
An Empirical Evaluation of Evolutionary
Algorithms for Test Suite Generation

José Campos1, Yan Ge1, Gordon Fraser1, Marcelo Eler2, and Andrea Arcuri3

1 Department of Computer Science, The University of Sheffield, UK
2 University of São Paulo, Brazil

3 Westerdals Oslo ACT, Norway and University of Luxembourg, Luxembourg

Abstract. Evolutionary algorithms have been shown to be effective at
generating unit test suites optimised for code coverage. While many as-
pects of these algorithms have been evaluated in detail (e.g., test length
and different kinds of techniques aimed at improving performance, like
seeding), the influence of the specific algorithms has to date seen less
attention in the literature. As it is theoretically impossible to design an
algorithm that is best on all possible problems, a common approach in
software engineering problems is to first try a Genetic Algorithm, and
only afterwards try to refine it or compare it with other algorithms to
see if any of them is more suited for the addressed problem. This is par-
ticularly important in test generation, since recent work suggests that
random search may in practice be equally effective, whereas the refor-
mulation as a many-objective problem seems to be more effective. To
shed light on the influence of the search algorithms, we empirically eval-
uate six different algorithms on a selection of non-trivial open source
classes. Our study shows that the use of a test archive makes evolution-
ary algorithms clearly better than random testing, and it confirms that
the many-objective search is the most effective.

1 Introduction

Search-based testing has been successfully applied to generating unit test suites
optimised for code coverage on object-oriented classes. A popular approach is to
use evolutionary algorithms where the individuals of the search population are
whole test suites, and the optimisation goal is to find a test suite that achieves
maximum code coverage [8]. Tools like EvoSuite [6] have been shown to be
effective in achieving code coverage on different types of software [9].

Since the original introduction of whole test suite generation, many different
techniques have been introduced to improve performance even further and to get
a better understanding of the current limitations. For example, the insufficient
guidance provided by basic coverage-based fitness functions has been shown to
cause random search to often be equally effective as evolutionary algorithms [24].
Optimisation now no longer focuses on individual coverage criteria, but combi-
nations of criteria [10,21]. To cope with the resulting larger number of coverage
goals, evolutionary search can be supported with archives [22] that keep track
of useful solutions encountered throughout the search. To improve effectiveness,

whole test suite optimisation has been re-formulated as a many-objective opti-
misation problem [19]. In the context of these developments, one aspect of whole
test suite generation remains largely unexplored: What is the influence of the
specific flavour of evolutionary algorithms applied to evolve test suites?

In this paper, we aim to shed light on the influence of the different evolu-
tionary algorithms in whole test suite generation, to find out whether the choice
of algorithm is important, and which one should be used. By using a large set
of complex Java classes as case study, and the EvoSuite [6] search-based test
generation tool, we specifically investigate:

RQ1: Which evolutionary algorithm works best when using a test archive for
partial solutions?

RQ2: How does evolutionary search compare to random search and random
testing?

RQ3: How does evolution of whole test suites compare to many-objective opti-
misation of test cases?

We investigate each of these questions in the light of individual and multiple
coverage criteria as optimisation objectives, and we study the influence of the
search budget. Our results show that in most cases a simple µ+λ Evolutionary
Algorithm (EA) is better than other, more complex algorithms. In most cases,
the variants of EAs and GAs are also clearly better than random search and
random testing, when a test archive is used. Finally, we confirm that many-
objective search achieves higher branch coverage, even in the case of optimisation
for multiple criteria.

2 Evolutionary Algorithms for Test Suite Generation

Evolutionary Algorithms (EAs) are inspired by natural evolution, and have been
successfully used to address many kinds of optimisation problems. In the context
of EAs, a solution is encoded “genetically” as an individual (“chromosome”), and
a set of individuals is called a population. The population is gradually optimised
using genetic-inspired operations such as crossover, which merges genetic mate-
rial from at least two individuals to yield new offspring, and mutation, which in-
dependently changes the elements of an individual with a low probability. While
it is impossible to comprehensively cover all existing algorithms, in the following
we discuss common variants of EAs for test suite optimisation. Expansion of the
evaluation to less common algorithms will be future work.

2.1 Representation

For test suite generation, the individuals of a population are sets of test cases
(test suites); each test case is a sequence of calls. Crossover on test suites is
based on exchanging test cases [8]; mutation adds/modifies tests to suites, and
adds/removes/changes statements within tests. While standard selection tech-
niques are largely used, the variable size representation (number of statements
in a test and number of test cases in a suite can vary) requires modification to
avoid bloat [7]; this is typically achieved by ranking individuals with identical
fitness based on their length, and then using rank selection.

2.2 Optimisation Goals and Archives

The selection of individuals is guided by fitness functions, such that individuals
with good fitness values are more likely to survive and be involved in reproduc-
tion. In the context of test suite generation, the fitness functions are based on
code coverage criteria such as statement or branch coverage. More recently, there
is a trend to optimise for multiple coverage criteria at the same time. Since cov-
erage criteria usually do not represent conflicting goals, it is possible to combine
fitness functions with a weighted linear combination [21]. However, the increased
number of coverage goals may affect the performance of the EA. To counter these
effects, it is possible to store tests for covered goals in an archive [22], and then
to dynamically adapt the fitness function to optimise only for the remaining
uncovered goals. This, however, may again have effects on the underlying EA.
Furthermore, search operators can be adapted to make use of the test archive;
for example, new tests may be created by mutating tests in the archive rather
than randomly generating completely new tests.

