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Abstract Many software engineering problems have been addressed with search al-

gorithms. Search algorithms usually depend on several parameters (e.g., population

size and crossover rate in genetic algorithms), and the choice of these parameters

can have an impact on the performance of the algorithm. It has been formally proven

in the No Free Lunch theorem that it is impossible to tune a search algorithm such

that it will have optimal settings for all possible problems. So, how to properly set

the parameters of a search algorithm for a given software engineering problem? In

this paper, we carry out the largest empirical analysis so far on parameter tuning in

search-based software engineering. More than one million experiments were carried

out and statistically analyzed in the context of test data generation for object-oriented

software using the EVOSUITE tool. Results show that tuning does indeed have im-

pact on the performance of a search algorithm. But, at least in the context of test data

generation, it does not seem easy to find good settings that significantly outperform

the “default” values suggested in the literature. This has very practical value for both

researchers (e.g., when different techniques are compared) and practitioners. Using

“default” values is a reasonable and justified choice, whereas parameter tuning is a

long and expensive process that might or might not pay off in the end.

Keyword: Search-based software engineering, test data generation, object-oriented,

unit testing, tuning, EvoSuite, Java, response surface, design of experiments

⋆ This paper is an extension of a conference paper published in the International Symposium on Search

Based Software Engineering (SSBSE) [4], 2011.

A. Arcuri

Certus Software V&V Center at Simula Research Laboratory,

P.O. Box 134, Lysaker, Norway

E-mail: arcuri@simula.no

G. Fraser

Department of Computer Science, University of Sheffield,

Regent Court, 211 Portobello

S1 4DP, Sheffield, UK

E-mail: Gordon.Fraser@sheffield.ac.uk



2 Andrea Arcuri and Gordon Fraser

1 Introduction

Recent years have brought a large growth of interest in search-based software engi-

neering (SBSE) [19], especially in software testing [1]. The field has even matured

to a stage where industrial applications have started to appear [5, 36]. One of the key

strengths of SBSE leading to this success is its ability of automatically solving very

complex problems where exact solutions cannot be deterministically found in reason-

able time. However, to make SBSE really usable in practice, no knowledge of search

algorithms should be required from practitioners who want to use it, as such knowl-

edge is highly specialized and might not be widespread. In other words, SBSE tools

should be treated as “black boxes” where the internal details are hidden, otherwise

technology transfer to industrial practice will hardly be feasible.

One of the main barriers to the use of a search algorithm in SBSE is tuning. A

search algorithm can have many parameters that need to be set. For example, to use a

genetic algorithm, one has to specify the population size, type of selection mechanism

(e.g., roulette wheel, tournament, rank-based), type of crossover (e.g., single point,

multi-point), crossover probability, type and probability of mutation, type and rate

of elitism, etc. The choice of all these parameters might have a large impact on the

performance of a search algorithm. In the worst case, an “unfortunate” parameter

setting might make it impossible to solve the problem at hand.

Is it possible to find an optimal parameter setting, to solve this problem once and

for all? Unfortunately, this is not possible, and this has been formally proven in the

No Free Lunch (NFL) theorem [39]: On average, all algorithms perform equally on

all possible problems. For any problem an algorithm is good at solving, there always

exist problems for which that algorithm has worse performance than other algorithms.

Because the same algorithm with different parameter settings can be considered as a

family of different algorithms, the NFL theorem applies to tuning as well. However,

the NFL is valid only when all possible search problems are considered. SBSE only

represents a subset of all possible problems, so it could be possible to find “good”

parameter settings that work well for this subset. Such a known good configuration

is important when handing tools over to practitioners, because it is not reasonable

to expect them to tune such tools as that would require deep knowledge of the tools

and of search algorithms in general. Similarly, it is also important from a research

perspective to avoid skewing results with improper parameter settings.

In this paper, we present the results of the largest empirical analysis of tuning

in SBSE to date to address the question of parameter tuning. We chose the scenario

of test data generation at unit test level because it is one of the most studied prob-

lems in SBSE [19]. In particular, we consider test data generation for object-oriented

software using the EVOSUITE tool [13], where the goal is to find the minimal test

suite that maximizes branch coverage (having a small test suite is important when no

automated oracles are available and results need to be manually checked by software

testers). Because an empirical study of the size conducted in this paper is extremely

time consuming, it is necessary to focus on one particular problem. In principle the

experiments could also be applied to other SBSE problems (e.g., regression test-

ing [20]). However, the choice of test data generation allowed us to use an advanced

SBSE tool like EVOSUITE. By using EVOSUITE on the SF100 corpus [16], we can
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have enough confidence to generalize our results to open source software, which is

of high value for practitioners, rather than drawing conclusions from toy problems

or small case studies. However, we would like to point out that the complexity of

tuning in search-based test data generation, as witnessed in our experiments, does not

mean that alternative approaches to test data generation not based on search are free

of such problems. For example, in dynamic symbolic execution there are parameters

such as the exploration strategy or the parameters of the employed constraint solver,

and these parameters also need to be tuned. In general, this applies to any software

engineering activity in which parameters need to be set.

We chose to consider several parameter settings (e.g., population size and crossover

rate). To make the experiments finish in a feasible amount of time, we had three dif-

ferent sets of classes for three different kinds of analyses. In the first, more exhaustive

analysis, we only considered 20 software classes as case study. In the second more

focused analysis, we had 609 classes randomly sampled from the SF100 corpus [16],

which is a sample of 100 projects randomly selected from the open source software

repository SourceForge. The last case study is based on only two classes, which are

used to get more insight on some follow up questions coming from the analysis of

the second case study. In the end, all of these empirical analyses led to more than one

million experiments which took weeks to run, even on a cluster of computers.

Although it is well known that parameter tuning has impact on the performance

of search algorithms, there is little empirical evidence in the literature of SBSE that

tries to quantify its effects. The results of the large empirical analysis presented in this

paper provide compelling evidence that parameter tuning is indeed critical, but “de-

fault” values in the literature already perform relatively well. On one hand, it makes

sense to carry out a large tuning phase before releasing a SBSE tool to practition-

ers. On the other hand, tuning might become very expensive, but the improvements

caused by it may not be so large. So, for example, for a researcher that faces time/re-

source constraints it might be justified to skip the tuning phase, if this allows him/her

to use a larger case study or to compare more algorithms/techniques.

Another problem related to tuning that is often ignored is the search budget. A

practitioner might not want to deal with the choice of a genetic algorithm population

size, but the choice of the computational time (i.e., how long she/he is willing to wait

before the tool gives an output) is something that has a strong impact on tuning. To

improve performance, tuning should be a function of the search budget, as we will

discuss in more details in the paper.

This paper is organized as follows. Section 2 discusses related work on tuning.

The analyzed search algorithm (a genetic algorithm used in EVOSUITE) is presented

in Section 3 with a description of the parameters we investigate with respect to tuning.

Section 4 presents the case studies and the empirical analyses. Guidelines on how to

handle parameter tuning are discussed in Section 5. Threats to validity are discussed

in Section 6. Finally, Section 7 concludes the paper.
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2 Related Work

The problem of tuning is not only restricted to software engineering. Search algo-

rithms can be applied to many other fields where optimizations are sought. For ex-

ample, there are many successful applications of search algorithms in evolutionary

computation (EC) [38]. On one hand, from the point of view of tuning, it might

be that problems in the SBSE field share some commonalities among them. On the

other hand, it may be that SBSE problems like test data generation are “closer” to

other problems in EC rather than in SBSE. A cross-filed meta-analysis of parameter

tuning would provide answers to these research questions, but it is not in the scope

of this paper, as we focus on providing empirical evidence for test data generation.

Whether our results carry over to other applications and fields will be an important

future work.

2.1 Related Studies

Eiben et al. [11] presented a survey on how to control and set parameter values of

evolutionary algorithms. In their survey, several techniques are discussed. Of partic-

ular interest is the distinction between parameter tuning and parameter control: The

former deals with how to choose parameter values before running a search algorithm.

For example, should we use a population size of 50 or 100? In contrast, parameter

control deals with how to change parameter values during the run of a search algo-

rithm. A particular value that is good at the beginning of the search might become

sub-optimal in the later stages. For example, in a genetic algorithm one might want

to have a high mutation rate (or large population size) at the beginning of the search,

and then decrease it in the course of the evolution; this would be conceptually similar

to temperature cooling in simulated annealing. A similar concept is to use feedback

from the search to change the parameter values. For example, a search operator that

generates a solution with higher fitness during the search might be rewarded by in-

creasing its probability of occurrence, and penalized by decreasing it otherwise.

