
Search-Based  
Test Generation

Gordon Fraser, University of Sheffield

Acknowledgements

The material in some of these slides has kindly
been provided by:

Phil McMinn (University of Sheffield)  
Mark Harman (KCL/UCL)  

Joachim Wegener (Berner & Matner)

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

Source code Tests

Automated test generation

Random Test Data
Generation

Input

Generating vs Checking
Conventional Software Testing Research

Write a method to construct test cases

Search-Based Testing

Write a method  
to determine how good a test case is

Generating vs Checking
Conventional Software Testing Research

Write a method to construct test cases

Search-Based Testing

Write a fitness function 
to determine how good a test case is

Fitness-guided search

Input

Fi
tn

es
s

Fitness-guided search

Input

Fi
tn

es
s

Search Operators

Components of an SBST Tool

Search Algorithm

Representation

Test ExecutionInstrumentationFitness Function

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

Components of an SBST Tool

Meta-heuristic algorithm

Measure how good a candidate solution is

Execute tests

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Encoding of the problem solution

Modifications of encoded solutions

Collect data/traces for fitness calculation during execution

Ke Mao, Mark Harman, Yue Jia. Sapienz: Multi-objective automated testing for Android applications, ISSTA 2016

First publication on SBST

Webb Miller David Spooner

Automatic Generation of Floating-Point Test Data 
IEEE Transactions on Software Engineering, 1976

First publication on SBST

Webb Miller David Spooner

Automatic Generation of Floating-Point Test Data 
IEEE Transactions on Software Engineering, 1976

Publications since 1976

source: SEBASE publications repository  
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

Getting started in SBSE

M. Harman and B. Jones: Search-based software engineering. Information and Software Technology, 43(14):
833–839, 2001.

D. Whitley: An overview of evolutionary algorithms: Practical issues and common pitfalls. Information and
Software Technology, 43(14):817–831, 2001.

Phil McMinn: Search-based software test data generation: a survey. Software Testing, Verification and
Reliability 14(2): 105-156, 2004

Wasif Afzal, Richard Torkar and Robert Feldt: A Systematic Review of Search-based Testing for Non-
Functional System Properties. Information and Software Technology, 51(6):957-976, 2009

Shaukat Ali, Lionel Briand, Hadi Hemmati and Rajwinder Panesar-Walawege: A Systematic Review of the
Application and Empirical Investigation of Search-Based Test-Case Generation. IEEE Transactions on
Software Engineering, 36(6), pp.742-762, 2010

Mark Harman, Yue Jia and Yuanyuan Zhang: Achievements, open problems and challenges for search based
software testing. ICST, 2015

International Search-Based Testing Workshop
2008 ICST, Lillehammer, Norway  
2009 ICST, Colorado, Denver 
2010 ICST, Paris, France  
2011 ICST, Berlin, Germany  
2012 ICST, Montreal, Canada 
2013 ICST, Luxembourg 
2014 ICSE, Hyderabad, India 
2015 ICSE, Florence, Italy  
2016 ICSE, Austin, USA  
2017 ICSE, Buenos Aires, Argentina?
http://www.searchbasedsoftwaretesting.org/

http://www.searchbasedsoftwaretesting.org/

Raleigh, North Carolina
www.ssbse.org

http://www.ssbse.org

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

http://goo.gl/8mj8HC - 1.zip

http://goo.gl/8mj8HC

(x, y) (x+1, y)(x-1, y)

(x-1, y+1) (x, y+1) (x+1, y+1)

(x-1, y-1) (x, y-1) (x+1, y-1)

Components of an SBST Tool

Hill-climbingSearch Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Tuple (x, y)

Neighbourhood of (x, y)

Hill Climbing

1. Select Random
Value

Hill Climbing

2. Explore
Neighbourhood

Hill Climbing

3. Choose better
neighbour

Hill Climbing

4. Repeat until
optimum is found

Components of an SBST Tool

Hill-climbingSearch Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Tuple (x, y)