2.3 Random Search

Random search is a baseline search strategy which does not use crossover, muta-
tion, or selection, but a simple replacement strategy [14]. Random search consists
of repeatedly sampling candidates from the search space; the previous candidate
is replaced if the fitness of the new sampled individual is better. Random search
can make use of a test archive by changing the sampling procedure as indicated
above. Random testing is a variant of random search in test generation which
builds test suites incrementally. Test cases (rather than test suites) are sampled
individually, and if a test improves coverage, it is retained in the test suite, oth-
erwise it is discarded. It has been shown that in unit test generation, due to the
flat fitness landscapes and often simple search problems, random search is often
as effective as EAs, and sometimes even better [24].

2.4 Genetic Algorithms

The Genetic Algorithm (GA) is one of the most widely-used EAs in many do-
mains because it can be easily implemented and obtains good results on average.
Algorithm 1 illustrates a Standard GA. It starts by creating an initial random
population of size pn (Line 1). Then, a pair of individuals is selected from the
population using a strategy sf , such as rank-based, elitism or tournament se-
lection (Line 6). Next, both selected individuals are recombined using crossover
cf (e.g., single point, multiple-point) with a probability of cp to produce two
new offspring o1, o2 (Line 7). Afterwards, mutation is applied on both offspring
(Lines 8–9), independently changing the genes with a probability of mp, which
usually is equal to 1

n , where n is the number of genes in a chromosome. The two
mutated offspring are then included in the next population (Line 10). At the
end of each iteration the fitness value of all individuals is computed (Line 13).

Many variants of the Standard GA have been proposed to improve effective-
ness. Specifically, we consider a monotonic version of the Standard GA which,
after mutating and evaluating each offspring, only includes either the best off-
spring or the best parent in the next population (whereas the Standard GA

Algorithm 1 Standard Genetic Algorithm

Input: Stopping condition C, Fitness function δ, Population size ps, Selection
function sf , Crossover function cf , Crossover probability cp, Mutation func-
tion mf , Mutation probability mp

Output: Population of optimised individuals P
1: P ← GenerateRandomPopulation(ps)
2: PerformFitnessEvaluation(δ, P)
3: while ¬C do
4: NP ← {}
5: while |NP | < ps do
6: p1, p2 ← Selection(sf , P)
7: o1, o2 ← Crossover(cf , cp, p1, p2)
8: Mutation(mf ,mp, o1)
9: Mutation(mf ,mp, o2)

10: NP ← NP ∪ {o1, o2}
11: end while
12: P ← NP

13: PerformFitnessEvaluation(δ, P)
14: end while
15: return P

includes both offspring in the next population regardless of their fitness value).
Another variation of the Standard GA is a Steady State GA, which uses the same
replacement strategy as the Monotonic GA, but instead of creating a new popu-
lation of offspring, the offspring replace the parents from the current population
immediately after the mutation phase.

The 1 + (λ, λ) GA, introduced by Doerr et al. [5], starts by generating a
random population of size 1. Then, mutation is used to create λ different mutated
versions of the current individual. Mutation is applied with a high mutation
probability, defined as mp = k

n , where k is typically greater than one, which
allows, on average, more than one gene to be mutated per chromosome. Then,
uniform crossover is applied to the parent and best generated mutant to create
λ offspring. While a high mutation probability is intended to support faster
exploration of the search space, a uniform crossover between the best individual
among the λ mutants and the parent was suggested to repair the defects caused
by the aggressive mutation. Then all offspring are evaluated and the best one is
selected. If the best offspring is better than the parent, the population of size one
is replaced by the best offspring. 1 + (λ, λ) GA could be very expensive for large
values of λ, as fitness has to be evaluated after mutation and after crossover.

2.5 µ + λ Evolutionary Algorithm

The µ+ λ Evolutionary Algorithm (EA) is a mutation-based algorithm [25]. As
its name suggests, the number of parents and offspring are restricted to µ and
λ, respectively. Each gene is mutated independently with probability 1

n . After

mutation, the generated offspring are compared with each parent, aiming to
preserve so-far best individual including parents; that is, parents are replaced
once a better offspring is found. Among the different (µ+λ) EA versions, two
common settings are (1+λ) EA and (1+1) EA, where the population size is 1,
and the number of offspring is also limited to 1 for the (1+1) EA.

2.6 Many-Objective Sorting Algorithm

Unlike the single-objective optimisation on the test suite level described above,
the Many-Objective Sorting Algorithm (MOSA) [19] regards each coverage goal
as an independent optimisation objective. MOSA is a variant of NSGA-II [4],
and uses a preference sorting criterion to reward the best tests for each non-
covered target, regardless of their dominance relation with other tests in the
population. MOSA also uses an archive to store the tests that cover new targets,
which aiming to keep record on current best cases after each iteration.

Algorithm 2 illustrates how MOSA works. It starts with a random population
of test cases. Then, and similar to typical EAs, the offspring are created by ap-
plying crossover and mutation (Line 6). Selection is based on the combined set of
parents and offspring. This set is sorted (Line 9) based on a non-dominance rela-
tion and preference criterion. MOSA selects non-dominated individuals based on
the resulting rank, starting from the lowest rank (F0), until the population size is
reached (Lines 11-14). In fewer than ps individuals are selected, the individuals
of the current rank (Fr) are sorted by crowding distance (Line 16-17), and the
individuals with the largest distance are added. Finally, the archive that stores
previously uncovered branches is updated in order to yield the final test suite
(Line 18). In order to cope with the large numbers of goals resulting from the
combination of multiple coverage criteria, the DynaMOSA [18] extension dynam-
ically selects targets based on the dependencies between the uncovered targets
and the newly covered targets. Both, MOSA and DynaMOSA, have been shown
to result in higher coverage of some selected criteria than traditional GAs for
whole test suite optimisation.

