on coverage.

It is not surprising that an increase in coverage also leads to an increase in mutation score, as
mutants that are not executed in the first place cannot be detected. Figure 8(b) shows a similar com-
parison, but by focusing only on those classes out of the sample on which coverage increases with
seeding. Effect size grows to 0.60, and there are no classes where the mutation score significantly
decreases (increase is significant for 9 out of 14 classes, and there is a non-significant decrease in

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

six cases). On the other hand, there are 26 classes where the mutation score increases even though
coverage is not increased by seeding (seven significant), while there are 12 classes (five significant)
where coverage and mutation score are reduced.

4.6.1. Examples of negative effects on fault finding effectiveness. In some cases, seeding may lead
to lower branch coverage, which is usually accompanied by a reduction in mutation score. To see
whether there is an influence of seeding on fault detection ability that is independent of coverage,
a manual investigation of the classes where the mutation score decreased revealed different scenar-
ios. An example for the first scenario is given by the DaoFactoryException class from the
gfarce project:

Major creates only two mutants for this class; for each of the two calls to this.setCode
(code), there is a mutant that removes this call. As both calls are in constructors of the class and
initialize code, this member variable remains uninitialized in the mutants, which in Java in practice
means that code has the value 0. Covering the code is trivial, and when not using seeding, the tests
use random integer values:

Without seeding, it is thus trivial to kill the two mutants. However, when enabling seeding, there
are few values that can be gathered through either static or dynamic seeding, and the pool remains

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

initialized with default values of -1, 0, 1 (as implemented in EVOSUITE). This often leads to tests
like the following example:

This test will pass even if the mutant in the constructor is activated, as code is initialized to the
same value it also has when not initialized, such that the mutant survives.

In a second example scenario, the values of strings can also have a direct impact on the fault
detection ability. For example, the class com.hf.sfm.crypt.Base64 from the sfmis project
contains complex code that iterates over string values, thereby performing various checks and
calculations:

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

Without seeding, random strings such as "k&Afu8#W+ZUzL Rj" are used in the test cases,
whereas seeding includes shorter and simpler values such as "g" or "AABe". Consequently, even
when the tests generated with seeding reach the same target branches, possibly more iterations of
the loops and more checks are performed, leading to more mutants detected overall.

5. THREATS TO VALIDITY

Threats to construct validity are on how the performance of a testing technique is defined. Priority
was given to the achieved coverage, with the secondary goal of minimizing the length. This paper did
not consider the potential cases where, even if a seeding strategy leads to higher coverage, it might
also lead to larger test suites. This yields two problems: (1) in practical contexts, one might not want
a much larger test suite if the achieved coverage is only slightly higher, and (2) this performance
measure does not take into account how difficult it will be to manually evaluate the test cases for
writing assert statements (i.e. checking the correctness of the outputs). However, it is conceivable
that using seeded values leads to improved readability compared with purely generated values.

Threats to internal validity might come from how the empirical study was carried out. To reduce
the probability of having faults in our testing framework, it has been carefully tested. But it is well
known that testing alone cannot prove the absence of defects. Furthermore, randomized algorithms
are affected by chance. To cope with this problem, each experiment was run 30 times, and rigorous
statistical procedures were used to evaluate their results.

Another possible threat to internal validity is that the interactions/relations of the different param-
eter configurations of EVOSUITE (e.g. population size and crossover probability) with the seeding
strategies and the chosen search budget were not studied. This paper claims that seeding strategies
help EVOSUITE (and SBST in general) to achieve higher branch coverage. However, in theory, it
might be possible that there exist parameter settings for which EVOSUITE gives better results and
seeding might not improve upon them. To shed light on this possible issue, one would need to carry
out large tuning phases and studying the possible correlations among all the different parameters
(i.e. seeding strategies could be seen as further parameters to tune), but this would be very time-
consuming. However, ‘default’ parameter settings coming from the literature already tend to lead to
reasonable performances [25].

