
Automated Unit Test Generation during
Software Development: A Controlled Experiment

and Think-Aloud Observations

José Miguel Rojas1 Gordon Fraser1 Andrea Arcuri2
1Department of Computer Science 2Scienta, Norway

University of Sheffield and SnT Centre
Sheffield, United Kingdom University of Luxembourg

ABSTRACT
Automated unit test generation tools can produce tests that are
superior to manually written ones in terms of code coverage, but
are these tests helpful to developers while they are writing code? A
developer would first need to know when and how to apply such a
tool, and would then need to understand the resulting tests in order
to provide test oracles and to diagnose and fix any faults that the
tests reveal. Considering all this, does automatically generating unit
tests provide any benefit over simply writing unit tests manually?

We empirically investigated the effects of using an automated unit
test generation tool (EVOSUITE) during development. A controlled
experiment with 41 students shows that using EVOSUITE leads to
an average branch coverage increase of +13%, and 36% less time is
spent on testing compared to writing unit tests manually. However,
there is no clear effect on the quality of the implementations, as
it depends on how the test generation tool and the generated tests
are used. In-depth analysis, using five think-aloud observations
with professional programmers, confirms the necessity to increase
the usability of automated unit test generation tools, to integrate
them better during software development, and to educate software
developers on how to best use those tools.

Categories and Subject Descriptors. D.2.5 [Software Engineer-
ing]: Testing and Debugging – Testing Tools;

General Terms. Algorithms, Experimentation, Reliability, Theory

Keywords. Unit testing, automated test generation

1. INTRODUCTION
Modern automated test generation tools and techniques can ef-

ficiently generate program inputs that lead to execution of almost
any desired program location. In the context of automated unit test
generation for object oriented software there are tools that exercise
code contracts [1, 2] or parameterised unit tests [3], try to exhibit
undeclared exceptions [1, 4], or simply aim to achieve high cover-
age [5–9]. There are even commercial tools like Agitar One [10] and
Parasoft JTest [11] that generate unit tests that capture the current

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

behaviour for automated regression testing. In previous work [12],
we have shown that testers can achieve higher code coverage when
using automatically generated tests than when testing manually.
However, most previous investigations considered unit test genera-
tion independently of the developers: Does the use of an automated
unit test generation tool support software developers in writing code
and unit tests? And if not, how do automated unit test generation
tools need to be improved in order to become useful?

In order to provide a better understanding of the effects automatic
unit test generation has on software developers, we empirically stud-
ied a scenario where developers are given the task of implementing
a Java class and an accompanying JUnit test suite. We studied this
scenario using two empirical methods: First, we performed a con-
trolled empirical study using 41 human subjects, who were asked
to complete two coding and testing tasks, one manually, and one
assisted by the EVOSUITE unit test generation tool [13]. Second,
we conducted five think-aloud observations with professional pro-
grammers to understand in detail how developers interact with the
testing tool during implementation and testing. Our experiments
yielded the following key results:
Effectiveness: Generated unit tests tend to have higher code cov-
erage, and they can support developers in improving the coverage
of their manually written tests (on average +7% instruction cover-
age, +13% branch coverage, +7% mutation score). However, the
influence of automated unit test generation on the quality of the
implemented software depends on how a tool and its tests are used.
Efficiency: When using automated unit test generation, developers
spend less time on unit testing (36% less time in our experiments).
Although experiment subjects commented positively on this time
saving, it comes at the price of higher uncertainty about the cor-
rectness of the implementation, and we observe that spending more
time with the generated tests leads to better implementations.
Usability: Readability of automatically generated unit tests is a
key aspect that needs to be optimised (63% of experiment subjects
commented that readability is the most difficult aspect of generated
tests). If generated unit tests do not represent understandable, realis-
tic scenarios, they may even have detrimental effects on software.
Integration: Test generation tools typically optimise for code cover-
age, but this is not what developers do. We observed three different
approaches to unit testing, each posing different requirements on
how testing tools should interact with developers and existing tests.
Education: Simply providing a test generation tool to a developer
will not magically lead to better software—developers need edu-
cation and experience on when and how to use such tools, and we
need to establish best practices. For example, we found a moderate
correlation between the frequency of use of our test generation tool
and the number of implementation errors committed by developers.

class FilterIterator {
 ...
}

class TestFilterIterator {
 ...
}

60 minutes

Coding / testing

Class template
and specification

User implementation
and test suite

Task A
(assisted)

Task B (manual)

Coding/testing ...

Analysis

Golden implementation
and test suite

class FilterIterator {
 /**
 * Description
 */
 public void remove() {
 // TODO
 }
}

Figure 1: Overview of the experimental setup. There are two tasks: To implement a class and test suite assisted by EVOSUITE (Task A), or
entirely manually (Task B). Participants performed both tasks on different classes (Task A followed by Task B or vice versa). The resulting
implementation and test suite were analysed by measuring code coverage, mutation analysis, and conformance with a “golden” test suite.

The main contributions of this paper are the controlled empiri-
cal study (Section 3) and the think-aloud observations (Section 4).
Both empirical methods are applied in the experimental scenario
described in detail in Section 2 and summarised in Figure 1: Partici-
pants are given the task of implementing a Java class and a JUnit
test suite, either manually or supported by EVOSUITE; analysis is
then performed on the resulting implementations and test suites.

2. EXPERIMENT PLANNING
The goal of our controlled experiment is to investigate the use-

fulness of automated unit test generation during the software devel-
opment process, and to understand how this usefulness can be im-
proved. This section describes the experimental setup and procedure
for the controlled experiment in detail, following existing reporting
guidelines for empirical software engineering research [14].

2.1 Tool Selection: EvoSuite
There are many different unit test generation tools to choose from

(e.g., [1–9]). For our experiment infrastructure we required a tool
that runs on Linux (e.g., [1, 4, 6–9]). The tool should be usable
through an IDE rather than requiring to switch to the command-line
(e.g., [1,8]). Finally, we are considering a scenario where developers
are intended to make use of the generated unit tests to support their
own implementation as well as test suite, without being required
to provide specifications or parameterised unit tests (although this
would be an interesting follow-up experiment). The number of
generated tests should remain low to enable manual processing,
which excludes random testing tools, and leaves EVOSUITE [8].

EVOSUITE generates test suites with the aim of maximising code
coverage (e.g., branch coverage), minimising the number of unit
tests and optimising their readability. The generated tests have
assertions that capture the current behaviour of the implementation;
i.e., all tests pass initially, and developers need to provide their own
test oracles, possibly making use of the suggested assertions. The
EVOSUITE Eclipse plug-in allows developers to generate a JUnit test
suite for any Java class by right-clicking the class name and selecting
the “Generate JUnit tests” option. We configured EVOSUITE to run
for 60s on each invocation using its default configuration. At each
invocation, EVOSUITE creates a new test suite. As we need one
JUnit test suite at the end to evaluate (and, e.g., to use for regression
testing), we asked subjects to copy and paste each generated unit
test that should be retained into a dedicated (initially empty) JUnit
class. That is, subjects are asked to populate this JUnit class with the
automatically generated unit tests they consider useful from each of
the executions of the tool, which they can further refine or refactor.

2.2 Object Selection
The task given to subjects of the experiment was to implement a

Java class with its test suite. We selected the classes to implement

from open source projects to ensure they represent realistic, non-
artificial tasks. As a source for these classes we considered the 41
Java libraries contained in the Apache Commons project [15]. We
manually selected four Java classes based on the following criteria.
Classes should...

• contain 40-70 non-commenting source statements (NCSS).
• be testable by EVOSUITE with at least 80% code coverage.
• not exhibit features currently not handled by EVOSUITE’s

default configuration, e.g., I/O or GUI.
• challenge the subjects’ programming skills but be simple

enough to be coded and tested in one hour.
• have a clear and apparent purpose and be well documented.
• have no inner classes and few dependencies.

The first criterion (size) was estimated appropriate for the planned
duration of the task (60 minutes) based on past experience; size was
measured using the JavaNCSS tool [16]. By applying the second
criterion (coverage) we narrowed the search to 52 classes, on which
we manually applied the remaining criteria to finally select the
classes listed in Table 1.

For each selected class, we created a minimal Eclipse project con-
sisting of only that class and its dependencies. We removed package
prefixes (e.g., org.apache.commons.collections) and copy-
right information to prevent subjects from finding source code or
test cases on the Internet during the experiment. We converted the
classes to skeleton versions consisting only of the public API (i.e.,
we removed all non-public members, and left only stubs of the
method implementations). Furthermore, we refined the JavaDoc
documentation to ensure that it was unambiguous and could serve
as specification. In order to confirm the suitability of these classes,
we conducted a pilot study with Computer Science PhD students
as subjects, which particularly helped to refine and clarify the orig-
inal JavaDoc specifications. To support replications and further
experimentation, all experimental material is available1.