3 Empirical Study

In order to evaluate the influence of the evolutionary algorithm on test suite
generation, we conducted an empirical study. In this section, we describe the
experimental setup as well as results.

3.1 Experimental Setup

Selection of Classes Under Test: A key factor of studying evolutionary
algorithms on automatic test generation is the selection of classes under test.
As many open source classes, for example contained in the SF110 [9] corpus,
are trivially simple [24] and would not reveal differences between algorithms, we
used the selection of non-trivial classes from the DynaMOSA study [17]. This
is a corpus of 117 open-source Java projects and 346 classes, selected from four
different benchmarks. The complexity of classes ranges from 14 statements and
2 branches to 16,624 statements and 7,938 branches. The average number of
statements is 1,109, and the average number of branches is 259.

Algorithm 2 Many-Objective Sorting Algorithm (MOSA)

Input: Stopping condition C, Fitness function δ, Population size ps, Crossover
function cf , Crossover probability cp, Mutation probability mp

Output: Archive of optimised individuals A
1: p← 0
2: Np ← GenerateRandomPopulation(ps)
3: PerformFitnessEvaluation(δ,Np)
4: A← {}
5: while ¬C do
6: No ← GenerateOffspring(cf , cp,mp, Np)
7: Rt ← P ∪No

8: r ← 0
9: Fr ← PreferenceSorting(Rt)

10: Np+1 ← {}
11: while |Np+1|+ |Fr| ≤ ps do
12: CalculateCrowdingDistance(Fr)
13: Np+1 ← Np+1 ∪ Fr

14: r ← r + 1
15: end while
16: DistanceCrowdingSort(Fr)
17: Np+1 ← Np+1 ∪ Fr with size ps − |Np+1|
18: UpdateArchive(A,Np+1)
19: p← p+ 1
20: end while
21: return A

Unit Test Generation Tool: We used EvoSuite [6], which provides search
algorithms to evolve coverage-optimised test suites. By default, EvoSuite uses
a Monotonic GA described in Section 2.4. It also provides a Standard and Steady
State GA, Random search, Random testing and, more recently, MOSA and Dy-
naMOSA. For this study, we added the 1+(λ, λ) GA and the µ + λ EA. All
evolutionary algorithms use a test archive.

Experiment Procedure: We performed two experiments to assess the per-
formance of six evolutionary algorithms (described in Section 2). First, we con-
ducted a tuning study to select the best population size (µ) of four algorithms,
number of mutations (λ) of 1 + (λ, λ) GA, and population size (µ) and number
of mutations (λ) of µ + λ EA, since the performance of each EA can be influ-
enced by the parameters used [1]. Random-based approaches do not require any
tuning. Then, we conducted a larger study to perform the comparison.

For both experiments we have four configurations: two search budgets, Evo-
Suite’s default search budget (i.e., a small search budget) of 1 minute, and a
larger search budget of 10 minutes to study the effect of the search budget on the
coverage of resulting test suites; single-criterion optimisation (branch coverage)

and multiple-criteria optimisation4 (i.e., line, branch, exception, weak-mutation,
output, method, method-no-exception, and cbranch) [21]. Due to the randomness
of EAs, we repeated the one minute experiments 30 times, and the 10 minutes
experiments 10 times.

For the tuning study, we randomly selected 10% (i.e., 34) of DynaMOSA’s
study classes [17]5 (with 15 to 1,707 branches, 227 on average) from 30 Java
projects. This resulted in a total of 79,200 (59, 400 one minute configurations, and
19, 800 ten minutes configurations) calls to EvoSuite and more than 175 days of
CPU-time overall. For the second experiment, we used the remaining 312 classes6

(346 total - 34 used to tune each EA) from the DynaMOSA study [17]. Besides
the tuned µ and λ parameters, we used EvoSuite’s default parameters [1].

Experiment Analysis: For any test suite generated by EvoSuite on any
experimental configuration we measure the coverage achieved on eight criteria,
alongside other metrics, such as the number of generated test cases, the length
of generated test suites, number of iterations of each EA, number of fitness
evaluations. As described by Arcuri et al. [1] “easy” branches are always cov-
ered independently of the parameter settings used, and several others are just
infeasible. Therefore, rather than using raw coverage values, we use relative cov-
erage [1]: Given the coverage of a class c in a run r , c(r), the best and worst
coverage of c in any run, max(c) and min(c) respectively, a relative coverage

(rc) can be defined as c(r) − min(c)
max(c) − min(c) . If the best and worst coverage of c is

equal, i.e., max(c) == min(c), then rc is 1 (if range of c(r) is between 0 and
1) or 100 (if range of c(r) is between 0 and 100). In order to statistically com-
pare the performance of each EA we use the Vargha-Delaney Â12 effect size,
and the Wilcoxon-Mann-Whitney U-test with a 95% confidence level. Besides
the Vargha-Delaney effect size we also consider a relative average improvement.
Given two sets of coverage values, configuration A and configuration B, a relative

average improvement is defined as mean(A)−mean(B)
mean(B) .