In this paper we only deal with parameter tuning. Parameter control is a promising

area of research, and although there are some applications in SBSE (e.g., [27, 29]), it

is not widely employed. It is important to note that parameter control does not com-

pletely solve the problems of parameter tuning. In fact, parameter control techniques

usually lead to a higher number of parameters that need to be tuned. For example,

if we want decrease the population size during the search, not only we still need to

choose a starting value, but also we need to define by how much (e.g., 5%) it should

be decreased (new parameter) and how often (e.g., every five generations) we de-

crease it (yet another new parameter). Even if we do not make these choices in a

fixed way before the search and we rather use a feedback mechanism to adapt them

at runtime, we still end up with a new set of parameters related to how to exploit such

feedback information. Although parameter control usually results in more parame-

ters that need to be tuned, empirical studies show that such an approach pays off in

the end [11]. However, not everyone agrees on this point [10], and further research

(especially in SBSE) is necessary.
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Recently, Smit and Eiben [34] carried out a series of experiments on parameter

tuning. They consider the tuning of six parameters of a genetic algorithm applied to

five numerical functions, comparing three settings: a default setting based on “com-

mon wisdom”, the best tuning averaged on the five functions (which they call gen-

eralist), and the best tuning for each function independently (specialist). Only one

fixed search budget (i.e., maximum number of fitness evaluations as stopping crite-

rion) was considered. Our work shares some commonalities with these experiments,

but more research questions and larger empirical analysis are presented in this paper

(details will be given in Section 4).

In order to find the best parameter configuration for a given case study, one can

run experiments with different configurations, and then the configuration that gives

the highest results on average can be identified as best for that case study. However,

evaluating all possible parameter combinations is infeasible in practice. Techniques

to select only a subset of configurations to test that have high probability of being

optimal exist, for example regression trees (e.g., used in [6, 8]) and response surface

methodology (e.g., used in [12, 27]). However, as for any complex heuristics, such

techniques might fail in some contexts, and proper care needs to be taken to apply

them properly on the problem at hand.

2.2 Practical Considerations

The goal of this paper is to study the effects of parameter tuning, which includes

also the cases of sub-optimal choices. To obtain accurate results, this type of analy-

sis requires large empirical evaluations. This is done only for the sake of answering

research questions (as for example to study the effects of a sub-optimal tuning). In

general, a practitioner would be interested only in the best configuration for his prob-

lem at hand.

If a practitioner wants to use a search algorithm on an industrial problem (not

necessarily in software engineering) that has not been studied in the literature, then

she/he would need to tune the algorithm by herself, as default settings might lead

to poor performance. To help practitioners in making such tuning, there exist frame-

works such as GUIDE [9]. The scope of this paper is different: we tackle known

SBSE problems (e.g., test data generation for object-oriented software). For known

problems, it is possible to carry out large empirical analyses in laboratory settings.

There might be cases in which, even on known problems, it might be useful to

let the practitioners perform/improve tuning (if they have enough knowledge about

search algorithms), and tools like EvoTest support this [36]. As an example, an SBSE

problem instance type might need to be solved several times (e.g., a software system

that is slightly modified during time). Another example could be to do tuning on a

sub-system before tackling the entire system (which for example could be millions

of lines of code). Whether such cases occur in practice, and whether the tuning can

be safely left to practitioners, would require controlled empirical studies in industrial

contexts. As such empirical evidence is currently lacking in the literature of SBSE, we

can assume that parameter tuning is needed before releasing SBSE tool prototypes.
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3 Search Algorithm Setting

We performed our experiments in a domain of test generation for object-oriented

software using genetic algorithms. In this domain, the objective is to derive test suites

(sets of test cases) for a given class, such that the test suite maximizes a chosen

coverage criterion while minimizing the number of tests and their length. A test case

in this domain is a sequence of method calls that constructs objects and calls methods

on them. The resulting test suite is presented to the user, who usually has to add test

oracles that check for correctness when executing the test cases.

3.1 Representation

The test cases may have variable length [2], and so earlier approaches to testing

object-oriented software made use of method sequences [17, 35] or strongly typed

genetic programming [30,37]. In our experiments, we used the EVOSUITE [13] tool,

in which one individual is an entire test suite of variable size. The entire search space

of test suites is composed of all possible test suites of sizes from 1 to a predefined

maximum N . Each test case can have a size (i.e., number of statements) from 1 to L.

For each position in the sequence of statements of a test case, there can be up to Imax

possible statements, depending on the SUT and the position within the test case (later

statements can reuse objects instantiated in previous statements). The search space is

hence extremely large, although finite because N , L and Imax are finite.

3.2 Search Operators

Crossover between test suites generates two offspring O1 and O2 from two parent test

suites P1 and P2. A random value r is chosen from [0,1], and the first offspring O1

contains the first r|P1| test cases from the first parent, followed by the last (1−r)|P2|
test cases from the second parent. The second offspring O2 contains the first r|P2|
test cases from the second parent, followed by the last (1− r)|P1| test cases from the

first parent.

The mutation operator for test suites works both at test suite and test case levels:

When a test suite T is mutated, each of its test cases is mutated with probability

1/|T |. Then, with probability σ = 0.1, a new test case is added to the test suite. If it

is added, then a second test case is added with probability σ2, and so on until the ith
test case is not added (which happens with probability 1 − σi). Test cases are added

only if the limit N has not been reached.

When a test case is chosen to be mutated, we apply a number of mutations at

random in between 1 and m, for some constant m (which is a parameter that needs to

be tuned). For each of these mutations on a test case (which are applied sequentially),

we apply three different operations with probability 1/3 in order: remove, change and

insert.

When removing statements out of a test case of length l, each statement is re-

moved with probability 1/l. Removing a statement might invalidate dependencies
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within the test case, which we attempt to repair; if this repair fails, then dependent

statements are also deleted. When applying the change mutation, each statement is

changed with probability 1/l. A change means it is replaced with a different state-

ment that retains the validity of the test case; e.g., a different method call with the

same return type. When inserting statements, we first insert a new statement with

probability σ′ = 0.5 at a random position. If it is added, then a second statement is

added with probability σ′2, and so on until the ith statement is not inserted. If after

applying these mutation operators a test case t has no statement left (i.e., all have

been removed), then t is removed from T .

In EVOSUITE, we also consider a set of seeding strategies [15]. For example, we

can statically analyze the byte-code of the SUT and collect all the constants in it (e.g.,

numbers and strings), and store them in a pool of constants. Every time we need to

sample a number/string at random (e.g., during population initialization and muta-

tions), with probability Ps we can rather take one constant (of the appropriate kind)

from that pool. This has been shown to be a very effective technique, particularly for

SUTs using string objects.

When we start the search, the initial population of test cases is generated ran-

domly, by repeatedly performing the insertion operator also used to mutate test cases.

3.3 Fitness Function

The search objective we chose is branch coverage at the byte-code level, which re-

quires that a test suite exercises a program in such a way that every condition (e.g.,

if, while) evaluates to true and to false. The fitness function is based on the well-

established branch distance [24], which estimates the distance towards a particular

evaluation of a branch predicate. The overall fitness of a test suite with respect to all

branches is measured as the sum of the normalized branch distances of all branches

in the program under test. Using a fitness function that considers all the testing targets

at the same time has been shown to lead to better results than the common strategy

of considering each target individually [13]. Such an approach is particularly use-

ful to reduce the negative effects of infeasible targets for the search. Furthermore,

we applied several bloat control techniques [14] to avoid that the size of individuals

becomes bloated during the search.

4 Experiments

In this paper, we present the results of three different sets of experiments using three

different sets of classes as case studies.1 The design of the first and second case

study were independent. The first case study is much smaller than the second, which

allowed a more extensive analysis on different properties of parameter tuning. The

third case study was designed after the analysis of the second case study, and serves to

get more insight on questions arising from the second case study. In the following, we

1 All experimental data is available at http://www.evosuite.org/experimental-data/
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start from describing the first case study and its related research questions, followed

by the second and then the third case study.

4.1 First Case Study – Exhaustive Analysis

4.1.1 Experimental Setup

Our first case study is a subset of 20 Java classes out of those previously used to

evaluate EVOSUITE [13]. In choosing the case study, we tried to balance the different

types of classes: historical benchmarks, data structures, numerical functions, string

manipulations, classes coming from open source applications and industrial software.

Apart from historical benchmarks, our criterion when selecting individual classes was

that classes are non-trivial, but EVOSUITE may still achieve high coverage on them,

to allow for variation in the results. We therefore selected classes where EVOSUITE

used up its entire search budget without achieving 100% branch coverage, but still

achieved more than 80% coverage.