2.3 Subject Selection
We recruited subjects for this experiment by sending email in-

vitations to second to fourth year computer science undergraduate
students, as well as software engineering master students, at the Uni-
versity of Sheffield. Students of all these levels have at least basic
understanding and experience in programming Java, testing with
JUnit, and using Eclipse. A total of 41 students were recruited to
take part in the experiment (32 second to fourth-year undergraduate
and nine master students).

According to a background survey, all subjects had previously
used the Eclipse IDE and the JUnit Testing Framework, and had at
least two years of programming experience. 76% declared to have
between two and four years of programming experience in Java. 83%
had previous experience with automated test case generation tools

1http://study.evosuite.org

http://study.evosuite.org

Table 1: Selected Java classes

Class NCSS Methods Instruction Coverage Branch Coverage Description
FilterIterator 49 11 85.0% 91.7% Iterator that only shows elements that satisfy a Predicate validation
FixedOrderComparator 68 10 81.5% 77.5% Comparator which imposes a specific order on a specific set of objects
ListPopulation 54 13 80.0% 77.3% Genetic population of chromosomes, represented as a List
PredicatedMap 44 9 100.0% 100.0% Decorates a Map object to only allow elements satisfying a Predicate validation

(e.g., we use Randoop and EVOSUITE in some classes). The survey
also included a 10-item Java programming test, where the average
score was 6.93/10. 68% declared they understood the concept of
code coverage well or very well. One subject affirmed to always
write unit tests, whereas two said they never do; 27 (66%) rarely or
occasionally write unit tests, and 11 (27%) said they often do.

2.4 Experiment Procedure
We started with a 30 minute tutorial session, which included a

live demo on a small example of how the experiment would proceed.
Subjects then practised on a simplified version of the main task:
they implemented a class with a single method that is supposed to
return the integer division of its arguments. We interacted with the
subjects to make sure they all had a good understanding of Java,
JUnit, EVOSUITE, and their task.

Each subject performed two tasks, one with EVOSUITE and one
without, each on a different class, with the goal to implement as
much of the behaviour described in the JavaDoc specification as
possible, and to write unit tests that achieve the highest possible
branch coverage. Each task consisted in implementing the set of
public methods of the class and thoroughly testing them, and sub-
jects were allowed to add private methods or fields to the class. For
the manual task all code and unit tests have to be written manually;
for the assisted task subjects must write code by hand, but can use
EVOSUITE to generate unit tests at any moment during the session.

The duration of each task was 60 minutes. A fixed assignment of
two classes per subject ID, each with different treatment, was created
prior to the experiment, in order to reduce the time between tutorial
and main experiment. Our assignment ensured similar sample sizes
for all classes and treatments, and each subject ID was assigned to a
PC in the computer lab. Subjects chose PCs freely upon arrival to
the facilities, without receiving any details about their assignment.
We made sure that no two neighbouring subjects were working on
the same class or treatment at the same time. Each subject was paid
30 GBP, and was asked to fill in an exit questionnaire before leaving.

2.5 Research Questions
With this experimental setup, we aim to answer the following

research questions:
RQ1: Does using EVOSUITE during software development lead

to better test suites?
RQ2: Does using EVOSUITE during software development lead

to developers spending more or less time on testing?
RQ3: Does using EVOSUITE during software development lead

to software with fewer bugs?
RQ4: Does spending more time with EVOSUITE and its tests

lead to better implementations?

2.6 Data Collection
The experiment took place on May 21, 2014 in the computer lab

of the Computer Science Department at the University of Sheffield.
The pre-configured environment consisted of Ubuntu Linux, Java
SE 7u55, Eclipse Kepler 4.3.2 and the EVOSUITE, EclEmma [17]
and Rabbit [18] Eclipse plug-ins.

The EclEmma plug-in allowed subjects to check coverage of their
test suites during the experiment (e.g., illustrated with highlighting

of covered code). Furthermore, the Rabbit plug-in was set up to
run in the background and collect usage data such as number of
times tests were executed, number of times coverage was measured,
time spent writing code or debugging, etc. In order to have the
entire implementation history for each subject, we extended the
EVOSUITE plug-in, such that every time a file was saved, EVOSUITE
was invoked, or a JUnit test suite was executed, the current status of
the project was copied to a local directory and to a remote server.

2.7 Data Analysis
The original implementation of the four selected Java classes,

along with tests suites manually written by their developers, consti-
tutes our golden implementations and golden test suites (see Table 1
for coverage statistics). Our data analysis consists of evaluating
a) subjects’ test suites when executed on both subjects’ implementa-
tions and golden implementations; and b) golden test suites when
applied to subjects’ implementations.

Coverage analysis was performed using EclEmma, which mea-
sures instruction and branch coverage; instruction coverage refers to
Java bytecode instructions and thus is similar to statement coverage
on source code. EclEmma’s definition of branch coverage counts
only branches of conditional statements, not edges in the control flow
graph [19]. Therefore, we use both instruction and branch coverage
for data analysis. The Major mutation framework [20] was used to
perform mutation analysis on the resulting test suites. Empirical evi-
dence supports the use of mutation analysis as a trustable technique
to measure test suites quality in testing experiments [21, 22].

2.8 Statistical Analysis
To rigorously analyse the data resulting from the experiment, we

use different statistical tests [23, 24], effect sizes [25] and power
analysis [26]. This was necessary due to the limited sample size
(i.e., the number of subjects) and the fact that EVOSUITE is based
on a randomised algorithm. With small sample sizes, on one hand
non-parametric tests might not have enough power to detect sta-
tistical difference. On the other hand, there might not be enough
data for a parametric test to be robust to deviations from a normal
distribution [23,24] (note, due to the Central Limit theorem, there is
no need for the data to be normally distributed, as long as there are
enough data points [23]).

As parametric test to check differences between average values of
two distributions, we used the Student T-test (with Welch correction).
Effect size is measured with the Cohen d statistics [25, 26], which
is the difference in the averages of two distributions divided by the
pooled standard deviation. Given a non-null effect size, to study
the probability of accepting the null hypothesis when it is false (i.e.,
claiming no statistical difference when there is actually a difference),
we performed power analyses to find the minimal sample size N
for which the null hypothesis could be rejected (confidence level for
Type I error of α = 0.05 and power β = 0.8 for Type II error, where
α and β have typical values taken from the scientific literature).

We also employed the non-parametric Mann-Whitney U-test to
check for statistical difference among the stochastic rankings of two
compared distributions. As effect size, we used the Vargha-Delaney
Â12 statistic [25, 27]. If, for example, we compare the results of
EVOSUITE-supported testing with manual testing, then an effect

Table 2: Comparisons of obtained average instruction/branch coverage and mutation scores of the test suites developed using EVOSUITE
(Assisted) and manually without (Manual). Results are calculated by running these test suites on subjects’ implementations. We also report the
pooled standard deviation (sd), non-parametric effect size Â12, p-value of U-test (U pv), parametric Cohen d effect size, p-value of T-test (T
pv), and its minimal required sample size N resulted from a power analysis at α = 0.05 and β = 0.8.

Class Measure Assisted Manual sd Â12 U pv d T pv N

FilterIterator Instructions 70.6% 62.0% 30.5% 0.62 0.36 0.28 0.52 198
Branches 63.0% 39.1% 37.7% 0.67 0.18 0.63 0.15 40
Mutation 43.2% 28.9% 33.3% 0.62 0.33 0.43 0.33 86

FixedOrderComparator Instructions 45.7% 60.5% 32.2% 0.38 0.38 -0.46 0.33 76
Branches 38.2% 57.1% 32.1% 0.32 0.20 -0.59 0.21 47
Mutation 28.6% 29.6% 25.0% 0.53 0.88 -0.04 0.93 11327

ListPopulation Instructions 67.3% 28.4% 29.8% 0.79 0.03 1.31 0.01 10
Branches 83.5% 26.2% 24.7% 0.92 0.00 2.32 0.00 4
Mutation 33.2% 15.1% 21.1% 0.68 0.17 0.86 0.07 22

PredicatedMap Instructions 45.4% 50.8% 41.6% 0.44 0.71 -0.13 0.78 944
Branches 41.5% 50.4% 43.5% 0.42 0.58 -0.21 0.66 371
Mutation 32.5% 35.7% 35.4% 0.44 0.71 -0.09 0.85 1945

size of Â12 = 0.5 would mean that manual testing and EVOSUITE-
supported testing resulted in the same coverage; Â12 < 0.5 would
mean that EVOSUITE-supported subjects produced lower coverage,
and Â12 > 0.5 would mean that EVOSUITE-supported subjects
produced higher coverage.