Threats to Validity: The results reported in this paper are limited to the
number and type of EAs used in the experiments. However, we believe these are
representative of state-of-art algorithms. Although we used a large number of
different subjects (346 complex classes from 117 open-source Java projects), also
used by a previous study [17] on test generation, our results may not generalise
to other subjects. The range of parameters used in the tuning experiments was
limited to only 4 values per EA. Although common or reported as best values,
different values might influence the performance of each EA. The two search
budgets used in the tuning experiments and in the empirical study are based
on EvoSuite’s defaults (1 minute), and used by previous studies to assess the
performance of EAs with a larger search budget (10 minutes) [21].

4At the time of writing this paper, DynaMOSA did not support all the criteria used
by EvoSuite.

5Class com.yahoo.platform.yui.compressor.YUICompressor was excluded from tun-
ing experiments due to a bug in EvoSuite.

6Nine classes were discarded from the second experiment due to crashes of EvoSuite.

Table 1: Best population / λ size of each EA per search budget, and single and
multiple criteria optimisation. “Br. Cov.” column reports the branch coverage per EA, and

column “Over. Cov.”, the overall coverage of a multiple-criteria optimisation.

Single-criteria Multiple-criteria
Br. Avg. Better Worse Br. Over. Avg. Better Worse

Algorithm |P | Cov. Â12 Â12 Â12 |P | Cov. Cov. Â12 Â12 Â12

Search budget of 60 seconds
Standard GA 10 0.83 0.52 0.75 0.24 100 0.78 0.88 0.52 0.75 0.23

Monotonic GA 25 0.83 0.52 0.76 0.32 100 0.78 0.88 0.52 0.77 0.21
Steady-State GA 100 0.81 0.50 0.72 0.32 100 0.74 0.86 0.53 0.75 0.27

1 + (λ, λ) GA 50 0.57 0.58 0.70 N/A 50 0.65 0.81 0.53 0.69 0.33
µ+ λ EA 1+7 0.84 0.55 0.74 0.21 1+7 0.79 0.89 0.56 0.76 0.28

MOSA 100 0.84 0.51 0.79 0.32 25 0.81 0.62 0.54 0.70 0.21
DynaMOSA 25 0.84 0.51 0.68 0.28 — — — — — —

Search budget of 600 seconds
Standard GA 100 0.86 0.50 0.84 0.21 25 0.84 0.93 0.51 0.76 0.23

Monotonic GA 100 0.87 0.53 0.83 0.22 25 0.84 0.92 0.52 0.80 0.24
Steady-State GA 10 0.85 0.51 0.80 0.23 25 0.79 0.90 0.51 0.79 0.26

1 + (λ, λ) GA 50 0.57 0.57 0.83 N/A 8 0.75 0.81 0.53 0.85 0.19
µ+ λ EA 50+50 0.85 0.49 0.84 0.12 1+1 0.85 0.92 0.53 0.86 0.22

MOSA 50 0.86 0.53 0.88 0.18 10 0.87 0.68 0.54 0.86 0.12
DynaMOSA 25 0.85 0.50 0.83 0.19 — — — — — —

A N/A worse effect size means there is no other configuration that achieved a significantly higher
coverage than the best configuration.

3.2 Parameter Tuning

The execution of an EA requires a number of parameters to be set. As there
is not a single best configuration setting to solve all problems [28] in which an
EA could be applied, a possible alternative is to tune EA’s parameters for a
specific problem at hand to find the “best” ones. We largely rely on a previous
tuning study [1] in which default values were determined for most parameters
of EvoSuite. However, the main distinguishing factor between the algorithms
we are considering in this study are µ (i.e., the population size) and λ (i.e., the
number of mutations). In particular, we selected common values used in previous
studies and reported to be the best for each EA:

– Population size of 10, 25, 50, and 100 for Standard GA, Monotonic GA,
SteadyState GA, MOSA, and DynaMOSA.

– λ size of 1, 8 [5], 25, and 50 for 1 + (λ, λ) GA.
– µ size of 1, 7 [13], 25, and 50, and λ size of 1, 7, 25, and 50 for µ+ λ EA.

Thus, for Standard GA, Monotonic GA, SteadyState GA, MOSA, DynaMOSA,
and 1 + (λ, λ) GA there are 4 different configurations; for µ+ λ, and as λ must
be divisible by µ, there are 8 different configurations (i.e., 1 + 1, 1 + 7, 1 + 25,
1 + 50, 7 + 7, 25 + 25, 25 + 50, 50 + 50); i.e., a total of 32 different configurations.

To identify the best population size of each EA, we performed a pairwise com-
parison of the coverage achieved by using any population size. The population
size that achieved a significantly higher coverage more often was selected as the

Table 2: Pairwise comparison of all evolutionary algorithms. “Better than” and

“Worse than” give the number of comparisons for which the best EA is statistically significantly

(i.e., p-value< 0.05) better and worse, respectively. Columns Â12 give the average effect size.