Although a large case study consisting of a total of 25,098 classes from the SF110 corpus and
the Apache Commons repository was used, there is the threat to external validity regarding the
generalization to other types of software, which is common for any empirical analysis.

Furthermore, this paper evaluated the different seeding strategies only for EVOSUITE. In prin-
ciple, none of these seeding strategies depend on implementation aspect of the tool. Consider for
instance the Randoop tool [31]. Randoop implements seeding of constant primitive numeric and
string values observed in the Java bytecode. Running Randoop with seeding enabled on the example
shown in Section 4.2.1, for instance, leads to a huge increase of 70% in coverage over the default
configuration with no seeding (93% vs 23%, averaged over 30 repetitions). These results are compa-
rable with the ones observed in our experiments with EVOSUITE and support the claim that seeding
techniques can be beneficial to other SBST techniques and tools. Nevertheless, effectiveness lev-
els might vary across tools. For instance, whereas a random testing tool may benefit from contant
seeding when specific values lead to coverage improvement, the advantage would not be as tangi-
ble as that observed for EVOSUITE when the coverage improvement only results from the use of
seeded values as guidance for the search algorithm (contrast variables x and y in the first example
in Section 3.1).

6. CONCLUSIONS

Search-based testing techniques are dependent on a multitude of parameters and individual choices
throughout the search. Seeding is one such technique that may strongly influence the result of an
evolutionary search. In this paper, the effects of different seeding techniques were analysed in the
context of search-based testing for object-oriented languages. The results provide evidence that a
good choice of seeding techniques can lead to an overall improvement of the search results.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



SEEDING STRATEGIES IN SEARCH-BASED UNIT TEST GENERATION

In general, the more domain-specific information can be included in the seeding strategies, the
better the results will be. However, when applying seeding in a new context, there are several
aspects that require consideration, and the experiments presented in this paper allow concluding
some general guidelines on how to apply seeding:

� The effectiveness of static and dynamic constant seeding directly depends on the number of
constants available in the context. If the project being tested contains many constant declara-
tions, higher probability values for PConstant and PDynamic are likely to be more effective, as they
increase the chances of sampling the correct value from the pool. On the other hand, when
the number of constants in the project is low, PConstant and PDynamic should likely be low as
well, to ensure diversity and to allow the search to progress using more random values. The
experiments in this paper determined sensible default values that should in many cases lead
to an improvement (PConstant D 0:9, PDynamic D 0:6). These values suggest that dynamic con-
stant seeding is slightly more effective, as the probability of using dynamically seeded values
is higher than using statically derived constants.
� Type seeding is likely to be more effective in projects that make use of advanced object-oriented

features (e.g. downcasting), in contrast to projects with more simple data structures (e.g. limited
inheritance among classes). However, if a project does not depend on such features, then using
type seeding usually also has no negative effects, so it is a safe optimization to enable.
� Previously existing unit tests can aid in the generation of more tests. Even more so when the

pre-existing tests were manually written, because they often involve more complex testing
scenarios and reflect common object usages and interactions. Again, the optimal probabilities
depend on the pool of available individuals to sample from: the fewer individuals there are,
the more diversification needs to be carried out, for example by increasing NMutation or by
decreasing PClone. On the other hand, larger pools of tests to sample from would require lower
probabilities. The experiments in this paper suggest that default values of NMutation D 8 and
PClone D 0:9 will lead to improvement in many cases.

The specific values derived experimentally should serve as useful default values, but in general,
these parameters could be specifically tuned to adapt to the specific traits of each project under test.

The experiments in this paper considered several seeding strategies and applied them to the
context of testing object-oriented code in terms of the EVOSUITE tool with the aim of maxi-
mizing branch coverage. The same seeding strategies can be applied also to other test generation
approaches, such as random testing and to other testing domains than unit testing, such as for exam-
ple GUI testing. Further seeding strategies are possible, and these as well as investigations of how
individual seeding strategies interact with each other will be part of our future work.