2.9 Threats to Validity
Construct: We use the number of failing tests of the golden test

suite as a proxy for the quality of the implementation; the number of
failures may be different from the number of faults (e.g., many tests
may fail due to the same fault). We used coverage and mutation
scores to estimate the quality of test suites. While evidence supports
that real faults are correlated with mutants [21,22], it is possible that
the use of faults created by developers may yield different results.

Internal: Extensive automation is used to prepare the study and
process the results. It is possible that faults in this automation could
lead to incorrect conclusions.

To avoid bias, we assigned subjects to objects randomly, but man-
ually tweaked the assignment to guarantee balanced sample sizes
and to ensure no two neighbouring subjects would work on the
same class or treatment at the same time. Subjects without suffi-
cient knowledge of Java and JUnit may affect the results; to avoid
this problem we only accepted subjects with past experience, and
we provided the tutorial before the experiment. In the background
questionnaire, we included five JUnit and five Java quiz questions.
On average, 6.93 out of these 10 questions were answered correctly,
which strengthens our belief that the existing knowledge was suffi-
cient. A blocking assignment strategy may have resulted in a better
assignment based on the subjects’ knowledge of Java and JUnit,
but we pre-generated our assignment to avoid splitting the experi-
ment into two sessions in order to have the time to evaluating the
answers to the background questionnaire and designing the blocking
assignment.

Experiment objectives may have been unclear to subjects; to
counter this threat we tested and revised all our material on a pilot
study, and interacted with the subjects during the tutorial exercise
and experiment to ensure they understood the objectives. As each
subject performed two tasks, it is possible that those with an assisted
task in the first session could grasp insight on how tests should be
written out of inspection of the automatically generated tests. To
counter this threat, our assignment of objects to subjects ensures that
each pair of classes/treatments occurs in all possible orders. Our
training in the use of EVOSUITE may not be sufficient, and indeed
our results suggest that developer education is important. However,
there are no established best practices on how to use automated unit
test generation tools during development, so we can only provide

basic training, and hope to establish these best practices as a result
of our experiment.

To counter tiredness we included 15-minutes breaks after the
tutorial session and between the two main sessions, and provided
soft drinks and snacks throughout the experiment. In order to min-
imise subjects’ communication, we imposed exam conditions, and
explicitly asked subjects not to exchange information or discuss
experiment details during the breaks.

External: For pragmatic reasons, the subjects of our study are all
students, which is a much discussed topic in the literature (e.g., [28,
29]). However, we see no reason why automatic unit test generation
should be useful only to developers with many years of experience,
and argue that students are thus at least close to the population of
interest [30].

The set of target classes used in the experiment is the result of a
manual but systematic selection process. The classes are small to
allow implementation within the short duration of the experiment;
however, classes in object oriented programs are often small, but
may have more external dependencies. It may be that classes with
more dependencies make generated unit tests more difficult to read,
or, on the other hand, more helpful in understanding these depen-
dencies. Thus, to which extent our findings can be generalised to
arbitrary programming and testing tasks remains an open question.

We used EVOSUITE, and other tools may lead to different results.
However, the output of EVOSUITE is similar to that of other tools
aiming at code coverage. Random or specification driven tools
would represent different use cases, likely requiring a different
experimental setup.

Conclusion: Our study involved 41 human subjects and four
Java classes. Each subject was assigned two tasks, one manual
and one assisted by EVOSUITE. Hence, nine to twelve subjects
performed each of the combinations of testing approach and Java
class. This small number of subjects can lead to statistically non-
significant results. However, as results may differ a lot between
different classes, we decided to aim for data on more classes, rather
than statistically stronger data on fewer classes.

3. EXPERIMENT RESULTS

3.1 RQ1: Effects on resulting test suites
To determine the effects on the test suites, we evaluate them

with respect to the subject implementations as well as the golden
implementation. A test suite that covers the implemented behaviour
well intuitively should be a good regression test suite, whereas
during development one would hope that the test suite covers the
specified behaviour (golden implementation) well.

0 10 20 30 40 50 60

0
20

40
60

80

Passed Time In Minutes

B
ra

nc
h

C
ov

er
ag

e

Assisted
Manual
EvoSuite−generated

(a) FilterIterator

0 10 20 30 40 50 60

0
20

40
60

80

Passed Time In Minutes

B
ra

nc
h

C
ov

er
ag

e

Assisted
Manual
EvoSuite−generated

(b) FixedOrderComparator

0 10 20 30 40 50 60

0
20

40
60

80

Passed Time In Minutes

B
ra

nc
h

C
ov

er
ag

e

Assisted
Manual
EvoSuite−generated

(c) ListPopulation

0 10 20 30 40 50 60

0
20

40
60

80

Passed Time In Minutes

B
ra

nc
h

C
ov

er
ag

e

Assisted
Manual
EvoSuite−generated

(d) PredicatedMap

Figure 2: Time analysis, per minute, for each class, of the average branch coverage on golden implementation.

Table 3: Obtained average instruction and branch coverage on the golden implementations, of the test cases developed supported by EVOSUITE
(Assisted) and manually without (Manual). We also report the pooled standard deviation (sd), non-parametric effect size Â12, p-value of
U-test (U pv), parametric Cohen d effect size, p-value of T-test (T pv), and its minimal required sample size N resulted from a power analysis
at α = 0.05 and β = 0.8.

Class Instruction Coverage Branch Coverage
Assisted Manual sd Â12 U pv d T pv N Assisted Manual sd Â12 U pv d T pv N

FilterIterator 56.8% 53.6% 30.8% 0.56 0.65 0.10 0.81 1441 40.9% 30.3% 32.6% 0.63 0.29 0.33 0.45 149
FixedOrderComparator 51.2% 31.4% 29.8% 0.70 0.15 0.66 0.16 36 34.7% 20.9% 24.8% 0.68 0.19 0.56 0.24 52
ListPopulation 37.8% 28.7% 32.0% 0.49 0.97 0.29 0.53 194 37.2% 28.2% 29.6% 0.52 0.92 0.30 0.51 171
PredicatedMap 43.3% 46.6% 39.3% 0.47 0.83 -0.09 0.85 2163 41.9% 50.0% 39.6% 0.43 0.61 -0.20 0.66 375

First, Table 2 summarises the results for instruction/branch cover-
age and mutation scores measured on the subjects’ implementations.
For FilterIterator and ListPopulation coverage and mutation scores
are higher when using EVOSUITE, with medium to large effect sizes
– for ListPopulation the large increase is statistically significant. For
PredicatedMap instruction and branch coverage are lower when
using EVOSUITE. For FixedOrderComparator there is also a de-
crease in coverage; although the mutation score is slightly lower on
average, the effect size shows a small increase with EVOSUITE.

These differences in coverage are potentially related to how the
generated test suites were used: Table 4 shows that for FilterIter-
ator and ListPopulation the number of times coverage was mea-
sured by subjects using EVOSUITE is also higher, whereas for the
other two classes the number of times coverage was measured was
higher for subjects testing manually; e.g., for FixedOrderCompara-
torEVOSUITE users measured coverage less than twice, whereas
subjects doing manual testing measured coverage on average 10
times. Thus it seems that if developers focus on coverage, they can
increase coverage with generated tests.

To analyse the effects of the test suites with respect to the speci-
fied behaviour, we use the golden implementations: The intended
behaviour is specified in elaborate JavaDoc comments, but it is also
embodied by the golden implementations. Hence, as a proxy mea-
surement for how well the test suites cover the specified behaviour,
we measure the instruction and branch coverage the subjects’ test
suites achieve on the golden implementations. Table 3 summarises
these results, and shows the outcomes of the statistical analysis.
For FilterIterator and FixedOrderComparator both instruction cov-
erage and branch coverage of the implementation of the specified
behaviour are higher with medium effect sizes. For ListPopulation
the branch coverage is higher, and for instruction coverage the effect
size suggests a marginal decrease despite higher average coverage.
For PredicatedMap the decrease in coverage observed on the sub-
jects’ implementations is also visible on the golden implementation.

The increase in coverage for FixedOrderComparator is particu-
larly interesting, considering that we saw a decrease of coverage of
the implemented behaviour (Table 2). Our conjecture is that this is
an effect of how the generated test suites are used: Although the
subjects did not measure coverage often (Table 4) they did spend
time on the generated tests (9.3 minutes on average), and in that

time apparently improved the tests to reflect specified behaviour.
Figure 2 shows how coverage of specified behaviour evolves over

time. The segmented line corresponds to test suites produced on
Manual tasks and the solid line corresponds to those produced on
Assisted tasks. The dotted line corresponds to the automatically
generated test suites as produced by EVOSUITE. We can see that
the tests generated by EVOSUITE achieve the highest coverage: If
correct behaviour is implemented, EVOSUITE will cover it. How-
ever, the subjects did not fully use (e.g., copy and edit) all generated
tests in their own test suites, as shown by the lower coverage on the
Assisted tasks.