Tourn. Branch Overall Better Worse

Algorithm Position Cov. Cov. Â12 than Â12 than Â12

Search budget of 60 seconds – Single-criteria
Standard GA 3 0.80 — 0.52 223 / 1212 0.79 149 / 1212 0.25

Monotonic GA 2 0.82 — 0.56 299 / 1212 0.78 57 / 1212 0.27
Steady-State GA 4 0.77 — 0.42 112 / 1212 0.76 401 / 1212 0.19

1 + (λ, λ) GA 5 0.74 — 0.40 53 / 1212 0.73 432 / 1212 0.22
µ+ λ EA 1 0.83 — 0.60 387 / 1212 0.79 35 / 1212 0.26

Search budget of 600 seconds – Single-criteria
Standard GA 3 0.87 — 0.52 129 / 1212 0.87 96 / 1212 0.16

Monotonic GA 2 0.89 — 0.57 192 / 1212 0.89 20 / 1212 0.16
Steady-State GA 4 0.86 — 0.44 50 / 1212 0.80 217 / 1212 0.10

1 + (λ, λ) GA 5 0.77 — 0.39 14 / 1212 0.82 258 / 1212 0.13
µ+ λ EA 1 0.90 — 0.59 224 / 1212 0.88 18 / 1212 0.19

Search budget of 60 seconds – Multiple-criteria
Standard GA 2 0.77 0.79 0.62 473 / 1212 0.85 98 / 1212 0.20

Monotonic GA 1 0.78 0.80 0.62 470 / 1212 0.85 95 / 1212 0.21
Steady-State GA 4 0.72 0.76 0.43 233 / 1212 0.88 503 / 1212 0.19

1 + (λ, λ) GA 5 0.53 0.70 0.25 140 / 1212 0.86 896 / 1212 0.10
µ+ λ EA 3 0.77 0.79 0.59 493 / 1212 0.84 217 / 1212 0.19

Search budget of 600 seconds – Multiple-criteria
Standard GA 2 0.84 0.85 0.59 357 / 1212 0.93 112 / 1212 0.11

Monotonic GA 3 0.85 0.85 0.58 345 / 1212 0.93 125 / 1212 0.13
Steady-State GA 5 0.72 0.79 0.33 118 / 1212 0.94 566 / 1212 0.08

1 + (λ, λ) GA 4 0.62 0.75 0.35 254 / 1212 0.91 623 / 1212 0.05
µ+ λ EA 1 0.87 0.86 0.64 437 / 1212 0.93 85 / 1212 0.09

best. Table 1 shows that, for a search budget of 60 seconds and single-criteria,
the best population size is different for almost all EAs (e.g., Standard GA works
best with a population size of 10, and MOSA with a population size of 100). For
a search budget of 600 seconds and multiple-criteria several EAs share the same
population size, for example, the best value for Standard GA, Monotonic GA
and Steady-State GA on multiple-criteria is 25. Table 1 also reports the average
effect size of the best parameter value when compared to all possible parameter
values; and the effect size of pairwise comparisons in which the best parameter
was significantly better/worse.

3.3 RQ1 – Which evolutionary algorithm works best when using a
test archive for partial solutions?

Table 2 summarises the results of a pairwise tournament of all EAs. An EA X
is considered to be better than an EA Y if it performs significantly better on a
higher number of comparisons. For example, for a search budget of 60 seconds
and single-criteria, 1 + (λ, λ) was statistically significantly better than on 53

comparisons, while it was statistically significantly worse on 432 comparisons
out of 1,212 – which make it the worst EA. On the other hand, µ + λ was the
one with more positive comparisons (387) and the least negative comparisons
(just 35) – thus, being the best EA for a search budget of 60 seconds and single-
criteria, and for a search budget of 600 seconds on single and multiple-criteria.
While it is ranked only third for 60 seconds search budget and multiple-criteria,
the coverage is only slightly lower compared to the higher ranked algorithms
(0.79 vs. 0.80), with an Â12 effect size of 0.59 averaged over all comparisons.

RQ1: In 3 out of 4 configurations, µ+λ EA is better than the other considered
evolutionary algorithms.

3.4 RQ2 – How does evolutionary search compare to random search
and random testing?

Table 3 compares the results of each EA with the two random-based techniques,
Random search and Random testing. On one hand, Random search performs
better than Random testing on single-criteria. However, the overall coverage in
the multiple-criteria case is higher for Random testing than Random search. Our
conjecture is that, in the multiple-criteria scenario, there are many more trivial
coverage goals where the fitness function provides no guidance (thus benefiting
Random testing); in contrast, branch coverage goals seem to benefit from the the
test archive when generating new individuals (thus benefiting Random search).

On average, EAs achieve higher coverage (either branch-coverage on single-
criteria or overall coverage on multiple-criteria) than Random search and Ran-
dom testing. For instance, for a search budget of 600 seconds and single-criteria,
Random search covers 80% of all branches on average and µ+ λ EA covers 90%
(a relative improvement of +36.5%). This result is different to the earlier study
by Shamshiri et al. [24], where random testing achieved similar, and sometimes
higher coverage. Our conjecture is that the better performance of the EAs in
our evaluation is due to (1) the use of the test archive, and (2) the use of more
complex classes in the experiment.

RQ2: Evolutionary algorithms (in particular µ + λ EA) perform better than
random search and random testing.

3.5 RQ3 – How does evolution of whole test suites compare to
many-objective optimisation of test cases?

Table 4 compares each EA with the many-objective optimisation techniques
MOSA and DynaMOSA. Our results confirm and enhance previous studies [17,
19] by evaluating four different EAs (i.e., Standard GA, Steady-State GA, 1+(λ,
λ) GA, and µ+λ EA) in addition to Monotonic GA, and show that MOSA and
DynaMOSA perform better at optimising test cases than any EA at optimising
test suites for single criteria. Although µ+λ achieves a marginally higher average
coverage on single criteria (600 seconds) with a relative improvement of +1.6%,
it is still slightly worse than MOSA with an average effect size of 0.49.