4.1.2 Considered Parameters

In the experiments presented in this section, we investigated five parameters of the

search, which are not specific to the test-data generation domain. The first parameter

is the crossover rate: Whenever two individuals are selected from the parent genera-

tion, this parameter specifies the probability with which they are crossed over. If they

are not crossed over, then the parents are passed on to the next stage (mutation), else

the offspring resulting from the crossover are used at the mutation stage.

The second parameter is the population size, which determines how many indi-

viduals are created for the initial population. The population size does not change in

the course of the evolution, i.e., reproduction ensures that the next generation has the

same size as the initial generation.

The third parameter is the elitism rate: Elitism describes the process that the best

individuals of a population (its elite) automatically survive evolution. The elitism rate

is sometimes specified as a percentage of the population that survives, or as the num-

ber of individuals that are copied to the next generation. For example, with an elitism

rate set to 1 individual, the best individual of the current population is automatically

copied to the next generation. In addition, it is still available for reproduction during

the normal selection/crossover/mutation process.

In a standard genetic algorithm, elitism, selection and reproduction is performed

until the next population has reached the desired population size. A common variant is

steady state genetic algorithms, in which after the reproduction the offspring replace

their parents in the current population. As the concept of elitism does not apply to

steady state genetic algorithms, we treat the steady state genetic algorithm as a special

parameter setting of the elitism rate.

The fourth parameter is the selection mechanism, which describes the algorithm

used to select individuals from the current population for reproduction. In roulette

wheel selection, each individual is selected with a probability that is proportionate to



Parameter Tuning or Default Values? 9

its fitness (hence it is also known as fitness proportionate selection). In tournament

selection, a number of individuals are uniformly selected out of the current popula-

tion, and the one with the best fitness value is chosen as one parent for reproduction.

The tournament size denotes how many individuals are considered for the “tourna-

ment”. Finally, rank selection is similar to roulette wheel selection, except that the

probability of an individual being selected is not proportionate to its fitness but to

its rank when ranking individuals according to their fitness. The advantage of this

approach over roulette wheel selection is that the selection is not easily dominated

by individuals that are fitter than others, which would lead to premature convergence.

The probability of a ranking position can be weighted using the rank bias parameter.

Finally, the fifth parameter we consider is whether or not to apply a parent re-

placement check. When two offspring have been evolved through crossover and mu-

tation, checking against the parents means that the offspring survive only if at least

one of the two offspring has a better fitness than their parents. If this is not the case,

the parents are used in the next generation instead of the offspring.

We investigated the following values for the chosen five parameters:

– Crossover rate: {0 , .2 , .5 , .8 , 1}.

– Population size: {4 , 10, 50 , 100 , 200}.

– Elitism rate: {0 , 1, 10% , 50%} or steady state.

– Selection: roulette wheel, tournament with size either 2 or 7, and rank selection

with bias either 1.2 or 1.7.

– Parent replacement check (activated or not).

Notice that the search algorithm used in EVOSUITE has many other parameters

to tune. Because the possible number of parameter combinations is exponential in the

number of parameters, only a limited number of parameters and values could be used.

For the evaluation we chose parameters that are common to most genetic algorithms,

and avoided parameters that are specific in EVOSUITE to handle object-oriented soft-

ware. Regarding the actual values chosen for experimentation, we considered com-

mon values in the literature and, for each parameter, we tried to have both “low”

and “high” values. In general there is an infinite number of possible values, and any

choice done for experimentation is bound to be somewhat arbitrary.

Because the goal of this paper is to study the effects of tuning, we analyzed all

the possible combinations of the selected parameter values. In contrast, if one is only

interested in finding the “best” tuning for the case study at hand, techniques such

as the response surface methodology could be used to reduce the number of config-

urations to evaluate. We will discuss such methodology in more details later on in

Section 4.2 when we will present the second case study (it was not used for this first

case study [4]).

4.1.3 Search Budget

An important factor in an SBSE tool is the search budget, i.e., when to stop the

search, as it cannot be assumed that an optimal solution is always found. A search

algorithm can be run for an arbitrary amount of time – for example, a practitioner

could run a search algorithm for one second only, or for one hour. However, the
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search budget has a strong effect on parameter tuning, and it is directly connected to

the concept of exploration and exploitation of the search landscape. For example, the

choice of a large population size puts more emphasis on the exploration of the search

landscape, which could lead to a better escape from local optima. However, a large

population may also slow down the convergence to global optima when not so many

local optima are present. If one has a small search budget, it would be advisable to use

a small population size because with a large population only few generations would

be possible. Therefore, parameter tuning is strongly correlated to the search budget.

We believe that the search budget is perhaps the most important (and maybe only)

parameter a practitioner should set. Although most practitioners might not know the

internal details of how a search algorithm works and the role of each of its different

parameters, they would know for how long they are willing to wait before getting

results. A realistic scenario might be the following: During working hours and de-

velopment, a software engineer would have a small budget (in the order of second-

s/minutes) for search, as coding and debugging would take place at the same time.

However, a search might also be left running overnight, and results collected the

morning after. In these two situations, the parameter settings (e.g., population size)

should be different.

The search budget can be expressed in many different formats, for example, in

terms of the time that the search may execute. A common format, often used in the

literature to allow better and less biased comparisons, is to limit the number of fit-

ness evaluations. In our setting, the variable size of individuals means that comparing

fitness evaluations can be meaningless, as one individual can be very short and an-

other one can be very long. Therefore, in this setting (i.e., test data generation for

object-oriented software) we rather count the number of statements executed. In the

experiments described in this section, we considered a budget of 100,000 function

call executions (considering the number of fitness function evaluations would not be

fair due to the variable length of the evolved solutions). We also considered the cases

of a budget that is a tenth (10,000) and ten times bigger (1,000,000).

4.1.4 Experiment Procedure

Experiments were performed on a cluster of computers, which has roughly 80 nodes,

each with 8 computing cores and 8 gigabytes of memory running a Linux operat-

ing system. During the experiments, the cluster was shared with other researchers

in the same research institute. To run EVOSUITE on the cluster, we simply used its

“command line” version (rather than its Eclipse plug-in). For each experiment (or

group of), we had shell-scripts calling EVOSUITE with the chosen parameters (given

as command line inputs to EVOSUITE). Outputs were re-directed to local files, that

were gathered and analyzed at the end when all experiments were finished.

For each class in the case study, we ran each combination of parameter settings

and search budget. All experiments were repeated 15 times to take the random nature

of these algorithms into account. Therefore, in total we had 20× 54 × 2× 3× 15 =
1,125,000 experiments. Parameter settings were compared based on the achieved

coverage. Notice that, in testing object-oriented software, it is also very important

to take the size of the generated test suites into account. However, for simplicity, in
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this paper we only consider coverage, in particular branch coverage at the byte-code

level.

Using the raw coverage values for parameter setting comparisons would be too

noisy. Most branches are always covered regardless of the chosen parameter setting,

while many others are simply infeasible. Given b the number of covered branches in a

run for a class c, we used the following normalization to define a relative coverage r:

r(b,c) =
b−minc

maxc −minc

,

where minc is the worst coverage obtain in all the 56,250 experiments for that class

c, and maxc is the maximum obtained coverage. If minc == maxc, then r = 1.

To analyze all these data in a sound manner, we followed the guidelines in [3].

Statistical difference is measured with the Mann-Whitney U-test, whereas effect sizes

are measured with the Vargha-Delaney Â12 statistics. The Â12 statistics measures the

probability that a run with a particular parameter setting yields better coverage than

a run of the other compared setting. If there is no difference between two parameter

setting performances, then Â12 = 0.5. For reasons of space it is not possible to show

all the details of the data and analyses. For example, instead of reporting all the p-

values, we only state when those are lower than 0.05.

4.1.5 Results

In the analyses in this paper, we focus on four specific settings: worst (W ), best (B),

default (D) and tuned (T ). The worst combination W is the one that gives the worst

coverage out of the 54 × 2 = 1,250 combinations, and can be different depending on

the class under test and chosen search budget. Similarly, B represents the best con-

figuration out of 1,250. The “default” combination D is arbitrarily set to population

size 100, crossover rate 0.8, rank selection with 1.7 bias, 10% of elitism rate and no

parent replacement check. These values are in line with common suggestions in the

literature, and those that we used in previous work. In particular, this default setting

was chosen before running any of the experiments. Finally, given a set of classes, the

tuned configuration T represents the configuration that has the highest average rela-

tive coverage on all that set of classes. When we write for example ÂDW = 0.8, this

means that, for the addressed class and search budget, a run of the default configura-

tion D has 0.8 probability of yielding a coverage that is higher than the one obtained

by a run of the worst configuration W .