Neighbourhood of (x, y)

SUTInput Output

SUTInstrumented
SUT

Input

Output

Trace
} FitnessTest Data

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

http://goo.gl/8mj8HC - 2.zip

http://goo.gl/8mj8HC

Components of an SBST Tool

Branch distance

Call method

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Global variable

Hill-climbing

Tuple (x, y)

Neighbourhood of (x, y)

100 1 2 3 4 5 6 7 8 9

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

def testMe(x, y):
 if x == 2 * y and y > 1:
 return True
 else:
 return False

http://goo.gl/8mj8HC - 3.zip

http://goo.gl/8mj8HC

Branch Distance
Distance True Distance False

|x - y| 1

1 |x - y|

y - x + 1 x - y

y - x x - y + 1

x - y+ 1 x - y

x - y x - y + 1

Expression

x == y

x != y

x > y

x >= y

x < y

x <= y

def testMe(x, y):
 if x == 2 * y and y > 1:
 return True
 else:
 return False

http://goo.gl/8mj8HC - 3.zip

http://goo.gl/8mj8HC

from Instrumentation import BranchPredicate

def testMe(x, y):
 if (BranchPredicate(1, 'Eq', x, 2 * y) and  
 BranchPredicate(2, 'Gt', y, 1)):
 return True
 else:
 return False

http://goo.gl/8mj8HC - 3.zip

http://goo.gl/8mj8HC

Components of an SBST Tool

Branch distance

Call method

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

BranchDistance instrumentation

Hill-climbing

Tuple (x, y)

Neighbourhood of (x, y)

Normalisation Functions
Since the ‘maximum’ branch distance is generally unknown
we need a non-standard normalisation function

Baresel (2000), alpha = 1.001

Normalisation Functions
Since the ‘maximum’ branch distance is generally unknown
we need a non-standard normalisation function

Arcuri (2010), beta = 1

from Instrumentation import BranchPredicate

def testMe(x, y):
 if (BranchPredicate(1, 'Eq', x, 2 * y) and  
 BranchPredicate(2, 'Gt', y, 1)):
 return True
 else:
 return False

http://goo.gl/8mj8HC - 3.zip

http://goo.gl/8mj8HC

def testMe(x, y):
 if x <= y:
 if x == y:
 print("Some output")
 if x > 0:
 if y == 17:
 # Target Branch
 return True
 return False

Entry

Exit

x <= y

x == y

x > 0

y == 17

return False return True

print

true

true

true

true

false

false

false

false

def testMe(x, y):
 if x <= y:
 if x == y:
 print("Some output")
 if x > 0:
 if y == 17:
 # Target Branch
 return True
 return False

Entry

Exit

x <= y

x == y

x > 0

y == 17

return False return True

print

true

true

true

true

false

false

false

false

B

C

D

E

F

GH

A

I

Entry

Exit

x <= y

x == y

x > 0

y == 17

return False return True

print

true

true

true

true

false

false

false

false

B

C

D

E

F

GH

• Node A dominates B if
every path to B goes
through A

Dominators

A, B
A, B, C

A, B, C, D

A, B, C, E

A, B, C, E, F

A, B, H A, B, C, E, F, G

A

I

A

A, B, I

Entry

Exit

x <= y

x == y

x > 0

y == 17

return False return True

print

true

true

true

true

false

false

false

false

• Dominators viewed in
reverse (paths from
exit node)

Post-Dominators

B, I
C, E, I

D, E, I

E, I

F, G, I

H, I G, I

B

C

D

E

F

GH

A

I

A, B, I

I

Entry

Exit

x <= y

x == y

x > 0

y == 17

return False return True

print

true

true

true

true

false

false

false

false

• A is control dependent  
on B if:

• B has at least two
successors in the CFG

• B dominates A

• B is not post-dominated by
A

• There is a successor of B
that is post-dominated by A

B

B, C

B

B, E

B B, E, F

Control Dependence
B

C

D

E

F

GH

A

I

B

C

D

E

F

GH

A

I

Entry

Exit

x <= y

x == y

x > 0

y == 17

return False return True

print

true

true

true

true

false

false

false

false

Entry

Exitx <= y

x == y x > 0

y == 17

return False

return True

print

true
truefalse

true true

true

A

B

C

D

E

F

G

B

C

D

E

F

GH

A

I

H

I

Covering a structure

TARGET

Fitness evaluation

TARGET

The test data
executes the
‘wrong’ path

Analysing control flow

TARGET

The outcomes at
key decision
statements

matter.  