Table 3: Comparison of evolutionary algorithms and two random-based ap-
proaches: Random search and Random testing.

Branch Overall EA vs. Random search EA vs. Random testing

Algorithm Cov. Cov. Â12 p Rel. Impr. Â12 p Rel. Impr.

Search budget of 60 seconds – Single-criteria
Random search 0.78 — — — — — — —
Random testing 0.72 — — — — — — —
Standard GA 0.80 — 0.62 0.26 +15.9% 0.68 0.22 +62.4%

Monotonic GA 0.82 — 0.66 0.23 +21.9% 0.71 0.20 +68.9%
Steady-State GA 0.77 — 0.51 0.27 +2.9% 0.60 0.28 +37.8%

1 + (λ, λ) GA 0.74 — 0.50 0.32 +1.5% 0.58 0.34 +36.1%
µ+ λ EA 0.83 — 0.69 0.22 +23.5% 0.73 0.19 +71.8%

Search budget of 600 seconds – Single-criteria
Random search 0.80 — — — — — — —
Random testing 0.73 — — — — — — —
Standard GA 0.87 — 0.69 0.19 +29.0% 0.73 0.16 +116.0%

Monotonic GA 0.89 — 0.73 0.16 +35.2% 0.76 0.14 +122.0%
Steady-State GA 0.86 — 0.63 0.22 +20.9% 0.71 0.19 +97.3%

1 + (λ, λ) GA 0.77 — 0.57 0.39 +8.4% 0.63 0.38 +63.6%
µ+ λ EA 0.90 — 0.74 0.16 +36.5% 0.76 0.12 +128.7%

Search budget of 60 seconds – Multiple-criteria
Random search 0.76 0.65 — — — — — —
Random testing 0.71 0.67 — — — — — —
Standard GA 0.77 0.79 0.79 0.20 +36.2% 0.84 0.19 +26.7%

Monotonic GA 0.78 0.80 0.80 0.21 +37.6% 0.84 0.18 +28.5%
Steady-State GA 0.72 0.76 0.72 0.23 +29.6% 0.78 0.24 +18.8%

1 + (λ, λ) GA 0.53 0.70 0.62 0.26 +20.1% 0.62 0.39 +9.7%
µ+ λ EA 0.77 0.79 0.76 0.21 +35.9% 0.83 0.20 +25.8%

Search budget of 600 seconds – Multiple-criteria
Random search 0.70 0.65 — — — — — —
Random testing 0.72 0.74 — — — — — —
Standard GA 0.84 0.85 0.88 0.17 +64.0% 0.83 0.20 +28.0%

Monotonic GA 0.85 0.85 0.88 0.18 +64.8% 0.83 0.20 +28.7%
Steady-State GA 0.72 0.79 0.79 0.23 +51.4% 0.71 0.29 +17.6%

1 + (λ, λ) GA 0.62 0.75 0.79 0.30 +49.1% 0.72 0.40 +14.0%
µ+ λ EA 0.87 0.86 0.88 0.15 +66.1% 0.84 0.18 +30.6%

In the multiple-criteria scenario (in which we can only compare to MOSA),
MOSA performs better than any other EA at optimising branch coverage, but
the overall coverage is substantially lower compared to all other EAs. On the
one hand, the lower overall coverage is expected since MOSA is not efficient for
very large sets of coverage goals (this is what DynaMOSA addresses). However,
the fact that branch coverage is nevertheless higher is interesting. A possible
conjecture is that this is due to MOSA’s slightly different fitness function for
branch coverage [19], which includes the approach level (whereas whole test
suite optimisation considers only branch distances).

RQ3: MOSA improves over EAs for individual criteria; for multiple-criteria it
achieves higher branch coverage even though overall coverage is lower.

Table 4: Comparison of evolutionary algorithms on whole test suites optimisation
and many-objective optimisation algorithms of test cases.

Branch Overall EA vs. MOSA EA vs. DynaMOSA

Algorithm Cov. Cov. Â12 p Rel. Impr. Â12 p Rel. Impr.

Search budget of 60 seconds – Single-criteria
MOSA 0.84 — — — — — — —

DynaMOSA 0.85 — — — — — — —
Standard GA 0.80 — 0.39 0.27 -3.6% 0.37 0.28 -6.0%

Monotonic GA 0.82 — 0.43 0.26 -0.4% 0.41 0.28 -2.3%
Steady-State GA 0.77 — 0.30 0.19 -9.7% 0.28 0.19 -10.7%

1 + (λ, λ) GA 0.74 — 0.31 0.26 -12.5% 0.29 0.25 -14.3%
µ+ λ EA 0.83 — 0.46 0.28 +0.8% 0.44 0.29 -1.5%

Search budget of 600 seconds – Single-criteria
MOSA 0.90 — — — — — — —

DynaMOSA 0.91 — — — — — — —
Standard GA 0.87 — 0.42 0.24 -3.2% 0.40 0.23 -4.6%

Monotonic GA 0.89 — 0.47 0.24 +0.2% 0.44 0.23 -1.4%
Steady-State GA 0.86 — 0.38 0.22 -3.5% 0.36 0.21 -5.1%

1 + (λ, λ) GA 0.77 — 0.34 0.37 -14.3% 0.33 0.35 -15.6%
µ+ λ EA 0.90 — 0.49 0.22 +1.6% 0.47 0.23 -0.7%