The data2 collected from this large empirical study could be used to address sev-

eral research questions. In this paper, we only focus on the five research questions

that we believe are most important.

2 The data reported in Table 1, Table 2 and Table 3 are different from what we originally reported in [4].

In the revision of this paper, we found a mistake in the calculation of the relative coverage formula, which

has now been corrected.
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Table 1 Relative coverage averaged out of 15 runs for default, worst and best configuration. Effect sizes for

default compared to worst (ÂDW ) and and compared to best configuration (ÂDB). Statistically significant

effect sizes are in bold.

Class Default Worst Best ÂDW ÂDB

Cookie 0.52 0.25 0.66 1.00 0.00

DateParse 1.00 1.00 1.00 0.50 0.50

Triangle 1.00 0.93 1.00 0.53 0.50

XMLElement 0.79 0.40 0.82 1.00 0.12

ZipOutputStream 1.00 0.88 1.00 0.77 0.50

CommandLine 0.45 0.25 0.59 1.00 0.35

Remainder 0.90 0.55 0.99 0.99 0.12

Industry1 0.63 0.30 0.88 1.00 0.00

Industry2 0.93 0.51 0.98 1.00 0.01

Attribute 0.51 0.22 0.68 1.00 0.01

DoubleMetaphone 0.70 0.51 0.75 1.00 0.09

Chronology 0.79 0.47 0.88 1.00 0.04

ArrayList 1.00 0.67 1.00 0.67 0.50

DateTime 0.64 0.22 0.93 1.00 0.00

TreeMap 0.62 0.06 0.73 0.93 0.25

Bessj 0.75 0.48 0.92 1.00 0.00

BellmanFordIterator 0.88 0.85 0.93 0.60 0.30

TTestImpl 0.56 0.37 0.69 0.94 0.21

LinkedListMultimap 0.83 0.21 1.00 1.00 0.03

FastFourierTransformer 0.73 0.62 0.76 1.00 0.36

RQ1: How large is the potential impact of a wrong choice of parameter settings?

In Table 1, for each class in the case study and test budget 100,000, we report the rel-

ative coverage (averaged out of 15 runs) of the worst and best configurations. There

are cases in which the class under test is trivial for EVOSUITE (e.g., DateParse), in

which case tuning is not really important. But, in most cases, there is a very large

difference between the worst and best configuration (e.g., Industry1). A wrong pa-

rameter tuning can make it hard (on average) to solve problems that could be easy

otherwise.

Different parameter settings cause

very large variance in the performance.

RQ2: How does a “default” setting compare to the best and worst achievable perfor-

mance?

Table 1 also reports the relative coverage for the default setting, with effect sizes

of the comparisons with the worst and best configuration. As one would expect, a

default configuration has to be better than the worst, and worse/equal to the best con-

figuration. However, for most problems, although the default setting is much better

than the worst setting (i.e., ÂDW values close to 1), it is unfortunately much worse

than the best setting (i.e., ÂDB values are close to 0). When one uses randomized

algorithms, it is reasonable to expect variance in the performance when they are run
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twice with a different seed. However, consider the example of Bessj in Table 1, where

ÂDW = 1 and ÂDB = 0. In that case, the coverage values achieved by the default

setting in 15 runs are always better than any of the 15 coverage values obtained with

the worst configuration, but also always worse than any of the 15 runs obtained with

best configuration. These data suggest that, if one does not have the possibility of

tuning, then the use of a default setting is not particularly inefficient. However, there

is large space for performance improvement if tuning is done.

Default parameter settings perform relatively well, but

are far from optimal on individual problem instances.

RQ3: How is the performance of a search algorithm on a class when it has been tuned

on different classes?

To answer this research question, for each class we tuned the algorithm on the other

19 classes, and then compared this tuned version with the default and best configu-

ration for the class under test. Table 2 reports the data of this analysis. If one makes

tuning on a sample of problem instances, then we would expect a relatively good

performance on new instances. But the ÂTB values in Table 2 are in most of the

cases low and statistically significant. This means that parameter settings that should

work well on average can be particularly inefficient on new instances compared to

the best tuning for those instances. In other words, there is a very high variance in the

performance of parameter settings.

Regarding the comparisons with default settings, ÂTD values in Table 2 shows

that tuning often results in statistically better results, whereas there is no case in which

it gives statistically worse results (i.e., ÂTD < 0.5).

Tuned parameters can improve upon default values on

average, but they are far from optimal on individual

problem instances.

RQ4: What are the effects of the search budget on parameter tuning?

For each class and the three search budgets, we compared the performance of the de-

fault setting against the worst and the best; Table 3 shows the data of this analysis. For

a very large search budget one would expect not much difference between parameter

settings, as all achievable coverage would be reached with high probability. Recall

that it is not possible to stop the search before because, apart from trivial cases, there

are always infeasible testing targets (e.g., branches) whose number is unknown. The

data in Table 3 show that trend for many of the used programs (e.g., see LinkedList-

Multimap) regarding the default and best settings, but the worst setting is still much

worse than the others (i.e., ÂDW close to 1) even with a search budget of one million

function calls. What is a “large” search budget depends of course on the case study.
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Table 2 Relative coverage averaged out of 15 runs for tuned configuration. Effect sizes for tuned compared

to default (ÂTD) and and compared to best configuration (ÂTB). Statistically significant effect sizes are

in bold.

Class Tuned ÂTD ÂTB

Cookie 0.63 1.00 0.12

DateParse 1.00 0.50 0.50

Triangle 1.00 0.50 0.50

XMLElement 0.80 0.64 0.21

ZipOutputStream 1.00 0.50 0.50

CommandLine 0.50 0.68 0.48

Remainder 0.94 0.66 0.26

Industry1 0.86 1.00 0.24

Industry2 0.97 0.92 0.36

Attribute 0.63 0.98 0.24

DoubleMetaphone 0.73 0.91 0.32

Chronology 0.84 0.86 0.29

ArrayList 0.80 0.40 0.40

DateTime 0.90 1.00 0.20

TreeMap 0.63 0.64 0.51

Bessj 0.89 1.00 0.21

BellmanFordIterator 0.87 0.47 0.27

TTestImpl 0.63 0.64 0.37

LinkedListMultimap 1.00 0.97 0.50

FastFourierTransformer 0.73 0.53 0.38

For example, for DateParse, already a budget of 100,000 is enough to get no differ-

ence between best, worst and default configuration. In contrast, with a search budget

of 1,000,000, for example for Attribute there is still a statistically strong difference.

These results confirm that a very large search budget might reduce the importance

of tuning. However, when we increase the search budget, that does not always mean

that tuning becomes less important. Consider the case of CommandLine: At budget

10,000, the ÂDW is not statistically significant (i.e., the effect size is 0.59 and Mann-

Whitney U-test has p-value greater than 0.05), whereas it gets higher (i.e., 1) for

100,000 and for 1,000,000. For ÂDB , it is statistically significant when budget is

10,000, but not when we increase the budget. For example, for budget 1,000,000 there

is no difference, i.e., ÂDB = 0.5. How come? The reason is that the testing targets

have different difficulty to be covered. Even with appropriate tuning, for some targets

we would still need a minimum amount of search budget. If the search budget is lower

than that threshold, then we would not cover (with high probability) those targets even

with the best tuning. Therefore, tuning might not be so important if either the search

budget is too “large”, or if it is too “small”, where “large” and “small” depend on the

case study. Unfortunately, this information is usually not known before performing

tuning.

The available search budget has strong impact on the

parameter settings that should be used.
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Table 3 For each test budget, effect sizes of default configuration compared to the worst (ÂDW ) and best

configuration (ÂDB). Statistically significant effect sizes are in bold. Some data are missing (-) due to the

testing tool running out of memory.