For FixedOrderComparator, ListPopulation and FilterIterator (to a
lesser degree towards the end in the latter), we observe how subjects
assisted by EVOSUITE were able to achieve higher coverage with
their own test suites. For PredicatedMap it seems that EVOSUITE
was not used very often until around half an hour into the task. From
then to about 55 minutes there seems to be a small benefit to using
EVOSUITE’s tests, but in general the gap between generated tests
and the tests actually used by the subjects is very large. In the end,
subjects testing only manually achieved slightly higher coverage.
Our conjecture is that for PredicatedMap automatically generated
tests for more complex behaviour are less readable, as our think-
aloud observations will confirm (Section 4). However, overall this
data suggests that using EVOSUITE can lead to better test suites,
depending on how it is used.

RQ1: Our experiment shows that coverage can be increased with
EVOSUITE, but depends on how the generated tests are used.

3.2 RQ2: Effects on time spent on testing
To see how the use of EVOSUITE influences the testing behaviour,

we consider the actions performed on the unit tests (test suites run,
test suites run in debug mode, test suites run to measure coverage),
and we consider the time spent on the test suite. All these values are
provided by the Rabbit plug-in.

Table 4 summarises the behaviour for users of EVOSUITE and
manual testers: Users of EVOSUITE measured the coverage of
their tests more often than manual testers for all classes but Fixe-
dOrderComparator. This suggests that a common way to investigate
generated tests is to see what code they cover. EVOSUITE users ran

Table 5: Comparisons of average number of failures, errors, and their sum, obtained by running the golden test suites on the subjects’
implementations developed using EVOSUITE (Assisted) and without, manually (Manual). We also report the pooled standard deviation (sd),
non-parametric effect size Â12, p-value of U-test (U pv), parametric Cohen d effect size, p-value of T-test (T pv), and its minimal required
sample size N resulted from a power analysis at α = 0.05 and β = 0.8.

Class Measure Assisted Manual sd Â12 U pv d T pv N

FilterIterator Failures 1.91 2.45 1.62 0.33 0.18 -0.34 0.44 139
Errors 4.18 3.82 2.67 0.62 0.35 0.14 0.76 847
Fa.+Er. 6.09 6.27 2.20 0.51 0.95 -0.08 0.85 2307

FixedOrderComparator Failures 1.33 1.73 2.13 0.38 0.37 -0.19 0.68 459
Errors 2.89 2.55 2.80 0.52 0.91 0.12 0.79 1044
Fa.+Er. 4.22 4.27 2.26 0.45 0.74 -0.02 0.96 31438

ListPopulation Failures 4.91 3.10 3.14 0.67 0.20 0.58 0.20 48
Errors 1.45 2.20 1.53 0.38 0.36 -0.49 0.28 67
Fa.+Er. 6.36 5.30 2.73 0.65 0.27 0.39 0.39 104

PredicatedMap Failures 4.90 5.67 7.55 0.41 0.43 -0.10 0.83 1523
Errors 10.70 8.67 12.52 0.54 0.78 0.16 0.73 596
Fa.+Er. 15.60 14.33 15.30 0.50 1.00 0.08 0.86 2290

Table 4: Comparisons between subjects using EVOSUITE (Assisted)
and without (Manual) in terms of how many times on average (per
subject) the test suites were run, executed with a debugger and with
a code coverage tool, as well as the average number of minutes spent
on the tests in the Eclipse code editor.

Class Property Assisted Manual d T pv N

FilterIterator JUnit coverage 9.00 6.00 0.33 0.47 143
JUnit debug 0.50 0.09 0.43 0.44 84
JUnit run 7.80 13.73 -0.66 0.15 37
Minutes spent on tests 18.52 20.03 -0.22 0.62 318

FixedOrderComparator JUnit coverage 1.89 9.56 -1.35 0.05 10
JUnit debug 0.22 0.11 0.22 0.66 319
JUnit run 7.22 12.89 -0.55 0.27 53
Minutes spent on tests 9.31 15.80 -0.86 0.07 22

ListPopulation JUnit coverage 5.89 4.00 0.35 0.49 131
JUnit debug 0.56 0.00 0.67 0.35 36
JUnit run 8.22 11.00 -0.36 0.48 125
Minutes spent on tests 12.61 24.96 -1.33 0.01 10

PredicatedMap JUnit coverage 5.27 6.38 -0.19 0.72 441
JUnit debug 0.00 0.88 -0.97 0.21 18
JUnit run 4.36 5.62 -0.20 0.68 395
Minutes spent on tests 7.70 14.35 -1.07 0.03 15

their tests marginally more often using debug mode, but overall had
fewer test runs.

The time spent on test classes is measured by calculating the total
time spent on any file that has a name ending with *Test.java.
This time is significantly lower for users of EVOSUITE for all classes
except FilterIterator. This is expected behaviour: Using an auto-
mated testing tool is supposed to reduce the workload of the de-
veloper, and our experiment shows that by using EVOSUITE our
subjects spent less time, sometimes even achieving higher coverage.

RQ2: In our experiment, using automated unit test generation
reduced the time spent on testing in all four classes.

3.3 RQ3: Effects on implementation quality
To measure the quality of the resulting implementation, we ex-

ecute the golden test suite on each subject’s implementation and
measure the number of test failures and errors. In the JUnit frame-
work, a “failure” happens when a JUnit assertion in the test fails,
while an “error” happens when an unexpected exception in the test
execution propagates to the JUnit test. The more tests of the golden
test suite fail on a subject’s implementation, the more faults there
likely are in that implementation. However, note that the number of
failures/errors does not necessarily equal the number of faults in the
implementation, as several tests may fail due to the same fault.

Table 5 summarises these results, and shows the statistical com-
parison between users of EVOSUITE and manual testers for each
class. For all classes except ListPopulation, the number of failures
is smaller for users of EVOSUITE. On the other hand, the number

of errors is larger for all classes except ListPopulation. While the
best performing subjects had the same number of errors/failures for
FixedOrderComparator (1), PredicatedMap (1), and FilterIterator
(3) with and without using EVOSUITE, for ListPopulation the best
performing subject (1) used EVOSUITE (vs. 3 for the best manu-
ally testing subject). However, the values are generally very close
(considering sum of failures and errors, there is no/negligible effect
on FilterIterator and PredicatedMap, a small negative effect on List-
Population, and a small positive effect on FixedOrderComparator).
Consequently, our experiment produced no clear evidence for either
better or worse performance resulting from the use of EVOSUITE.

RQ3: Our experiment provided no evidence that software quality
changes with automated unit test generation.

3.4 RQ4: Effects of time spent with EvoSuite
Using EVOSUITE reduces the time spent on testing, but is this a

good thing? If tests are generated automatically, there is the danger
that testing is done in a more sloppy way — if developers just take
generated tests for granted and invest less time in using them to find
errors, this may lead to overall worse results. To see whether this is
the case, we look at the correlation between the (lack of) correctness
of the resulting subjects’ implementations and a) the number of
EVOSUITE runs, and b) the time spent on the generated tests.

Table 6 summarises the Pearson’s correlations, together with the
95% confidence intervals and size N for the power analysis. For
FilterIterator, ListPopulation, and PredicatedMap there is a moderate
relationship, only for FixedOrderComparator there is no correlation.
This suggests that the more often the subjects invoked EVOSUITE,
the more errors and failures their resulting implementation had.
Conversely, the correlation between the time spent on the generated
tests has a weak negative relationship with the errors and failures
for FilterIterator and FixedOrderComparator, and a strong negative
relationship for PredicatedMap. Only ListPopulation shows no
correlation here. Thus, the more time subjects spent working with
the tests generated by EVOSUITE, the better the implementation.
Running EVOSUITE often and working only superficially with the
generated tests has a negative effect.

RQ4: Our experiment suggests that the implementation improves
the more time developers spend with generated tests.

3.5 Participants Survey
After the experiment, all subjects filled in an exit survey con-

sisting of 42 items (39 agreement questions and three open text

Table 6: Correlation analysis, for subjects using EVOSUITE, be-
tween lack of correctness (measured with the sum of failures and
errors, cf. Table 5) and a) the number of times EVOSUITE is run,
and b) the time spent on the generated test suites.