To learn more about EVOSUITE, visit the website:
http://www.evosuite.org

ACKNOWLEDGEMENTS

This work is supported by the EPSRC project ‘EXOGEN’ (EP/K030353/1), a Google Focused Research
Award on ‘Test Amplification’ and by the National Research Fund, Luxembourg (FNR/P10/03).

REFERENCES

1. Harman M, Jones BF. Search-based software engineering. Journal of Information & Software Technology 2001;
43(14):833–839.

2. McMinn P. Search-based software test data generation: a survey. Software Testing, Verification and Reliability 2004;
14(2):105–156.

3. Tonella P. Evolutionary testing of classes. ACM International Symposium on Software Testing and Analysis (ISSTA),
Boston, Massachusetts, USA, 2004; 119–128.

4. Fraser G, Arcuri A. EvoSuite: automatic test suite generation for object-oriented software. ACM Symposium on the
Foundations of Software Engineering (FSE), Szeged, Hungary, 2011; 416–419.

5. Fraser G, Arcuri A. Whole test suite generation. IEEE Transactions on Software Engineering 2013; 39(2):276–291.
6. Fraser G, Arcuri A. A large-scale evaluation of automated unit test generation using EvoSuite. ACM TOSEM 2014;

24(2):8:1–8:42.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr



J. M. ROJAS, G. FRASER AND A. ARCURI

7. The Apache Commons, 2014. Available from: http://commons.apache.org/ [last accessed 16 December 2015].
8. Fraser G, Arcuri A. The seed is strong: seeding strategies in search-based software testing. IEEE International

Conference on Software Testing, Verification and Validation (ICST), Montreal, Canada, 2012; 121–130.
9. Langdon WB, Nordin P. Seeding genetic programming populations. Proceedings of the European Conference on

Genetic Programming (EuroGP), Edinburgh, Scotland, 2000; 304–315.
10. Westerberg CH, Levine J. Investigation of different seeding strategies in a genetic planner. Proceedings of

EvoWorkshops, Como, Italy, 2001; 505–514.
11. White D, Arcuri A, Clark J. Evolutionary improvement of programs. IEEE Transactions on Evolutionary Computa-

tion (TEC) 2011; 15(4):515–538.
12. Wegener J, Baresel A, Sthamer H. Evolutionary test environment for automatic structural testing. Information and

Software Technology 2001; 43(14):841–854.
13. Tlili M, Wappler S, Sthamer H. Improving evolutionary real-time testing. Genetic and Evolutionary Computation

Conference (GECCO), Seattle, Washington, USA, 2006; 1917–1924.
14. Yoo S, Harman M. Test data regeneration: generating new test data from existing test data. Software Testing,

Verification and Reliability (STVR) 2012; 22(3):171–201.
15. McMinn P, Stevenson M, Harman M. Reducing qualitative human oracle costs associated with automatically gener-

ated test data. Proceedings of the First International Workshop on Software Test Output Validation, STOV ’10, ACM:
New York, NY, USA, 2010; 1–4.

16. Fraser G, Zeller A. Exploiting common object usage in test case generation. ICST 2011: Proceedings of the Inter-
national Conference on Software Testing, Verification, and Validation, IEEE Computer Society: Los Alamitos, CA,
USA, 2011; 80–89.

17. Miraz M, Lanzi PL, Baresi L. Improving evolutionary testing by means of efficiency enhancement techniques. IEEE
Congress on Evolutionary Computation (CEC), Barcelona, Spain, 2010; 1–8.

18. Alshraideh M, Bottaci L. Search-based software test data generation for string data using program-specific search
operators. Software Testing, Verification, and Reliability 2006; 16(3):175–203.