Class Test Budget

10,000 100,000 1,000,000

ÂDW ÂDB ÂDW ÂDB ÂDW ÂDB

Cookie 0.78 0.00 1.00 0.00 1.00 0.06

DateParse 0.63 0.50 0.50 0.50 0.50 0.50

Triangle 0.70 0.50 0.53 0.50 0.62 0.50

XMLElement 0.89 0.04 1.00 0.12 1.00 0.00

ZipOutputStream 0.81 0.43 0.77 0.50 0.72 0.50

CommandLine 0.59 0.22 1.00 0.35 1.00 0.50

Remainder 0.89 0.25 0.99 0.12 1.00 0.46

Industry1 0.92 0.00 1.00 0.00 - -

Industry2 0.92 0.00 1.00 0.01 1.00 0.42

Attribute 0.76 0.00 1.00 0.01 1.00 0.00

DoubleMetaphone 0.86 0.00 1.00 0.09 1.00 0.04

Chronology 0.67 0.00 1.00 0.04 1.00 0.33

ArrayList 0.70 0.43 0.67 0.50 1.00 0.50

DateTime 0.93 0.00 1.00 0.00 1.00 0.40

TreeMap 0.63 0.24 0.93 0.25 1.00 0.14

Bessj 0.80 0.00 1.00 0.00 1.00 0.00

BellmanFordIterator 0.57 0.43 0.60 0.30 - -

TTestImpl 0.87 0.11 0.94 0.21 0.97 0.27

LinkedListMultimap 0.70 0.00 1.00 0.03 1.00 0.50

FastFourierTransformer 0.63 0.00 1.00 0.36 - -

RQ5: How much can generalization improve with a larger number of classes used for

tuning?

In machine learning [25], the larger the training set is, the better the results will likely

be. In the context of parameter tuning for SBSE, how large should a training set be?

Having a larger case study will result in better tuning, but it would be more expensive

and time consuming to carry out the tuning process. If for example we double the size

of the case study, how much will tuning improve? To answer these research questions,

we carried out a set of simulations based on the data of the previous experiments.

Given q classes chosen at random from the 20 classes used in the case study, we

tune EVOSUITE on those q classes (i.e., we choose the configuration with highest

average coverage from the previous experiments). We then evaluate the average rela-

tive coverage zi of EVOSUITE with those parameters on 10 classes chosen at random

from the remaining 20 − q classes. Then, we repeat this process 100 times, and cal-

culate the average of the average relative coverage, i.e., zq = 1

100

∑100

i=1
zi. In this

way, zq gives us an estimation of what would be the average relative coverage if we

apply tuning on a training set of q classes. We apply this simulation for different

increasing values of q, from 2 to 10, with a search budget of 100,000 executed state-

ments. Figure 1 shows the average relative coverages zq, whereas Figure 2 shows the

average Â12 values of comparing q > 2 with q = 2. In other words, given average

performance with tuning on q = 2 classes, we calculate the average effect size of the

improvement of the settings that were tuned with a higher number q of classes.
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Fig. 1 Average relative coverage for increasing training sizes.
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Fig. 2 Average Â12 of increasing training sizes q > 2 compared to q = 2.
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The results in Figure 1 shows that there is not much difference between q = 2
and q = 10. A Kruskal-Wallis test on these data, to check if the parameter q has any

impact on performance, resulted in χ2 = 12.72 and a p-value equal to 0.12. Although

one would expect a monotonically increase of coverage zq with higher q, this does not

happen. The reason is simple, because the average zq is just an estimation based on

100 observations, and those estimations are affected by variance. The differences in

coverage values with different q are so small that such variance hides them. However,

it is important to note that, already with q = 2 we obtain an average relative coverage

of 0.81, whereas without tuning it is 0.76. Furthermore, we only consider sizes only

up to q = 10. Even if improvement is not much from q = 2 to q = 10, at this point

we cannot state what would happen for higher values such as q = 1,000.

Although increasing the sample size improves

performance, the improvement is low.

4.2 Second Case Study - Real-World Impact of Tuning

In the second case study, we focus on the real-world impact of parameter tuning.

4.2.1 Experimental Setup

We chose 10 projects at random from the SF100 corpus of classes [16], which is a

random sample of 100 Java projects taken from the SourceForge repository, consist-

ing of 8784 classes in total. The 10 randomly selected projects resulted in a total of

609 classes. Note that we used only 10 out of the 100 projects in SF100 just because

running these experiments is very time consuming, even with the help of a cluster

of computers to run the experiments. Second, instead of considering the number of

executed statements as stopping criterion, we use a two minute timeout. The rea-

son for using a timeout is to make the experiments more realistic, as practitioners in

general would choose time as stopping criterion. However, the use of time increases

the threats to both internal and external validity, as all the low level implementation

details of EVOSUITE can affect the final results.

In the previous case study, we chose a set of parameters and a set of values for

them. For example, for the crossover rate we chose values in {0 , .2 , .5 , .8 , 1}. But

what if the best value is not among the ones used for the experiments? Choosing and

evaluating all possible combinations of values for all parameters is simply not pos-

sible. There are, however, techniques that, given a set of experiments with different

parameter/value combinations, can try to estimate which is the best combination. The

commonly used technique is the so called response surface methodology [26]. In this

section, we will describe how we applied the response surface methodology to tune

the parameters of EVOSUITE. However, note that the response surface methodology

is a very complex subject. The interested reader is thus referred to the excellent book

written by Meyers et al. [26] for more detailed explanations on the different aspects

of the response surface methodology.
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4.2.2 Response Surface Methodology

At a high level, the response surface methodology can be summarized as follows:

First, given n parameters where each wi represents their value, a parameter configu-

ration would be defined by the vector W = {w1, . . . , wn}. Each parameter wi can

assume several values. We can have k experiments with different configurations Wρ.

If the parameters wi are all binary, then there would be 2n configurations, which can

be already a very high number. Therefore, in general, k represents only a small subset

of all configurations. For each configuration Wρ among the k chosen, we can calcu-

late a response r(Wρ) = y, i.e., a measure that quantifies how good the configuration

Wρ is at solving the problem at hand.

In our case, the response y is the average raw coverage obtained on all the classes

in the case study. In other words, to calculate y, we need to run EVOSUITE with con-

figuration Wρ on the entire case study (609 classes). Recall from Section 2 that the

final goal of this tuning process is not to find good parameters for the employed case

study, but for any new problem instance. From a practical standpoint, that might be

considered irrelevant as the real final goal is to find good parameters that will work

well on the instances of the practitioners when they use EVOSUITE in their daily

software engineering jobs. Using a random sample of open source programs is, at the

moment, a reasonable approach to try to obtain such general results. However, such

context is different from the normal applications of the response surface methodol-

ogy, e.g., the optimization of chemical and physical processes, where the conditions

of the “case study” are the same (or very similar) as the ones of the “practitioners”.

For example, once the right parameters for a chemical process are found, such a

chemical process can be repeated millions of times with the optimized parameters by

everyone that needs to use it. In contrast, once we have optimized EVOSUITE param-

eters on a set of classes, after we generate test cases for them, in general we do not

need to generate test cases for those classes many times again.

Once we have k configurations, and we calculate the response r(Wρ) = y for

each of them, we can build a model f to capture the relations between the parameters

wi and response y. In particular, we can consider the following two-way interaction

model:

f(Wρ) = β0 +

n∑

i=1

βiwi +

n−1∑

i=1

n∑

j=i+1

βijwiwj .

At this point, we can use a regression algorithm to find the values of the constants

in the model (i.e., β0, and all the βi and βij) such that the error on the predicted

value y if minimized. In other words, we want a model that is able to properly predict

the response y in each of the k experiments with different configurations Wρ, i.e.,

f(Wρ) = r(Wρ) = y.

Once the model f is built, we can optimize its variables (but keeping the βs as

constant) to find the combination that obtains a response y as high as possible. In other

words, we first build a model that we use to predict how well a configuration Wρ will

perform (i.e., average coverage y) without the need of running any experiment (apart

from the ones done for building the model in the first place). Then, we use the model

to find the configuration that gives highest response y (again, without the need to run
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any further experiment on the case study). Obviously, the model f can only predict

what the performance would be. As any prediction, it can be more or less wrong. Once

we obtain a configuration that optimizes f , we still need to run it on the case study

to actually verify how good it is. How well this configuration will actually perform

will depend not only on the number k of data points Wρ used to build the model, but

also on how well a two-way interaction model is at capturing the dynamics/relations

among the tuned parameters (i.e., whether higher level interactions can have strong

influence on the response y). From a practical point of view it does not really matter

whether the model is really correct or not. The only thing that really matters in the end

is whether this methodology can yield a significantly better set of tuned parameters.

4.2.3 Parameters

There are several ways to choose a fractional factorial design, i.e., the choice of the k
configurations. A proper choice depends on the number of variables n and on which

kind of model (e.g., linear or two-way interactions) we want to build. For the analy-

ses in this paper, we used the freely available statistical tool R [28] and its package

rsm [23]. In particular, we used a central composite design given by the ccd function,

where the model was built with the function rsm. (Note: rsm stands for “response

surface methodology”). The response of the model is then optimized with the func-

tion steepest. Notice that, with a central composite design, we have five levels for

each parameter wi. In other words, in the k generated configurations, each of the wi

parameters is experimented with five different values.