Search budget of 60 seconds – Multiple-criteria
MOSA 0.80 0.58 — — — — — —

DynaMOSA — — — — — — — —
Standard GA 0.77 0.79 0.71 0.18 +8737.7% — — —

Monotonic GA 0.78 0.80 0.71 0.17 +9069.9% — — —
Steady-State GA 0.72 0.76 0.63 0.17 +9058.6% — — —

1 + (λ, λ) GA 0.53 0.70 0.59 0.21 +7941.9% — — —
µ+ λ EA 0.77 0.79 0.70 0.17 +9071.2% — — —

Search budget of 600 seconds – Multiple-criteria
MOSA 0.87 0.71 — — — — — —

DynaMOSA — — — — — — — —
Standard GA 0.84 0.85 0.64 0.19 +772.4% — — —

Monotonic GA 0.85 0.85 0.64 0.20 +773.4% — — —
Steady-State GA 0.72 0.79 0.52 0.19 +694.6% — — —

1 + (λ, λ) GA 0.62 0.75 0.56 0.27 +632.7% — — —
µ+ λ EA 0.87 0.86 0.67 0.18 +769.5% — — —

4 Related Work

Although a common approach in search-based testing is to use genetic algo-
rithms, numerous other algorithms have been proposed in the domain of nature-
inspired algorithms, as no algorithm can be best on all domains [28]. Many
researchers compared evolutionary algorithms to solve problems in domains out-
side software engineering [2, 27, 29]. Within search-based software engineering,
comparative studies have been conducted in several domains such as discovery
of software architectures [20], pairwise testing of software product lines [15], or
finding subtle higher order mutants [16].

In the context of test data generation, Harman and McMinn [12] empirically
compared GA, Random testing and Hill Climbing for structural test data gen-
eration. While their results indicate that sophisticated evolutionary algorithms
can often be outperformed by simpler search techniques, there are more complex
scenarios, for which evolutionary algorithms are better suited. Ghani et al. [11]
compared Simulated Annealing (SA) and GA for the test data generation for
Matlab Simulink models, and their results show that GA performed slightly bet-
ter than SA. Sahin and Akay [23] evaluated Particle Swarm Optimisation (PSO),
Differential Evolution (DE), Artificial Bee Colony, Firefly Algorithm and Ran-
dom search algorithms on software test data generation benchmark problems,
and concluded that some algorithms performs better than others depending on
the characteristics of the problem. Varshney and Mehrotra [26] proposed a DE-
based approach to generate test data that cover data-flow coverage criteria, and
compared the proposed approach to Random search, GA and PSO with respect
to number of generations and average percentage coverage. Their results show
that the proposed DE-based approach is comparable to PSO and has better per-
formance than Random search and GA. In contrast to these studies, we consider
unit test generation, which arguably is a more complex scenario than test data
generation, and in particular local search algorithms are rarely applied.

Although often newly proposed algorithms are compared to random search
as a baseline (usually showing clear improvements), there are some studies that
show that random search can actually be very efficient for test generation. In
particular, Shamshiri et al. [24] compared GA against Random search for gener-
ating test suites, and found almost no difference between the coverage achieved
by evolutionary search compared to random search. They observed that GAs cov-
ers more branches when standard fitness functions provide guidance, but most
branches of the analyzed projects provided no such guidance. Similarly, Sahin
and Akay [23] showed that Random search is effective on simple problems.

To the best of our knowledge, no study has been conducted to evaluate several
different evolutionary algorithms in a whole test suite generation context and
considering a large number of complex classes. As can be seen from this overview
of comparative studies, it is far from obvious what the best algorithm is, since
there are large variations between different search problems.

5 Conclusions

Although evolutionary algorithms are commonly applied for whole test suite
generation, there is a lack of evidence on the influence of different algorithms.
Our study yielded the following key results:

– The choice of algorithm can have a substantial influence on the performance
of whole test suite optimisation, hence tuning is important. While EvoSuite
provides tuned default values, these values may not be optimal for different
flavours of evolutionary algorithms.

– EvoSuite’s default algorithm, a Monotonic GA, is an appropriate choice
for EvoSuite’s default configuration (60 seconds search budget, multiple

criteria). However, for other search budgets and optimisation goals, other
algorithms such as a µ+ λ EA may be a better choice.

– Although previous studies showed little benefit of using a GA over random
testing, our study shows that on complex classes and with a test archive,
evolutionary algorithms are superior to random testing and random search.

– The Many Objective Sorting Algorithm (MOSA) is superior to whole test
suite optimisation; it would be desirable to extend EvoSuite so that Dy-
naMOSA supports all coverage criteria.

It would be of interest to extend our experiments to further search algorithms.
In particular, the use of other non-functional attributes such as readability [3]
suggests the exploration of multi-objective algorithms. Considering the variation
of results with respect to different configurations and classes under test, it would
also be of interest to use these insights to develop hyper-heuristics that select
and adapt the optimal algorithm to the specific problem at hand.

Acknowledgments. This work is supported by EPSRC project EP/N023978/1,
São Paulo Research Foundation (FAPESP) grant 2015/26044-0, and the Na-
tional Research Fund, Luxembourg (FNR/P10/03).