Class Property Correlation CI N

FilterIterator EVOSUITE runs 0.35 [-0.32, 0.78] 63
Time spent on tests -0.29 [-0.76, 0.38] 93

FixedOrderComparator EVOSUITE runs -0.03 [-0.65, 0.61] 8063
Time spent on tests -0.22 [-0.75, 0.48] 163

ListPopulation EVOSUITE runs 0.32 [-0.35, 0.77] 76
Time spent on tests 0.02 [-0.59, 0.61] 24938

PredicatedMap EVOSUITE runs 0.35 [-0.32, 0.78] 63
Time spent on tests -0.49 [-0.84, 0.15] 30

questions), which provided us feedback on the difficulties they faced
during the experiment. Due to space reasons, we only describe the
most important aspects of this survey here.

Figure 3 summarises the responses to eight questions on the
difficulty of the tasks, using 5-point Likert scale. Note that each
subject performed one experiment with manual testing and one
supported by EVOSUITE, thus all subjects answered these questions.
In general, subjects agree more that they had enough time to finish
the implementation and the test suite when using EVOSUITE. They
also agree more strongly that testing was easy, and that they had
produced a good test suite when using EVOSUITE. On the other
hand, they claimed to have had more difficulties in implementing
the target class, and to be less certain about the correctness of their
implementation when using EVOSUITE. This view is supported
by our data (cf. RQ1 and RQ3): Using automatically generated
unit tests may lead to better tests, but not necessarily to better
implementations.

Interestingly, when asked about their experience with EVOSUITE,
most subjects seemed quite happy with the tool: There is strong
agreement that it helped testing, but also slight agreement that it
helped with the implementation. The assertions selected by the tool
do not show up as a problem, but general readability of the tests
does. There is strong agreement that the difficulty of the class under
test is a deciding factor, and although one might think that using
automatically generated tests may help in understanding the class,
subjects tended to agree that the generated tests only covered the
“easy” behaviour.

When queried on how EVOSUITE could be improved, out of eight
options readability and coverage received the highest agreement,
while the user interface and the number and complexity of tests
received the smallest agreement. A free text question on suggestions
for improvement received 19 responses about readability and 11
suggestions to add comments to tests.

A free text question on what is perceived as most difficult when
manually writing tests resulted in most responses related to the
difficulty of understanding the class under test (14), followed by the
difficulty of covering all cases during testing — a problem for which
automated unit test generation is well suited. On the other hand, the
question on what is most difficult when writing unit tests supported
by EVOSUITE received 26 responses related to the readability of the
generated unit tests, whereas understanding the class under test and
other problems were only mentioned a few times.

3.6 Statistical Implications for Future Studies
The empirical study conducted in this paper is the first that aims

at studying the effects of an automated test case generation tool
during software development. We analysed different properties of
interest, but in most cases the results of the statistical analyses were
not significant: there was not enough power to reject many of the
null hypotheses, although non-negligible effect sizes were present.

71%

63%

24%

29%

5%

7%

49%

37%

39%

46%

12%

17%

44%

51%

29%

20%

27%

29%

54%

49%

22%

27%

24%

24%

56%

54%

32%

20%

12%

27%

44%

39%

37%

44%

20%

17%

41%

41%

37%

32%

22%

27%

39%

46%

37%

29%

24%

24%

A: I had enough time to finish implementing the class

B: I had enough time to finish testing the class.

C: It was easy to implement the target class.

D: It was easy to test the target class.

E: I have produced a good implementation.

F: I have produced a good test suite.

G: I am certain my implementation is correct.

H: The target class was easy to understand.

Manual
EvoSuite

Manual
EvoSuite

Manual
EvoSuite

Manual
EvoSuite

Manual
EvoSuite

Manual
EvoSuite

Manual
EvoSuite

Manual
EvoSuite

100 50 0 50 100
Percentage

Response Fully agree Partially agree Neither agree nor disagree Partially disagree Fully disagree

Figure 3: Agree/disagree Likert chart for the exit questionnaire,
where the same question is asked for both the cases in which EVO-
SUITE was and was not used. (Recall each subject worked on two
classes, one with and one without using EVOSUITE.)

In statistics, this usually would happen when there is large vari-
ance in the compared distributions. The solution would be to employ
larger sample sizes, although that can be a major challenge in soft-
ware engineering research. But how many participants to employ?
After a first study, one can calculate effect sizes and perform power
analysis to find the required minimal sample size N . Unfortunately,
in our context, the N values are so high (cf. Table 2–6) that suitable
sample sizes are hardly feasible in constrained academic environ-
ments. However, we plan and encourage further studies in this
domain, such that, over time, meta-analyses based on several stud-
ies can lead to a reliable body of knowledge, from which to draw
reliable conclusions.

One possible explanation for our result is that other factors in-
fluencing software development, such as programming skills and
experience of the developers, may have larger effects than an au-
tomated unit test generation tool. This suggests that future studies
should control better for such factors, but it also suggests that the
usefulness of automated unit test generation tools and the best way
to apply them will vary between programmers with different degrees
of experience and skills. As a first step towards a better understand-
ing of this problem, the next section takes a closer look at how
developers interact with EVOSUITE.

4. THINK-ALOUD STUDY
The controlled experiment described in the previous section eval-

uated the effects of providing an automated test generation tool to
developers while coding. This is not a well-established use-case,
but rather a foray into a new territory of automated testing. Hence,
our usage scenario (developers applying the tool based on their intu-
ition, copying tests they want to keep) may not be perfectly aligned
with developers’ needs. Although our data already allowed us to
see correlations between tool usage and effectiveness, the question
remains what constitutes a better strategy to make the most out of
the automated test generation tool. To address this, we conducted
one-on-one think-aloud observations with professional developers.

Think-aloud observations [31,32] are a popular qualitative method
in usability testing [33], where they are regarded among the most
valuable methods to elicit reports of thought sequences. In contrast
to other qualitative methods such as interviews, which rely on the
subject’s ability to memorise and recollect thoughts, think-aloud
observations allow to educe information about behaviour during the
completion of a given task.

4.1 Method
We recruited five professional Java software developers from

industry and academia to participate in the think-aloud observations.
Recruiting consisted in sending personal emails and advertising on
the IRC channel of a local software developers’ community from
Sheffield, UK. All selected participants have solid experience in Java
programming and testing and are familiar with the JUnit Testing
Framework. They have no or little experience with EVOSUITE, and
none of them has participated in a think-aloud observation before.

Each participant is assigned one of the classes described in Table 1
(one participant per class, and the randomly chosen PredicatedMap
class for the fifth participant). All participants are given the assisted
task of implementing their assigned class and an accompanying test
suite with the help of EVOSUITE. As in the controlled experiment,
their starting point is the skeleton of their target class and an empty
test suite. They are free to write their own unit tests manually, to use
EVOSUITE to automatically generate unit tests and utilise those, or
a combination of both approaches. For practicality, and considering
the cognitive overhead that thinking aloud represents, we imposed a
time limit of two hours to complete the task. We carried out a pilot
observation with a PhD student which helped assess the viability of
our setup and anticipate problems.

The observations were conducted by the first author of this paper.
The data collection mechanism was similar to that used in our main
experiment (Section 2.6). In addition, qualitative data was collected
by taking notes, and by recording the participant’s speech and the
computer screen during the observations. The notes taken during
the session were later augmented with analysis of the speech and
screen recordings.

Before the observations, participants received a coaching talk,
where the think-aloud method was explained, unit testing and the
EVOSUITE tool were described, and their assigned task was in-
troduced. Participants were asked to permanently verbalise their
thoughts as they worked on the task. Interaction between the ob-
server and participants was limited to the minimum possible during
the observations. Participants were only prompted to continue ver-
balising when they had stopped doing so. In order to elicit informa-
tion that could not be expressed verbally during the observation, we
introduced a retrospective phase upon completion of the task where
participants were invited to reflect on the experience, recollect their
thoughts and articulate some final remarks.

4.2 Threats to Validity
The think-aloud observations share large parts of the setup from

the controlled experiment, and thus also share the main threats to
validity not related to subject selection or assignment (Section 2.9).
In addition, there are well-known limitations to think-aloud obser-
vations: One of them is that the results produced can be highly
influenced by the degree of articulation of the participant. Our study
does not escape the intrinsically human caveat, but fortunately only
one of our participants showed some discomfort in this regard at
the beginning of his session. Another limitation of the method is
that participants tend to describe their actions instead of provid-
ing more insight on their thinking process. This can be noticed in
our observations, where utterances often correspond to participants
reading aloud the provided material or narrating their actions rather
than vocalising their thought process. We tried to alleviate this with
careful scrutiny of participants’ behaviour and by prompting them
to elaborate more whenever we thought necessary. Finally, as in
most empirical methods, there is the threat of participants being too
conscious about the experimental setup. In particular, three of the
five participants admitted they tested their classes more thoroughly
than they would normally do for work. We can only embrace this

behaviour as an opportunity to gain more insight of their testing
habits and their expectations from test generation tools.