An advanced tool like EVOSUITE has many parameters that can be tuned. One

approach to cope with this problem could be to divide the tuning in two phases: a first

lighter “screening” phase (with a small factorial design) in which we can rule out all

the parameters that do not seem to effect much performance; then, we can concen-

trate and further experiment and tune the most important parameters from the first

screening phase. This is for example what has been done by Feldt and Nordin [12]

for Genetic Programming. In this paper, to simplify the analyses, we chose a single

phase with eight parameters. We choose parameters that are general for SBSE (e.g.,

population size), mutually independent (e.g., if we consider rank selection, then we

ignore the tournament size parameter) and we only consider parameters that have

a numerical range of values (i.e., not binary, no enumerations). On one hand, this

means we just needed to build a single model for the response surface methodology.

On the other hand, we could not consider all the parameters used in the first case

study. In addition to the parameters used in the first case study, here we also consider

the probability Ps of using the pool of constants, the probability σ of inserting new

test cases, and number m of mutations (see Section 3 for more details).

The eight employed parameters and their chosen ranges are:

– Population Size: [5, 99]
– Chromosome Length: [5, 99]
– Rank Bias: [1.01, 1.99]
– Number of Mutations: [1, 10]
– Max Initial Number of Tests: [1, 10]
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Table 4 Actual values used for the parameter mapping, where α = 3.13.

Parameter −α -1 0 +1 +α

Population Size 5 37 52 67 99

Chromosome Length 5 37 52 67 99

Rank Bias 1.01 1.34 1.5 1.65 1.99

Number of Mutations 1 4 5 7 10

Max Initial Number of Tests 1 4 5 7 10

Crossover Rate 0.01 0.34 0.5 0.65 0.99

Probability of Using the Pool of Constants 0.01 0.34 0.5 0.65 0.99

Probability of Inserting New Test Case 0.01 0.34 0.5 0.65 0.99

– Crossover Rate: [0.01, 0.99]
– Probability of Using the Pool of Constants: [0.01, 0.99]
– Probability of Inserting New Test Case: [0.01, 0.99]

When we create a central composite design with the function ccd, for each param-

eter we obtain five levels, i.e., five different values. In particular, we obtain {0, 1, −
1, α, − α}, where α depends on several factors [26]. We obtain k configurations

divided in two distinct blocks. On one hand, in the “cube” block we have several

combinations of ±1 centered at the origin (0, 0, . . . ,0). On the other hand, the

“star” block is composed of 2n configurations centered in the origin in which each

variable is considered with ±α only once (while the other n− 1 variables are kept to

0).

However, these five values need to be “mapped” to the actual ranges of the pa-

rameters. For some parameters there are known bounds (e.g., [0,1] for probability

values), whereas for others (e.g., population size) in theory there might be no (up-

per) bound (e.g., very large population sizes). It is responsibility of the researcher to

define which is the region of interest [26] for the experiments. On one hand, a too

small region might not present much of the difference among the response values of

its design points. On the other hand, choosing a too large region could reduce the

precision of the built models if the response surface has complex shapes. The chosen

regions for the different analyzed parameters where arbitrarily set to “reasonable”

values before running any of the experiments.

The values are mapped such that −α represents the lowest value of the region

of interest, α the highest value, and the center 0 being the middle of the range. The

mapping of ±1 depends on the actual value of α. For example, if α = 2, then the

coordinate −1 will be mapped to 25% of the range, whereas the coordinate +1 will

represent the 75% of the range. To be more precise, given the range [min,max],
then a coordinate w (e.g., w = ±1) would be mapped into to the value v(w) =
min+ w+α

2α
(max−min). For example, the center 0 will have value v(0) = min+

1

2
(max−min) = min+max

2
independently of α. Table 4 shows the mapping used in

this case study.



Parameter Tuning or Default Values? 21

4.2.4 Experimental Procedure

Given the eight parameters under study, a central composite design resulted in 280

configurations (using ccd(8)). For every configuration, we ran EVOSUITE on each

of the 609 classes in the case study for two minutes each. The choice of using a

two minute timeout is based on possible realistic usages of EVOSUITE (recall Sec-

tion 4.1) while, at the same time, making it possible to complete the experiments in a

reasonable amount of time.

In total, these experiments took 280×609×2 = 341,040 minutes, i.e., more than

236 days (so we needed to use a cluster of computers). After collecting data for the

280 configurations, we built and optimized a two-way interaction model. Among the

different configurations given as output by the steepest function, we chose the one

with 3.5 distance, as it had highest response, and with the parameters still inside the

original ranges.

We then ran the optimized configuration 100 times with different seeds on each

class in the case study. In a similar way, we ran EVOSUITE with no tuning (i.e., we

kept the default values for those eight parameters) 100 times on each class. In total,

these experiments added another 169 days of computational time. Note that, for this

second case study, we had a total of (280 + 100 + 100) × 609 = 292,320 runs of

EVOSUITE.

4.2.5 Results

RQ6: What is the impact of parameter tuning in a real-world context?

Results of these experiments were unexpected, considering the many successful real-

world results on the application of the response surface methodology [26]. On aver-

age, the tuned configuration obtained a raw coverage of 43.55%, whereas the default

configuration obtained 44.19%. The effect size of tuned compared to default is 0.497,

i.e., the difference between the two configurations is minimal and likely of little prac-

tical value. In other words, tuning did not improve the performance in this case. When

we look at the statistical difference, even considering the high number of data points

(i.e., 2×100×609 = 121,800), a Mann-Whitney U-test resulted in a 0.09 p-value. In

other words, the difference is so small that, even with a large sample, it is not possible

to reject the null hypothesis with high statistical confidence.

In order to determine the reasons for this finding, we applied a so called lack of fit

test on the model in order to evaluate its quality. The rsm function returns a p-value

of a lack of fit test, where the null hypothesis is that there is no lack of fit. The built

model had a 0.02 p-value, which suggests that model is not particularly fit, and so the

results provided by the steepest function are not reliable. Following the suggestions in

the literature, we tried to fit a higher order model, in particular a second order model

(the highest provided in the rsm function). Still, we obtained a non-particularly fit

model (i.e., p-value equal to 0.03).

In these cases, the literature of the response surface methodology suggests to run

further experiments, but with a smaller “region of interest” [26]. For example, instead

of considering probability values (e.g., crossover rate) from 0.01 to 0.99 (i.e., ±0.49
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on the center 0.5), we could choose a smaller delta, e.g., ±0.2 (and so range 0.3 to

0.7), or even smaller if the new built models are still not fit. But, depending on the

problem, a too small region could have the difference between response values small

enough to be masked by their variance (e.g., due to the randomized nature of the used

algorithms). Once a fit model is built, and the optimized parameters (i.e., highest re-

sponse) in that region of interest are found, then a new series of experiments can be

run centered in that optimum (for more details, please refer to [26]). As such exper-

iments are very time consuming, and because the current data are already sufficient

to (at least partially) answer our research question, we did not carry out those further

experiments.

To improve the fit of the model without running new experiments, we also tried

the following approach: Because parameters with little impact on the response might

reduce the fit of the model, we removed them from the model, and built a new one

without them. In particular, regression functions such as lm in [28] (and rsm as

well) also carry out statistical tests on each parameter β of the model to see if it is

statistically different from 0. Considering a 0.05 significant level, in our case, for

the crossover rate and the probability Ps of choosing from the pool of constants, it

was not possible to reject the hypothesis that they have zero coefficient (and so no

impact) on the response of the model. We removed those two parameters, and built a

new second-order model with the remaining six parameters. Unfortunately, the new

model still presented a lack of fit.

For building the response model, by using a central composite design, we carried

out experiments at 280 different configurations. Although the derived model is not

fit, we still have those 280 observations. We hence chose the one among them with

highest response (i.e., average raw coverage), which was 44.28%. This is higher than

what we obtained with default values (i.e., 44.19%), but with very low effect size

(i.e., 0.501), where a Mann-Whitney U-test resulted in a very high 0.89 p-value. So,

there is no statistical evidence to claim that this tuned configuration is better than

default values.

In our experiments, the response surface methodology

did not lead to tuned values that improved over the

default parameter setting.