These are the
decisions on

which the target
is control
dependent

Approach Level

TARGET

= 2

= 1

= 0

minimisation

Putting it all together

true

true

if a >= b

if b >= c

TARGET

TARGET MISSED  
Approach Level = 1 

Branch Distance = c - b

TARGET MISSED  
Approach Level = 2 

Branch Distance = b - a

false

false

true if c >= d false

TARGET MISSED  
Approach Level = 0 

Branch Distance = d - c

Fitness = approach Level + normalised branch distance

TARGET

normalised branch distance between 0 and 1 
indicates how close approach level is to being penetrated

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

Simulated Annealing

• Accept also worse solutions with

• Temperature

• δ = difference in objective value

p=e
δ

T(t)

44 Search-Based Testing

up and then letting it cool down again. When the metal is heated up, the thermodynamic
free energy allows the metal to change its structure, but the ability to do so reduces as
the metal cools down again. In a similar sense, the search in simulated annealing has
a temperature that is initially very high and gradually decreases, and the higher the
temperature, the higher the probability of the search accepting a solution that is worse
than the current solution. In other words, the higher the temperature, the more likely
the search is to leave an optimum, thus overcoming local optima. The probability of
accepting a worse solution is typically calculated using the following formula:

probability of accepting solution = e

solution energy - neighbour energy
temperature (9.1)

The ”energy” of a solution is the fitness value. The temperature is a parameter of
the search, and one implementation choice necessary is to decide how the tempera-
ture should ”cool down” over the cause of the search. The choice of the best cooling
schedule is a point of much debate, but a common strategy is to use a schedule of the
following form:

T (t) =
d

log(t)
(9.2)

Here, d is a positive constant that one would adapt to the problem at hand, and t

represents the time since start of the search. So, at any point t during the search, the
algorithm would consider the neighbours of the current solution and pick the best one
based on its fitness value. If that fitness value happens to be worse than the fitness of the
current solution, then the search only moves to this worse solution with a probability
as described above. This is done by calculating the probability P , and then generating
a random value R in the range [0, 1] based on a uniform distribution. If R > P then
the worse solution is accepted. If it is not accepted, then the search is stuck in the local
optimum, and the only way to get out is a random restart.

Accepting worse solutions and random jumps in the search space are two typical
approaches to overcome local optima that appear in many flavours of meta-heuristic
search algorithms, and indeed many refined algorithms are specifically designed to help
overcome local optima. However, despite the local optima in Figure 9.3, the landscape
is generally well suited for heuristic search: At every point in the landscape there is a
gradient that guides the hill-climber in a clear direction. This might not always be the
case; consider the search landscape in Figure 9.4. For any given point in the search
landscape, except those directly at the cliffs, both neighbours will have exactly the
same fitness value. A search algorithm based on exploring the neighbourhood of the
current solution in this case degenerates to random search. In fact, as hill climbing
requires a chosen neighbour to have strictly better fitness, this means one would have

Components of an SBST Tool

Branch distance

Call method

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

BranchDistance instrumentation

Simulated Annealing

Tuple (x, y)

Neighbourhood of (x, y)

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

The ‘Flag’ Problem

Program Transformation

Testability transformation:  
 change the program to improve test data generation

 ... whilst preserving test adequacy

Programs will inevitably have features that  
heuristic searches handle less well

Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer, Andre Baresel and Marc Roper.
Testability Transformation.  