19. McMinn P, Shahbaz M, Stevenson M. Search-based test input generation for string data types using the results of web
queries. IEEE International Conference on Software Testing, Verification and Validation (ICST), Montreal, Canada,
2012; 141–150.

20. Alshahwan N, Harman M. Automated web application testing using search based software engineering. IEEE/ACM
International Conference on Automated Software Engineering (ASE), Lawrence, Kansas, USA, 2011; 3–12.

21. Korel B. Automated software test data generation. IEEE Transactions on Software Engineering 1990; 16(8):870–879.
22. Li Y, Fraser G. Bytecode testability transformation. In Search Based Software Engineering, vol. 6956, Lecture Notes

in Computer Science. Springer, 2011; 237–251.
23. Møller A. dk.brics.automaton – finite-state automata and regular expressions for Java, 2010. Available from: http://

www.brics.dk/automaton/ [last accessed 16 December 2015].
24. Fraser G, Arcuri A. Automated test generation for java generics. Software Quality Days (SWQD), 2013.
25. Arcuri A, Fraser G. Parameter tuning or default values? An empirical investigation in search-based software

engineering. Empirical Software Engineering (EMSE) 2013; 18(3):594–623.
26. JavaNCSS - a source measurement suite for Java 2014. Available from: http://www.kclee.de/clemens/java/javancss,

version 32.53 [last accessed 16 December 2015].
27. Inozemtseva L, Holmes R. Coverage is not strongly correlated with test suite effectiveness. ACM/IEEE International

Conference on Software Engineering (ICSE), ACM: Hyderabad, India, 2014; 435–445.
28. Just R. The Major mutation framework: efficient and scalable mutation analysis for java. ACM International

Symposium on Software Testing and Analysis (ISSTA), ACM: San Jose, California, USA, 2014; 433–436.
29. Arcuri A, Briand L. A hitchhiker’s guide to statistical tests for assessing randomized algorithms in software

engineering. Software Testing, Verification and Reliability (STVR) 2014; 24(3):219–250.
30. Arcuri A, Fraser G, Galeotti JP. Automated unit test generation for classes with environment dependencies.

IEEE/ACM International Conference on Automated Software Engineering (ASE), ACM: Vasteras, Sweden, 2014;
79–90.

31. Pacheco C, Lahiri SK, Ernst MD, Ball T. Feedback-directed random test generation. ACM/IEEE International
Conference on Software Engineering (ICSE), Minneapolis, Minnesota, USA, 2007; 75–84.

© 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd. Softw. Test. Verif. Reliab. (2016)
DOI: 10.1002/stvr

http://commons.apache.org/
http://www.brics.dk/automaton/
http://www.brics.dk/automaton/
http://www.kclee.de/clemens/java/javancss

	*-10ptSeeding strategies in search-based unit test generation
	Summary
	Introduction
	Background
	Evolutionary testing of classes
	Seeding in evolutionary search
	Seeding in search-based software testing

	Seeding Strategies for Testing Object-Oriented Classes
	Seeding constants from source code or bytecode
	Dynamic seeding
	Seeding numerical values
	Seeding strings

	Type seeding
	Incorporating previous solutions
	Using existing unit tests
	Carving objects from unit tests


	Evaluation
	Experimental setup
	Test generation tool
	Case study objects
	RQ1: Constant seeding
	RQ2: Dynamic seeding
	RQ3: Type seeding
	RQ4: Reusing previous solutions
	RQ5: Fault finding effectiveness
	Experiment analysis

	RQ1: Seeding constants from bytecode
	Example of seeding numeric constants
	Example of seeding string constants

	RQ2: Seeding values at runtime
	Example of dynamically seeded strings

	RQ3: Seeding types
	Example of type seeding

	RQ4: Incorporating previous solutions
	Example of reusing existing tests
	Example reusing objects carved from existing tests

	RQ5: Fault finding effectiveness
	Examples of negative effects on fault finding effectiveness


	Threats to Validity
	Conclusions
	REFERENCES