4.3 Results and Interpretation
The observations took place between 21 July and 13 August 2014

and lasted 1:20 to 2:00 hours. Four of the five participants completed
the task in the given time frame. Only in a few occasions it was
necessary to provide technical guidance to participants about their
tasks. In exceptional cases, when we observed interesting or unusual
behaviour or to stimulate the less articulate participants, we also
prompted questions such as “What are you thinking about?” and
“Why did you do that?”. Table 7 summarises the results of the five
observations, and this section describes their most relevant aspects.

Participant 1 behaved according to our expectations from some-
one who has not used a test generation tool before. He first focused
on shaping up the implementation, and then wrote some tests manu-
ally. He ran EVOSUITE for the first time 56 minutes into the task,
at which point he had already implemented most of the specified
behaviour and a sensible test suite. When deciding to use EVO-
SUITE, he claimed that testing thoroughly even the small target
class was getting tedious and that he could have been more efficient
had he used EVOSUITE earlier. He reckoned he could compare an
EVOSUITE-generated test suite with his own manual test suite in
terms of coverage, and “maybe” combine them together.

On the first run, EVOSUITE generated six tests. Unfortunately,
most of them were testing code that the participant had already
written tests for, failing to exercise relevant yet uncovered branches,
which confused and disappointed him. After reflecting about the
non-deterministic nature of EVOSUITE, he decided to run it again.
This second time he got 97% branch coverage, whereas his manual
test suite had achieved 85%. While comparing coverage of the two
tests suites, he realised that one of his tests was now failing. Thus,
instead of inspecting the generated tests to try to utilise those that
could improve the coverage of his test suite, he switched focus to
try to discover why that test was failing.

Later, after 30 minutes refining his implementation and test suite,
he ran EVOSUITE again. The newly generated test suite achieved
100% coverage. Although his test suite also reached 100% cover-
age, he decided to enhance it with generated tests, since they were
exercising interesting scenarios that he had not thought of before.
For instance, EVOSUITE generated a test case in which the method
remove was invoked right after the initialisation of a FilterIterator
object, which he had not considered in his manual tests. “Those are
the tests that are nice to have automatically generated”, he said.

Participant 2 applied a testing approach that benefited highly
from automated test generation tools support. At the beginning of
the task, he focused on coding his target class, even making some
preliminary assumptions in order to complete a first running version.
It took him 19 minutes to do so, and then he decided to run EVO-
SUITE for the first time. Running EVOSUITE as soon as there is
some behaviour seems to be a good practice since time spent on writ-
ing unit tests for the most trivial behaviour can be drastically reduced.
The tool’s output helped him detect mis-implemented behaviour.
Specifically, one test case contained an invocation of a method in
the target class with null arguments and produced normal output,
whereas the specification said it should raise an exception. He im-
plemented this behaviour and re-ran EVOSUITE. Re-generating test
suites after important changes in the implementation is also a good
practice: it shows that the participant is aware that the tool will
generate a test suite that reflects implemented behaviour only.

After three cycles of automatically generating unit tests, inspect-
ing, refactoring, and using them to refine his target class and test
suite, the participant decided to take a more coverage-oriented ap-

Table 7: Results of Think-aloud Observations

Participant Target Class Duration EVOSUITE Number Cov. Own Impl. Mutation Cov. Golden Impl. Failure+Errors
ID times run of tests Instruction Branch Score Instruction Branch Failure Error

1 FilterIterator 01:50 3 15 100.0% 93.8% 63.0% 98.2% 91.7% 1 0
2 FixedOrderComparator 01:20 6 20 100.0% 97.3% 78.7% 85.7% 72.5% 1 0
3 ListPopulation 02:00 2 23 97.6% 94.4% 63.3% 89.3% 95.5% 1 1
4 PredicatedMap 01:38 2 7 100.0% 100.0% 60.0% 95.9% 93.8% 1 0
5 PredicatedMap 01:40 5 10 100.0% 100.0% 100.0% 82.8% 81.2% 0 0

proach to utilising the generated tests. He ran EVOSUITE for the
sixth time, copied all the generated tests into his own test suite, and
systematically commented tests out one by one, removing those
that did not have an impact on the coverage of his test suite. In the
end, his test suite consisted entirely of unit tests either refactored
or copied verbatim from the EVOSUITE output. Importantly, this
observation gives prominence to the need of more usable integration
of the test generation tool: “What would be really useful here is
if EvoSuite could tell me which of the test that is generated cover
new behaviour that my test suite doesn’t, because I am doing that
manually at this stage.”

Participant 3 applied a test-driven approach to the assigned task
where EVOSUITE, and probably any code-based automated test
generation tool, has less opportunity to assist. Test-driven developers
are used to writing (failing) tests before implementing the specified
behaviour. Hence, once the target class is completed, a big portion
of the test suite has also been produced, although the resulting
test suite could still be extended with automatically generated unit
tests. However, we did not observe this use case with this participant,
likely because he did not manage to finish the implementation within
the time constraint imposed in our experimental setup.

The participant ran EVOSUITE for the first time at minute 52,
after implementing the constructors for his target class, and before
implementing any other method. When prompted to articulate why
he had decided to run EVOSUITE, he said he expected to get some
tests exercising exceptional behaviour. However, while articulating
his answer, he realised that the tool would only produce tests for
observed behaviour, which he had not yet implemented. Unsurpris-
ingly, he decided not to use any of the generated test cases. Twenty
minutes later, with more behaviour implemented, he ran EVOSUITE
again. This time he found some useful tests. However, instead of
importing them to his test suite, he decided to imitate their intention:

“I didn’t like that generated code, so I’m going to write those tests
manually.” After that, he continued the task entirely manually and
did not run EVOSUITE or inspect generated tests again.

The participant did not complete the implementation of the target
class in the allocated time. Whereas we have no reason to believe
that he could have performed better with a different use of the tool,
we do believe that usability must be addressed to help test-driven
developers. In fact, he pointed out a feature that could have helped
him: “It would be nice if I could generate tests for a particular
method, or involving a particular method.” In the retrospective
phase, he elaborated more on this thought, implying that a method-
level test generation approach would have helped him develop and
maintain incremental confidence in the code he was writing.

Participant 4 was the least comfortable with the format of the
think-aloud observation, and we needed to prompt him several times
to keep verbalising.

Once he fleshed out the implementation of his target class, he
ran EVOSUITE. Interestingly, after generating tests and refactoring
them, he did not run them. The first time he actually ran tests was 87
minutes into the task. He got several failures, fixed some assertions,
then debugged one test and fixed a serious bug. Unlike participants
who focused more on coverage, he showed more interest in fully

understanding each generated test. Whereas this is a good practice
in general (see results of RQ4), it seemed to be detrimental for
this participant, since he resented several readability aspects of the
generated tests and therefore spent much effort refactoring tests
before importing them to his test suite: “I used generated tests as
starting point; I changed them to look more like how I would have
written them.” Indeed, it seemed that EVOSUITE generates lengthy
and hard to read tests for PredicatedMap, which likely also explains
the results for RQ1 for this class.

Interestingly, once his implementation and test suite had grown
considerably, he ran EVOSUITE again and tried a split-window view
to compare his and EVOSUITE’s test suite. As with Participant
2, this suggests the need for better integration of test generation
tools. Finally, he also acknowledged being conscious about the
experimental setup: “I’d probably be a lot stingier in the number of
tests that I’d implement. I wouldn’t normally in real life be aiming
for 100% coverage. I’d probably end up with fewer tests without
this tool but I couldn’t tell you if they would be all the right tests.”

Participant 5 ran EVOSUITE before writing a single line of code,
out of curiosity about what EVOSUITE would produce for one par-
ticular method, which was not yet implemented. After looking at
the resulting tests, he was comprehensibly not satisfied with the
output. He then decided to flesh out the target class; once he had im-
plemented one of its public methods, he went back to the previously
generated test suite to look for a suitable test. A better use would
have consisted of re-generating the test suite and then searching for
a test exercising that specific method. He realised this after some
minutes inspecting the generated tests and thus ran EVOSUITE again.
He then acknowledged that generated tests had changed to some-
thing more meaningful, but reckoned he still needed to add more
behaviour to his target class. After 35 minutes working on the target
class and writing manual tests, he ran EVOSUITE again. This time,
and after inspecting the generated tests for less than two minutes, he
claimed that generated tests were too complex and decided to pro-
ceed manually. Again, this readability problem for PredicatedMap
is also reflected in the results for RQ1 of our controlled experiment.

Upon completion of the task, the participant ran EVOSUITE one
last time to compare code coverage. Whereas he had achieved 100%
manually, the generated test suite achieved 87.5%. When asked to
reflect about his experience, the participant made a case on how
important readability is: “Coverage is easy to assess because it is a
number, while readability of the tests is a very non-tangible property.
What is readable to me may not be readable to you. It is readable to
me just because I spent the last hour and a half doing this.”