IEEE Transactions on Software Engineering. 30(1): 3-16, 2004.

def testMe(x, y, z):
 if x * z == 2 * (y + 1):
 return True
 else:
 return False

http://goo.gl/8mj8HC - 4.zip

http://goo.gl/8mj8HC

decrease decrease decrease

def testMe(input1, input2, input3)

increase increase increase

Alternating Variable Method
‘Probe’ moves

Alternating Variable Method

Input variable value

Fi
tn

es
s

Accelerated hill climb

Alternating Variable Method
1. Randomly generate start point

a=10, b=20, c=30

2. ‘Probe’ moves on a

a=9, b=20, c=30
 no effect

a=11, b=20, c=30

3. ‘Probe’ moves on b

a=10, b=19, c=30

4. Accelerated moves in
 direction of improvement

improved  
branch distance

def testMe(x, y, z):
 if x * z == 2 * (y + 1):
 return True
 else:
 return False

http://goo.gl/8mj8HC - 5.zip

http://goo.gl/8mj8HC

Components of an SBST Tool

Branch distance

Call method

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

BranchDistance instrumentation

Alternating Variable Method

Tuple (x, y, z)

Increment/decrement of x, y, and z

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

Evolutionary Testing

Mutation

Crossover

Selection

Insertion

Fitness Evaluation

End?

Test cases

Monitoring

Execution

Components of an SBST Tool

Branch distance

Call method

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

BranchDistance instrumentation

Genetic Algorithm

Tuple (a, b, c, d)

Crossover, mutation, selection

Crossover

a b c
10 10 20 40

d

a b c
20 -5 80 80

d

c
80 80

d

a
20

b
-5

a
10

b
10

c
20 40

d

d
40

Mutation

a b c
10 10 20 20

d
40

da
20

Selection

• Selective pressure:  
The higher, the more likely the fittest are chosen

• Stagnation:  
Selective pressure too small

• Premature convergence: 
Selective pressure too high

109
8

7

6

5

4
3

2

1

Individual Fitness
1 2
2 1.8
3 1.6
4 1.4
5 1.2
6 1
7 0.8
8 0.6
9 0.4
10 0.2
11 0

0 0.2 0.4 0.6 0.8 1

0.020.030.060.070.090.110.130.150.160.18

1 2 3 4
5 6 7 8
9 10 11

• Chosen value: 0,81

• Chosen value: 0,32

• Chosen value: 0,01

6

2

1

0 0.2 0.4 0.6 0.8 1

0.010.010.020.060.10.8

1 2 3 4 5
6

1

2

3

4
5

6

7

8

9
1011Individual Fitness

1 2
2 0.58
3 0.4
4 0.21
5 0.12
6 0.11
7 0.1
8 0.08
9 0.05
10 0.01
11 0

1

2

3

4

5
6

789

def testMe(a, b, c, d):
 if a == b and c == d:
 return True
 else:
 return False

http://goo.gl/8mj8HC - 6.zip

http://goo.gl/8mj8HC

Other Heuristics in SBST

• Particle Swarm Optimisation

• Chemical Reaction Optimisation

• Ant Colony Optimisation

• Estimation of Distribution Algorithms

• Novelty Search

Hybrid SBST Approaches

Memetic Algorithms
SBST+DSE

Interactive GA

No Free Lunch Theorem

• In the entire domain of search problem, all
search algorithms perform  
equally on average

• Each algorithm makes 
assumptions on the 
underlying problem

• Choose / adapt  
algorithms to specific 
domain

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

@Test

public void test()
{

}

int x = 2;
int y = 2;
int result = x + y;
assertEquals(4, result);

@Test

public void test()
{

}

DateTime var3 = var1.toDateTime(var2);

DateTime var4 = var3.minus(var0);

TimeOfDay var2 = new TimeOfDay();

YearMonthDay var1 = new YearMonthDay(var0);

int var0 = 10

DateTime var5 = var4.plusSeconds(var0);