To further understand why the response surface methodology did not provide

good results, we also investigated the quality of the used data. In the experiments,

we had 280 configurations, whose responses were derived by calculating the mean

value from one run of EVOSUITE on the 609 classes. This is an expensive process,

as it takes 609 × 2/60 = 20.3 hours per configuration. Among the configurations,

the worse had average 41.7% coverage and, as already discussed above, the best had

average 44.28% coverage. But those average coverage values are just estimates calcu-

lated on 609 data points. Are those estimates accurate? To check this potential threat

to validity, for each average value, we used the bootstrapping technique to calculate

95% confidence intervals [7]. We used the R package boot, and each bootstrapping

calculation was based on 10,000 runs. Given an average value m, a 95% confidence

interval [a,b] means that the real average value has a 95% probability of being be-

tween a and b, where m is the most likely estimate. Above the 280 configurations,
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the highest value for a was 41.0, whereas the lowest value for b was 44.9. In other

words, each of the 280 average coverage values lies inside the 95% confidence inter-

vals of all the others.

The bootstrapping analysis shows that the obtained coverage value estimates are

not tight enough. Increasing the sample size would help, but is unfeasible in our

experimental setting because of the resulting computational cost. Such variance in the

data can be explained by the fact that many classes are either trivial (e.g., classes with

only set/get methods) or very difficult (e.g., they require the creation/manipulation of

files). Consequently, in the SF100 corpus there is such a large variance among the

achievable coverage values among different classes [16], that one single run on 609

classes is not enough to obtain precise estimates.

In summary, unless we carry out further experiments that demonstrate otherwise,

the response surface methodology cannot be considered to provide any improvement

to the tuning of EVOSUITE compared to default parameter values.

When addressing real-world SBSE problems, parameter

tuning becomes computational expensive and it does not

necessarily bring significant improvements.

4.3 Third Case Study – Variability in SBSE Problems

In the previous section, the application of the response surface methodology to the

problem of tuning EVOSUITE on the SF100 corpus of classes was not successful.

We did not manage to build a fit model that could be used to find better tuned con-

figurations. Without formal mathematical proofs, it is not possible to state why the

response surface methodology did not work. We can only provide plausible expla-

nations, backed up by further empirical data (e.g., the application of bootstrapping

confidence intervals [7]). As discussed in the previous section, one possible culprit

for the bad performance of the response surface methodology could be the “variabil-

ity” of the responses on the design points (e.g., we used 609 different classes, and

EVOSUITE is also affected by randomness). Indeed, variability is a major issue in the

response surface methodology. For example, in their book [26], Myers et al. at page

114 wrote:

“If the magnitude of the variability seems reasonable, continue; on the other hand,

if larger than anticipated (or reasonable!) variability is observed, stop. Often it

will be very profitable to study why the variability is so large before proceeding

with the rest of the experiment.”

Unfortunately, Myers et al. did not formally quantify what “reasonable” and

“large” mean (in numbers). On one hand, it could be that the variability in the previ-

ous experiments was large enough to preclude a successful use of the response surface

methodology. On the other hand, maybe the variability was not really so large, and

other factors played a role in the achieved negative results. To shed light on this issue,

we carried out further experiments to answer the following research question:



24 Andrea Arcuri and Gordon Fraser

RQ7: Is the variance in the SF100 corpus the main obstacle for a successful use of

the response surface methodology?

To answer this research question, we applied the same central composite design we

used in the experiments in the previous section, with the same eight parameters to

tune, and the same ranges. This time, however, instead of using a single run of EVO-

SUITE on 609 classes from the SF100 corpus, we used one single class, TreeMap, and

100 runs per design point. The reason of using a single class is to avoid high variance

in the responses due to putting together different classes with different difficulty, as

in the SF100 corpus. We chose to use only TreeMap as it is one the most commonly

used artifacts in the literature of testing object-oriented software [32]. Each run lasted

two minutes, as in previous experiments. In total, we had 280 × 100 × 2 = 56,000
minutes, i.e., 38 days of computational effort.

As in the previous experiments, the inferred second order model exhibited a lack

of fit (p-value was equal to 0.0039). Using only one class does not completely remove

the variability in the responses, as EVOSUITE is based on a randomized algorithm.

Maybe 100 runs are not enough. But having 1,000 runs per design point, for example,

would have required another 342 days of computational effort.

Besides the problem of variability, another possible cause for the lack of fit can

be the complexity of the response surface. To shed light on this possibility, we ran

another set of experiments. We still used TreeMap with a two minute timeout, but this

time we only considered two parameters to tune (i.e., population size and crossover

rate). A central composite design resulted in 16 configuration points. This time, how-

ever, to try to reduce to minimum the effects of variability, we used 1,000 runs. In

total, we had 16 × 1,000 × 2 = 32,000 minutes, i.e., 22 days of computational ef-

fort. To our greatest disbelief, a second order model again resulted in lack of fit! In

particular, we obtained a p-value equal to 1.7× 10−5.

To avoid jumping to conclusions based on a single class, we repeated the same

experiments on a different class. In particular, we used the class called “Option”

from the Apache Commons libraries. We chose this class because it is complex, and

because we have long experience in using EVOSUITE on it (e.g., during demos),

which would help manual debugging. This set of experiments added another 22 days

of computational effort. Yet again, the model was not fit, giving a 1.6×10−4 p-value.

All these negative results raise doubt on whether we applied the response surface

methodology correctly. To reduce this threat to validity, we applied the same type of

analysis on common data sets from the literature (e.g., data sets included in the R

library rsm). Those worked fine, in the sense that it was possible to infer fit models.

Unless there were implementation errors in how we collected and analyzed the

data, it does not seem that variability alone is the culprit here. If 1,000 runs per

design point on one single class and just two parameters are not enough to cope

with variability issues, then one could reasonably pose questions on the practical

usefulness of the response surface methodology. At this point we cannot explain with

high confidence why it does not work in our empirical study. This would require

further experiments and in depth analyses that would go beyond the scope of this

paper.
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Variability is a major issues for the response surface

methodology, but our empirical study shows that there

are other still unknown factors that play an even greater

role.

4.4 Consequences of the Negative Result

In our empirical analyses, the response surface methodology failed to provide models

that could be used to infer better parameter configurations. We investigated why that

was the case. In particular, we focused on the possible issue of variability in the

responses. Variability is a major problem in the response surface methodology, but

our empirical study shows with high confidence that such variability is not the main

culprit in our context. The negative results presented in this section, considering the

current status of published research in software engineering, could be considered as

“inconclusive”.

The role of negative results has been long discussed in many academic fields, and

their importance has long been advocated (e.g., [22, 31, 33]). Negative results play

their role in the advancement of scientific development, and are not necessarily less

useful and valid than positive results. In fact, positive results often simply represent

the experimenter’s bias, which has led Ioannidis to show that most published research

findings are false [21]. There are several reasons why most positive results in the

literature are likely to be false. But, for a detailed discussion on the argument, we

refer the interested reader to Ioannidis’s excellent essay [21].

A simple and effective example to understand the importance of negative results

can be found in the correspondence section of Nature by Gupta and Stopfer [18]:

“Say a study finds no statistically favourable evidence for a hypothesis at the pre-

determined significance level (P = 0.05, for example) and, like most with nega-

tive results, it is never published. If 19 other similar studies are conducted, then

20 independent attempts at the 0.05 significance level are, by definition, expected

to give at least one hit. A positive result obtained in one of the 19 studies, viewed

independently, would then be statistically valid and so support the hypothesis, and

would probably be published.”

In this paper, we analyzed an important problem in software engineering, i.e.,

parameter tuning. Many software engineering tasks can be addressed with search al-

gorithms [19], and most work in SBSE can be affected by tuning. We chose test data

generation using EVOSUITE as working example, and our results can generalize out-

side our case study, as we address a statistically valid sample of open source projects

(by using the SF100 corpus [16]). We applied the world’s most used technique for

optimizing parameters, i.e., the response surface methodology [26], and not a new

previously unknown technique that we invented and turned out to be not working.

Therefore, we believe the negative results presented in this paper can be useful to

direct future research.

Future work will be needed to fully understand why the response surface method-

ology failed, e.g., by studying different sizes for the regions of interest and trying
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different factorial designs rather than the central composite one. Such work would

be important to design other tuning techniques (or variants of the response surface

methodology) that are effective for test data generation.

It will also be important to verify whether other SBSE applications (e.g., regres-

sion testing) present similar tuning challenges, or if test data generation at unit level

for object-oriented software is just an exceptional case. For other problems in SBSE,

it might be that the response surface methodology is effective, but this cannot be

stated before investigating such matter empirically. A practitioner or researcher who

has the resources for a tuning phase should still use such methodology, even if later

it turns out that the models are not fit. The reason is that she/he would still get the

responses of the investigated design points, and those might result in better perfor-

mance compared to the default parameter settings (although this was not the case in

our empirical study).