4.4 Lessons Learned
Software developers use different strategies for coding and testing

tasks. Thus, automated unit test generation tools, and EVOSUITE in
particular, should also provide different mechanisms to assist each
testing strategy. Based on the think-aloud observations we identified
three main strategies: traditional, where developers first complete
implementation and then write unit tests; test-driven, where unit
tests are produced before the actual implementation; and hybrid,
where unit tests are written incrementally to exercise behaviour

as it is implemented. Our observations suggest that a code-based
tool like EVOSUITE can prove more useful for the traditional or
hybrid strategy. Nevertheless, test-driven developers could also
benefit from EVOSUITE by complementing their test suites once the
implementation is complete.

As already suggested by the results of our main experiment, read-
ability of unit tests is paramount. Although a coverage-oriented
approach to unit testing would allow to utilise generated tests with-
out entirely understanding them, the quality of a test case seems to
highly depend on how easy it is to elicit the intended behaviour.

We also learned that code coverage does not seem to be the driving
force for professional developers on a coding and testing task. For
instance, Participant 3 did not check coverage at all while working
on his task, while Participant 4 did so only after 45 minutes of work.
Moreover, two of our participants admitted to have tested their target
class more thoroughly than they would normally do at work, only
because the goal of their task was to achieve high code coverage.

The education of professional developers on the use of automated
test generation tools is important: Although all participants were
instructed and practised the use of EVOSUITE, efficient use of the
tool requires more experience and establishment of best practices.
For instance, Participant 1 realised that he could have used gener-
ated tests for trivial behaviour only after having written a number
of manual tests. Another interesting example is Participant 5, who
first ran EVOSUITE on an almost empty class, and later, ran it again
on a partially implemented class, but invested less than two min-
utes inspecting the generated test suite before deciding to ignore
it and proceed manually. These observations suggest that, inde-
pendently of their testing strategy, software developers need to be
educated on how and when to use automated unit testing tools, and
our experiments are a step towards identifying the best practices.

The observations also unveiled potential for improvement of EVO-
SUITE in terms of usability. For instance, providing an automated
mechanism to optimally combine existing test suites with automati-
cally generated ones could play an important role in the successful
integration of EVOSUITE during software development. As Partici-
pant 2 suggested, such a feature could save much time and effort in
realistic scenarios. We might be looking at a level of integration of
EVOSUITE into the Eclipse IDE similar to that of the Pex white-box
unit testing tool for .NET into the MS Visual Studio IDE [3].

5. RELATED WORK
Empirical studies with human subjects are still rare in software en-

gineering research; for example, Sjøberg et al. [34] found controlled
studies with human subjects in only 1.9% of 5,453 analysed soft-
ware engineering articles, a trend that was confirmed by Buse et al.
in their survey of 3,110 software engineering articles [35]. Indeed,
a recent survey [36] acknowledges the need for empirical studies
involving human subjects as an important step towards transferring
software testing research into industrial practice.

In previous work [12], we studied the effect of using EVOSUITE
for testing only. Subjects were presented with the implementation of
a class and asked to produce a unit test suite for it. Results showed
that automated unit test generation can support testers in producing
better test suites but does not help in finding more faults. In this
work, we consider the application of EVOSUITE by developers
writing their own code, rather than testers writing tests for existing
code. Subjects only received specifications in JavaDoc form and
were asked to produce both implementation and test suites.

This is also the main difference with respect to related studies:
Ceccato et al. [38] conducted two controlled experiments to study
the impact of randomly generated tests on debugging tasks and
found a positive influence. Ramler et al. [39] empirically compared

manual testing with testing assisted by automated test generation
tools, and found that fault detection rates were similar, although
each method revealed different kinds of faults. In these two studies,
the implementations of the classes under test were provided.

Saff and Ernst [37] found statistically significant evidence that
student developers were more productive on programming tasks
if they were provided with the extra feedback of regression tests
continuously running in the background and notifications popping
up as soon as a new error was discovered. Although this work relied
on existing test suites, it suggests an interesting pathway to integrate
test generation more seamlessly into programming activities.

Hughes and Parkes [40] surveyed studies that applied think-aloud
observations in software engineering topics such as program un-
derstanding for maintenance tasks [41] and debugging [42]. More
recently, Roehm et al. [43] used think-aloud observations and inter-
views to assess program comprehension by 28 professional devel-
opers. Owen et al. [44] and Whalley and Kasto [45] used the think-
aloud method to study the way in which developers approached and
solved programming tasks. Ostberg et al. [46] combined qualitative
methods, including think-aloud observations, to study how useful
was automatic static program analysis for bug detection.

6. CONCLUSIONS
Since early work on automated test data generation a common

line of reasoning is that, as testing is time consuming and difficult,
automating any of its steps will be beneficial. It is plausible that
generating tests to exercise specifications or assertions improves
software quality by demonstrating violations. On the other hand,
many testing tools make no assumptions on the availability of speci-
fications, and just aim to maximise code coverage. Whether this is
actually of benefit for developers writing code is something that, to
the best of our knowledge, has not been investigated before.

In this paper, we investigated this scenario using two empirical
methods: First, we conducted a controlled experiment to measure
any effects observable when providing developers with the EVO-
SUITE unit test generation tool. Second, we observed professional
programmers while implementing code assisted by EVOSUITE. Our
experiments provide reasonable evidence that using EVOSUITE can
have a beneficial effect on resulting test suites. On the other hand,
the effects on the quality of the implemented code depend on how
the unit test generation tool and its unit tests are used.

Our experiments suggest concrete next steps to improve the effect
automated unit test generation can have on developers:
Readable unit tests. Automatically generated unit tests must be
easy to read and understand (cf. [47,48]), otherwise developers may
be distracted or stop using the tool.
Integration into development environments. In the spirit of con-
tinuous testing, test generation tools should evolve test suites (cf. [49–
52]) and integrate with existing tests.
Best practices. As automated unit test generation is not commonly
used in practice currently, developers need to be educated on the best
practices, which we are trying to establish; e.g., a good approach is
to apply test generation whenever a new significant part of behaviour
has been implemented.

Our experiments are naturally limited, but an important first step
towards understanding how automated unit test generation can sup-
port developers. It will be important to complement these results
with further empirical studies, such as replications with (1) differ-
ent (larger) population samples, (2) other test generation tools, and
(3) enhanced integration of the unit test generation tools into the
development environment.

To support replicability, all the material used in our experiments
is made available at http://study.evosuite.org.

http://study.evosuite.org

7. REFERENCES
[1] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball,

“Feedback-directed random test generation,” in ACM/IEEE Int.
Conference on Software Engineering (ICSE), 2007, pp. 75–84.

[2] B. Meyer, I. Ciupa, A. Leitner, and L. L. Liu, “Automatic
testing of object-oriented software,” in SOFSEM’07: Theory
and Practice of Computer Science, ser. LNCS, vol. 4362.
Springer-Verlag, 2007, pp. 114–129.

[3] N. Tillmann and J. N. de Halleux, “Pex — white box test
generation for .NET,” in Int. Conference on Tests And Proofs
(TAP), ser. LNCS, vol. 4966. Springer, 2008, pp. 134 – 253.

[4] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic
robustness tester for Java,” Softw. Pract. Exper., vol. 34, pp.
1025–1050, 2004.

[5] P. Tonella, “Evolutionary testing of classes,” in ACM Int.
Symposium on Software Testing and Analysis (ISSTA), 2004,
pp. 119–128.

[6] J. H. Andrews, F. C. H. Li, and T. Menzies, “Nighthawk: a
two-level genetic-random unit test data generator,” in
IEEE/ACM Int. Conference on Automated Software
Engineering (ASE), 2007, pp. 144–153.

[7] L. Baresi, P. L. Lanzi, and M. Miraz, “TestFul: an
evolutionary test approach for Java,” in IEEE Int. Conference
on Software Testing, Verification and Validation (ICST), 2010,
pp. 185–194.

[8] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Transactions on Software Engineering, vol. 39, no. 2, pp.
276–291, 2013.

[9] S. Park, B. M. M. Hossain, I. Hussain, C. Csallner,
M. Grechanik, K. Taneja, C. Fu, and Q. Xie, “CarFast:
achieving higher statement coverage faster,” in ACM
Symposium on the Foundations of Software Engineering
(FSE), 2012, pp. 35:1–35:11.

[10] (2014) Agitar One. [Online]. Available:
http://www.agitar.com

[11] (2014) Parasoft JTest. [Online]. Available:
http://www.parasoft.com/jtest

[12] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg,
“Does automated white-box test generation really help
software testers?” in ACM Int. Symposium on Software
Testing and Analysis (ISSTA), 2013, pp. 291–301.