Test Suite Generation
Initialize

Population

Select parents

Recombine
parents

Return best
solution

While not
done

DateTime var3 = var1.toDateTime(var2);

DateTime var4 = var3.minus(var0);

TimeOfDay var2 = new TimeOfDay();

YearMonthDay var1 = new YearMonthDay(var0);

int var0 = 10

DateTime var5 = var4.plusSeconds(var0);

Test Suite Generation

Crossover

Mutation

Mutation

Fitness

public int gcd(int x, int y) {
 int tmp;
 while (y != 0) {
 tmp = x % y;
 x = y;
 y = tmp;
 }
 return x;
}

Getting EvoSuite

http://www.evosuite.org/downloads

• Jar release - for command line usage

• Maven plugin

• IntelliJ plugin

• Eclipse plugin

• Jenkins plugin

Testing a Class

• Demo - command line

• Main options:  
-projectCP  
-class  
-criterion

Properties
• -Dproperty=value

• Search budget (s)  
-Dsearch_budget=60

• Assertion generation 
-Dassertions=false  
-Dassertion_strategy=all

• Minimisation (length and values)  
-Dminimize=false

• Inlining 
-Dinline=false

EvoSuite Sandbox

• Demo - Nondeterministic class

• Runtime library to execute tests

Testing multiple classes

Demo:

• Target / prefix

• Continuous

• Maven

• Jenkins

• IntelliJ

Experiment Exercise

• EvoSuite by default uses a combination of
different coverage criteria.

• RQ1: Does the combination lead to larger
test suites than just using branch coverage?

• RQ2: Does the combination lead to better
test suites than just using branch coverage?

Experiment Exercise
• Get evosuite-1.0.3.jar from http://evosuite.org/downloads

• Get http://evosuite.org/files/tutorial/Tutorial_Experiments.zip

• Common Options:  
-projectCP target/classes -prefix tutorial -Dsearch_budget=20  
-Doutput_variables=configuration_id,TARGET_CLASS,  
 Size,Length,MutationScore

• Treatment 1:  
java -jar evosuite-1.0.3.jar —Dconfiguration_id=Default
<common options>

• Treatment 2:  
java -jar evosuite-1.0.3.jar -Dconfiguration_id=Branch  
-criterion branch <common options>

• Resulting data:  
evosuite-report/statistics.csv

http://evosuite.org/files/tutorial/Tutorial_Experiments.zip

Building EvoSuite

• Git repository:  
git clone https://github.com/EvoSuite/evosuite.git

• Maven 
mvn package  
(mvn -DskipTests package)

• Where is EvoSuite now?  
master/target/evosuite-master-1.0.4-SNAPSHOT.jar

• Why is the jar file so huge?

Module Structure

• master

• client

• runtime

• standalone-runtime

• plugins

• generated

• shaded

Testing EvoSuite

public class NullStringSystemTest extends SystemTestBase {

@Test
public void testNullString() {

EvoSuite evosuite = new EvoSuite();

String targetClass = NullString.class.getCanonicalName();
Properties.TARGET_CLASS = targetClass;

String[] command = new String[] { "-generateSuite", "-class", targetClass };

Object result = evosuite.parseCommandLine(command);
GeneticAlgorithm<?> ga = getGAFromResult(result);
TestSuiteChromosome best = (TestSuiteChromosome) ga.getBestIndividual();

int goals = TestGenerationStrategy.getFitnessFactories().  
 get(0).getCoverageGoals().size();

Assert.assertEquals("Wrong number of goals: ", 3, goals);
Assert.assertEquals("Non-optimal coverage: ", 1d, best.getCoverage(), 0.001);

}
}

Example Test:

Extending EvoSuite

• (Artificial) Example: Middle point crossover

Extending EvoSuite

• (Artificial) Example: Middle point crossover

Extending EvoSuite

• Demo:  
MiddleCrossOver class 
Additional property 
Test case

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

1. Java

…is a weird language
and never ceases to surprise me

My personal enemy: Java Generics

Bytecode over sourcecode - yes!