5 Discussion and Guidelines

The empirical analysis carried out in this paper clearly shows that tuning can have a

strong impact on search algorithm performance and, if it is not done properly, there

are dire risks of ending up with tuned configurations that are worse than suggested

values in the literature.

The main conclusion of our analysis is that using default values coming from the

literature is a viable option. Applying parameter tuning is a time consuming activity,

which is not always going to bring significant improvements. On one hand, even

if the improvements are not large, it makes sense to apply parameter tuning before

releasing an SBSE tool prototype to practitioners. On the other hand, if parameter

tuning is indeed expensive, and a researcher is investigating new techniques, it could

make sense to rather use the available time for larger case studies and more technique

comparisons instead of parameter tuning.

Although there are “default” values in the literature for many common parame-

ters, and even though there has been work on studying their effects, addressing real-

world SBSE problems would likely bring to new parameters that are specific for the

addressed problem. For example, the probability Ps of using a pool of constants de-

rived from the source/byte-code of the SUT is something very specific to test data

generation. For these types of parameters, there are no “default” and widely stud-

ied/evaluated values in the literature. In such cases, parameter tuning can become

necessary. So, when new techniques are proposed that require new parameters to be

set, it is advisable to study different values for them.

When we tune an algorithm on some problem instances, it might end up that

the found parameters are too specific for the chosen case study. This could lead to

problems of overfitting. It would hence be important to use machine learning tech-

niques [25] when tuning parameters. Which ones to use is context dependent, and a

detailed discussion is beyond the scope of this paper. Instead, we discuss some basic

scenarios here, aiming at developers who want to tune parameters before releasing

SBSE tool prototypes, or researchers who want to tune tools for scientific experi-

ments. Further details can be found for example in [25].
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Given a case study composed of a number of problem instances, randomly parti-

tion it in two non-overlapping subsets: the training and the test set. A common rule

of thumb is to use 90% of instances for the training set, and the remaining 10% for

the test set. Do the tuning using only the problem instances in the training set. In-

stead of considering all possible parameter combinations (which is not feasible), use

techniques such as the response surface methodology (e.g., used in [27]). Given a pa-

rameter setting that performs best on this training set, then evaluate its performance

on the test set. Draw conclusions on the algorithm performance only based on the

results on this test set.

If the case study is “small” (e.g., because composed of industrial systems and not

open-source software that can be downloaded in large quantities), and/or if the cost

of running the experiment is relatively low, use k-fold cross validation [25]. In other

words, randomly partition the case study in k non-overlapping subsets (a common

value is k = 10). Use one of these as test set, and merge the other k−1 subsets to use

them as training set. Do the tuning on the training set, and evaluate the performance

on the test set. Repeat this process k times, every time with a different subset for

the test set, and remaining k − 1 for the training set. Average the performance on all

the results obtained from all the k test sets, which will give some value v describing

the performance of the algorithm. Finally, apply tuning on all the case study (do not

use any test set), and keep the resulting parameter setting as the final one to use. The

validity of this parameter setting would be estimated by the value v calculated during

the cross validation.

Comparisons among algorithms should never be done on their performance on

the training set — only use the results on validation sets. As a rule of thumb, if one

compares different “tools” (e.g., prototypes released in the public domain), then no

tuning should be done on released tools, because parameter settings are an essential

component that define a tool. However, if the focus is on evaluating algorithms at a

high level (e.g., on a specific class of problems, is it better to use population based

search algorithms such as genetic algorithms or single individual algorithms such

as simulated annealing?), then each compared algorithm should receive the same

amount of tuning.

6 Threats to Validity

Threats to internal validity might come from how the empirical study was carried

out. To reduce the probability of having faults in our experiment framework, it has

been carefully tested. But it is well known that testing alone cannot prove the absence

of defects. Furthermore, randomized algorithms are affected by chance. To cope with

this problem, we repeated each experiment several times with different random seeds,

and we followed rigorous statistical procedures to evaluate their results.

There is an overwhelming amount of successful applications of the response sur-

face methodology in many engineering disciplines. However, in our empirical study,

it was not successful. This poses a reasonable doubt on whether we applied the re-

sponse surface methodology correctly. Further analyses (e.g., with smaller regions

for the parameter values) could shed light on this issue, but they are very time con-
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suming. In any case, our study shows that proper parameter tuning is not a trivial

task.

Threats to construct validity come from the fact that we evaluated parameter set-

tings only based on structural coverage of the resulting test suites generated by EVO-

SUITE. Other factors that are important for practitioners and that should be consid-

ered as well are the size of the test suites and their readability (e.g., important in

case of no formal specifications when assert statements need to be manually added).

Whether these factors are negatively correlated with structural coverage is a matter

of further investigation.

Threats to external validity come from the fact that, due to the very large number

of experiments, we only used 20 classes in the first case study, which still took weeks

even when using a computer cluster. Furthermore, we manually selected those 20
classes, in which we tried to have a balance of different kinds of software. A different

selection for the case study might result in different conclusions. To cope with this

problem, in the second case study we used the SF100 corpus [16], which is composed

of projects randomly selected from the open source repository SourceForge. In total,

609 classes were used (10 projects selected randomly from the 100 available).

Note that there are two reasons for which SF100 was not used for the first case

study as well. First, at the time the empirical analysis on the first case study was

carried out [4], not only the SF100 corpus [16] was not available yet, but also EVO-

SUITE still missed several important features to be able to handle programs randomly

selected from internet (e.g., sandbox execution to avoid corruption of the host envi-

ronment, as for example deletion of files). Second, there is very large variation (with

high kurtosis) in the SF100 corpus, and so a small sample of only 20 classes could be

too skewed.

The results presented in this paper might not be valid on all software engineering

problems that are commonly addressed in the literature of SBSE. Based on the fact

that parameter tuning might have large impact on search algorithm performances, we

hence strongly encourage the repetition of such empirical analysis on other SBSE

problems.

7 Conclusion

In this paper, we have reported the results of the largest empirical study in parameter

tuning in search-based software engineering to date. In particular, we focused on test

data generation for object-oriented software using the EVOSUITE tool [13].

It is well known that parameter tuning has effects on the performance of search

algorithms. However, this paper is the first that quantifies these effects for a search-

based software engineering problem. The results of this empirical analysis clearly

show that tuning can improve performance, but default values coming from the liter-

ature can be already sufficient. Researchers need to take this into account when the

cost of a tuning phase becomes so high to come into the way of larger case studies or

more technique comparisons.

To entail technology transfer to industrial practice, parameter tuning is a task of

responsibility of who develops and releases search-based tools. A practitioner, that
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wants to use such tools, should not be required to run large tuning phases before

being able to apply those tools on his problems at hand. Before releasing a tool to

the public, a tuning phase, even if costly, would be beneficial, but only as long as

it is carried out properly. It is hence important to have appropriate tuning phases on

which several problem instances are employed before releasing a search-based tool,

and such instances should represent a statistically valid sample.

An issue that is often neglected is the relation between tuning and search budget.

The final user (e.g., software engineers) in some cases would run the search for some

seconds/minutes, in other cases they could afford to run it for hours/days (e.g., week-

ends and night hours). In these cases, to improve search performance, the parameter

settings should be different. For example, the population size in a genetic algorithm

could be set based on a linear function of the search budget. However, that is a little

investigated topic, and further research is needed.

Among the several research questions addressed in this paper, we also studied

the application of the response surface methodology, which is perhaps the most used

technique to tune parameters. However, that study led to negative results, as such

methodology did not work in our context. Negative results are rarely reported in soft-

ware engineering, although other more mature research fields such as biology do have

entire journals dedicated to them. We addressed the question of why the response sur-

face methodology did not work, and such endeavor resulted in an empirical analysis

totaling 465 days of computational effort (which required the use of a cluster of com-

puters).

For future work, we think it will be important to repeat the same type of exper-

iments on other search-based software engineering problems. The goal would be to

study if those problems present the same type of challenges from the point of view

of parameter tuning, or if there are large differences among the different problems.

Furthermore, it will also be important to carry out further studies to fully understand

why the response surface methodology did not work in our context. This would help

in designing new variants (or completely different tuning techniques) that lead to

find better parameter settings in the context of test data generation for unit testing.

For example, techniques like the one described in [6] would be a first candidate to

investigate.

For more information about EVOSUITE, please visit our website at:

http://www.evosuite.org/
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