[13] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite
generation for object-oriented software.” in ACM Symposium
on the Foundations of Software Engineering (FSE), 2011, pp.
416–419.

[14] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting
experiments in software engineering,” in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and
D. Sjøberg, Eds. Springer London, 2008, pp. 201–228.

[15] (2014) Apache Commons Libraries. [Online]. Available:
http://commons.apache.org/

[16] (2014) JavaNCSS - a source measurement suite for Java.
Version 32.53. [Online]. Available:
http://www.kclee.de/clemens/java/javancss

[17] (2014) EclEmma - Java code coverage for Eclipse. Version
2.3.1. [Online]. Available: http://www.eclemma.org/

[18] (2014) Rabbit - Eclipse statistics tracking plugin. Version
1.2.1. [Online]. Available:
https://code.google.com/p/rabbit-eclipse/

[19] N. Li, X. Meng, J. Offutt, and L. Deng, “Is bytecode
instrumentation as good as source code instrumentation: An
empirical study with industrial tools (experience report),” in

IEEE Int. Symposium on Software Reliability Engineering
(ISSRE), 2013, pp. 380–389.

[20] R. Just, “The Major mutation framework: Efficient and
scalable mutation analysis for Java,” in ACM Int. Symposium
on Software Testing and Analysis (ISSTA), 2014, pp. 433–436.

[21] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in ACM/IEEE Int.
Conference on Software Engineering (ICSE), 2005, pp.
402–411.

[22] R. Just, D. Jalali, L. Inozemtseva, M. Ernst, R. Holmes, and
G. Fraser, “Are mutants a valid substitute for real faults in
software testing?” in ACM Symposium on the Foundations of
Software Engineering (FSE), 2014.

[23] M. Fay and M. Proschan, “Wilcoxon-Mann-Whitney or t-test?
On assumptions for hypothesis tests and multiple
interpretations of decision rules,” Statistics Surveys, vol. 4, pp.
1–39, 2010.

[24] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software
engineering,” Software Testing, Verification and Reliability
(STVR), vol. 24, no. 3, pp. 219–250, 2012.

[25] R. Grissom and J. Kim, Effect sizes for research: A broad
practical approach. Lawrence Erlbaum, 2005.

[26] J. Cohen, “A power primer,” Psychological bulletin, vol. 112,
no. 1, pp. 155–159, 1992.

[27] A. Vargha and H. D. Delaney, “A critique and improvement of
the CL common language effect size statistics of McGraw and
Wong,” Journal of Educational and Behavioral Statistics,
vol. 25, no. 2, pp. 101–132, 2000.

[28] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “Issues in
using students in empirical studies in software engineering
education,” in IEEE Int. Software Metrics Symposium, 2003,
pp. 239–249.

[29] M. Höst, B. Regnell, and C. Wohlin, “Using students as
subjects—A comparative study of students and professionals
in lead-time impact assessment,” Empirical Software
Engineering, vol. 5, no. 3, pp. 201–214, 2000.

[30] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,
D. C. Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary
guidelines for empirical research in software engineering,”
IEEE Transactions on Software Engineering (TSE), vol. 28,
no. 8, pp. 721–734, Aug. 2002.

[31] K. A. Ericsson and H. A. Simon, Protocol Analysis: Verbal
Reports as Data (revised edition). MIT Press, Cambridge,
MA, 1993.

[32] K. A. Ericsson, “Valid and non-reactive verbalization of
thoughts during performance of tasks - towards a solution to
the central problems of introspection as a source of scientific
data,” Consciousness Studies, vol. 10, no. 9-10, pp. 1–18,
2003.

[33] S. McDonald, H. Edwards, and T. Zhao, “Exploring
think-alouds in usability testing: An international survey,”
IEEE Transactions on Professional Communication, vol. 55,
no. 1, pp. 2–19, March 2012.

[34] D. Sjoberg, J. Hannay, O. Hansen, V. By Kampenes,
A. Karahasanovic, N. Liborg, and A. C Rekdal, “A survey of
controlled experiments in software engineering,” IEEE
Transactions on Software Engineering (TSE), vol. 31, no. 9,
pp. 733–753, 2005.

[35] R. P. Buse, C. Sadowski, and W. Weimer, “Benefits and
barriers of user evaluation in software engineering research,”
in ACM SIGPLAN Notices, vol. 46, no. 10, 2011, pp. 643–656.

http://www.agitar.com
http://www.parasoft.com/jtest
http://commons.apache.org/
http://www.kclee.de/clemens/java/javancss
http://www.eclemma.org/
https://code.google.com/p/rabbit-eclipse/

[36] A. Orso and G. Rothermel, “Software Testing: A Research
Travelogue (2000–2014),” in ACM Future of Software
Engineering (FOSE), 2014, pp. 117–132.

[37] D. Saff and M. D. Ernst, “An experimental evaluation of
continuous testing during development,” in ACM Int.
Symposium on Software Testing and Analysis (ISSTA), 2004,
pp. 76–85.

[38] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and
P. Tonella, “An empirical study about the effectiveness of
debugging when random test cases are used,” in ACM/IEEE
Int. Conference on Software Engineering (ICSE), 2012, pp.
452–462.

[39] R. Ramler, D. Winkler, and M. Schmidt, “Random test case
generation and manual unit testing: Substitute or complement
in retrofitting tests for legacy code?” in IEEE Euromicro
Conference on Software Engineering and Advanced
Applications (SEAA), 2012, pp. 286–293.

[40] J. Hughes and S. Parkes, “Trends in the use of verbal protocol
analysis in software engineering research,” Behaviour and
Information Technology, vol. 22, no. 2, pp. 127–140, 2003.

[41] A. M. Vans, A. von Mayrhauser, and G. Somlo, “Program
understanding behavior during corrective maintenance of
large-scale software,” Int. Journal of Human-Computer
Studies, vol. 51, no. 1, pp. 31–70, 1999.

[42] J. E. Hale, S. Sharpe, and D. P. Hale, “An evaluation of the
cognitive processes of programmers engaged in software
debugging,” Software Maintenance: Research and Practice,
vol. 11, no. 2, pp. 73–91, 1999.

[43] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do
professional developers comprehend software?” in
ACM/IEEE Int. Conference on Software Engineering (ICSE),
2012, pp. 255–265.

[44] S. Owen, P. Brereton, and D. Budgen, “Protocol analysis: A

neglected practice,” Commun. ACM, vol. 49, no. 2, pp.
117–122, 2006.

[45] J. Whalley and N. Kasto, “A qualitative think-aloud study of
novice programmers’ code writing strategies,” in ACM Conf.
on Innovation and Technology in Computer Science
Education (ITiCSE), 2014, pp. 279–284.

[46] J.-P. Ostberg, J. Ramadani, and S. Wagner, “A novel approach
for discovering barriers in using automatic static analysis,” in
ACM Int. Conference on Evaluation and Assessment in
Software Engineering (EASE), 2013, pp. 78–81.

[47] G. Fraser and A. Zeller, “Exploiting common object usage in
test case generation,” in IEEE Int. Conference on Software
Testing, Verification and Validation (ICST), 2011, pp. 80–89.

[48] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable
string test inputs using a natural language model to reduce
human oracle cost,” in Int. Conference on Software Testing,
Verification and Validation (ICST), 2013, pp. 352–361.

[49] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso,
and M. J. Harrold, “Test-suite augmentation for evolving
software,” in IEEE/ACM Int. Conference on Automated
Software Engineering (ASE), 2008, pp. 218–227.

[50] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen,
“Directed test suite augmentation: techniques and tradeoffs,”
in ACM Symposium on the Foundations of Software
Engineering (FSE), 2010, pp. 257–266.

[51] M. Mirzaaghaei, F. Pastore, and M. Pezze, “Supporting test
suite evolution through test case adaptation,” in IEEE Int.
Conference on Software Testing, Verification and Validation
(ICST), 2012, pp. 231–240.

[52] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “ReAssert:
Suggesting repairs for broken unit tests,” in IEEE/ACM Int.
Conference on Automated Software Engineering (ASE), 2009,
pp. 433–444.

	Introduction
	Experiment Planning
	Tool Selection: EvoSuite
	Object Selection
	Subject Selection
	Experiment Procedure
	Research Questions
	Data Collection
	Data Analysis
	Statistical Analysis
	Threats to Validity

	Experiment Results
	RQ1: Effects on resulting test suites
	RQ2: Effects on time spent on testing
	RQ3: Effects on implementation quality
	RQ4: Effects of time spent with EvoSuite
	Participants Survey
	Statistical Implications for Future Studies

	Think-Aloud Study
	Method
	Threats to Validity
	Results and Interpretation
	Lessons Learned

	Related Work
	Conclusions
	References