References

1. Arcuri, A., Fraser, G.: Parameter tuning or default values? an empirical investiga-
tion in search-based software engineering. Empirical Software Engineering 18(3),
594–623 (2013)

2. Basak, A., Lohn, J.: A comparison of evolutionary algorithms on a set of antenna
design benchmarks. In: de la Fraga, L.G. (ed.) 2013 IEEE Conference on Evolu-
tionary Computation. vol. 1, pp. 598–604. Cancun, Mexico (June 20-23 2013)

3. Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W.: Modeling Readability to
Improve Unit Tests. In: Proc. of the Joint Meeting on Foundations of Software
Engineering. pp. 107–118. ESEC/FSE 2015, ACM, New York, NY, USA (2015)

4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: International
Conference on Parallel Problem Solving From Nature. pp. 849–858. Springer (2000)

5. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoretical Computer Science 567, 87–104 (2015)

6. Fraser, G., Arcuri, A.: EvoSuite: Automatic Test Suite Generation for Object-
oriented Software. In: Proc. ESEC/FSE. pp. 416–419. ACM (2011)

7. Fraser, G., Arcuri, A.: Handling test length bloat. Software Testing, Verification
and Reliability 23(7), 553–582 (2013)

8. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software
Engineering 39(2), 276–291 (2013)

9. Fraser, G., Arcuri, A.: A Large-Scale Evaluation of Automated Unit Test Genera-
tion Using EvoSuite. ACM Transactions on Software Engineering and Methodology
(TOSEM) 24(2), 8:1–8:42 (Dec 2014)

10. Gay, G.: The fitness function for the job: Search-based generation of test suites
that detect real faults. In: Software Testing, Verification and Validation (ICST),
2017 IEEE 10th International Conference on. IEEE (2017)

11. Ghani, K., Clark, J.A., Zhan, Y.: Comparing algorithms for search-based test data
generation of matlab simulink models. In: 2009 IEEE Congress on Evolutionary
Computation. pp. 2940–2947 (May 2009)

12. Harman, M., McMinn, P.: A theoretical & empirical analysis of evolutionary testing
and hill climbing for structural test data generation. In: Proceedings of the Inter-
national Symposium on Software Testing and Analysis. pp. 73–83. ACM (2007)

13. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population
size in evolutionary algorithms. Evolutionary Computation 13(4), 413–440 (2005)

14. Karnopp, D.C.: Random search techniques for optimization problems. Automatica
1(2-3), 111–121 (1963)

15. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Egyed, A., Alba, E.: Comparative
analysis of classical multi-objective evolutionary algorithms and seeding strategies
for pairwise testing of software product lines. In: Proceedings of the IEEE Congress
on Evolutionary Computation, CEC. pp. 387–396 (2014)

16. Omar, E., Ghosh, S., Whitley, D.: Comparing search techniques for finding subtle
higher order mutants. In: Proceedings of the Conference on Genetic and Evolu-
tionary Computation. pp. 1271–1278. GECCO ’14, ACM (2014)

17. Panichella, A., Kifetew, F., Tonella, P.: Automated Test Case Generation as a
Many-Objective Optimisation Problem with Dynamic Selection of the Targets.
IEEE Transactions on Software Engineering PP(99), 1–1 (2017)

18. Panichella, A., Kifetew, F., Tonella, P.: Automated test case generation as a many-
objective optimisation problem with dynamic selection of the targets. IEEE Trans-
actions on Software Engineering (2017)

19. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: Software Testing, Verification and Vali-
dation (ICST), 2015 IEEE 8th International Conference on. pp. 1–10. IEEE (2015)

20. Ramı́rez, A., Romero, J.R., Ventura, S.: A comparative study of many-objective
evolutionary algorithms for the discovery of software architectures. Empirical
Softw. Engg. 21(6), 2546–2600 (dec 2016)

21. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining Multiple
Coverage Criteria in Search-Based Unit Test Generation. In: Barros, M., Labiche,
Y. (eds.) Search-Based Software Engineering (SSBSE), Lecture Notes in Computer
Science, vol. 9275, pp. 93–108. Springer International Publishing (2015)

22. Rojas, J.M., Vivanti, M., Arcuri, A., Fraser, G.: A detailed investigation of the
effectiveness of whole test suite generation. Empirical Software Engineering (2016)

23. Sahin, O., Akay, B.: Comparisons of metaheuristic algorithms and fitness functions
on software test data generation. Applied Soft Computing 49, 1202 – 1214 (2016)

24. Shamshiri, S., Rojas, J.M., Fraser, G., McMinn, P.: Random or genetic algorithm
search for object-oriented test suite generation? In: Proceedings of the Conference
on Genetic and Evolutionary Computation. pp. 1367–1374. ACM (2015)

25. Ter-Sarkisov, A., Marsland, S.R.: Convergence properties of (µ+ λ) evolutionary
algorithms. In: AAAI (2011)

26. Varshney, S., Mehrotra, M.: A differential evolution based approach to generate
test data for data-flow coverage. In: 2016 International Conference on Computing,
Communication and Automation (ICCCA). pp. 796–801 (April 2016)

27. Wolfram, M., Marten, A.K., Westermann, D.: A comparative study of evolution-
ary algorithms for phase shifting transformer setting optimization. In: 2016 IEEE
International Energy Conference (ENERGYCON). pp. 1–6 (April 2016)

28. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
transactions on evolutionary computation 1(1), 67–82 (1997)

29. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary computation 8(2), 173–195 (2000)

	An Empirical Evaluation of Evolutionary Algorithms for Test Suite Generation