2. Corner Cases

The more corner cases you cover

...the more can go wrong

...the more new corner cases you
will find

...the slower EvoSuite becomes

2. Corner Cases

• Constant Seeding: +5%

• Virtual FS: +1.4%

• Mocking +4.7%

• JEE support: +3%

• DSE: +1.2%

3. Developers

…some really care only about coverage

…others don’t care about coverage: 
"I wouldn’t normally in real life be aiming for 100% coverage. I’d probably end up with
fewer tests without this tool but I couldn’t tell you if they would be all the right tests.”

…do not want their tests to be generated

…hate ugly tests

…don’t like waiting

Talk to them!

3. Developers

public class Example {

 private Example() {}

 // …
}

4. Testing

Testing randomised algorithms is difficult

Make the implementation deterministic

Always use LinkedHashSet over HashSet,
LinkedHashMap over HashMap

Java reflection is not deterministic

Avoid static state (e.g. singletons)

4. Testing

EvoSuite uses one central random number
generator

Any change will affect something at a
completely different part of the program

Change seeds frequently during testing to find
flaky tests

5. Documentation

I don’t comment my code

Students struggle

I spend more time explaining things than it
would take me to implement them

6. Tool Comparisons

Reviewers want to see them

I don’t like doing them

It’s impossible to make them fair

Contact tool authors

Report bugs

Make your own tools usable

7. Open Source

“The source code will be released under an open
source library (most likely GPL2) at a later point,
as soon as a number of refactorings are
completed.” — FSE’11 tool paper appendix

Public GitHub repo: 2015

It will never be clean enough, just release it!

8. Licensing

License matters

Google will not touch GPL

BSD, MIT - do you want others to become
rich with your idea?

Gnu Lesser Public License, Apache

9. Tool Papers

The first one will be cited

The rest no one will cite

It shouldn’t be this way

10. Robustness

Creating a robust tool…

…is a huge effort

…it will never be finished

EvoSuite is a black hole swallowing all my
time!

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

1. SBST is Slow

• Fitness evaluation means executing tests

• Executing tests is slow

• How to reduce the number of fitness evaluations?

• How to improve search operators?

• Can we use ML to predict test execution results?

2. OO Guidance

• Object oriented code has a terrible search landscape

• Complex dependency objects are a problem

• Include dependency objects in fitness functions?

• Better testability transformations?

• Better fitness functions?

3. Technical Challenges

• Integration testing

• Concurrent code

• GUI handling code

• Database dependent code

• Prioritising tests

• Dynamically typed languages

4. SBST Usability

• Assertion/contract testing code?

• Coverage isn’t a great objective

• Usability as optimisation goal

• Study developers using SBST tools

5. Anything but Coverage

• Energy consumption

• Performance

• Tests for diagnosis and repair

Quality
Attribute

Software
Artefact Measurement

Normative
Model

Software
Artefact Measurement

MeasurementNormative
Model

Software
Artefact

Objective

Normative
Model

Software
Artefact

Measurement 
Objective

Normative
Model

Software
Artefact

Normative
Model

Software
Artefact

Descriptive
Model

Normative
Model

Software
Artefact

Filter/restrict  
generation

Method Names

 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample stringExample0 = new StringExample();
 boolean boolean0 = stringExample0.foo("");
 assertFalse(boolean0);
 }

 @Test(timeout = 4000)
 public void test3() throws Throwable {
 StringExample stringExample0 = new StringExample();
 boolean boolean0 = stringExample0.foo("");
 assertFalse(boolean0);
 }

Variable Names
 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample stringExample0 = new StringExample();
 boolean boolean0 = stringExample0.foo("");
 assertFalse(boolean0);
 }

 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample invokesFoo = new StringExample();
 boolean resultFromFoo = invokesFoo.foo("");
 assertFalse(resultFromFoo);
 }

Variable Names
public class Foo {
 public void foo() {
 StringExample sx = new StringExample();
 boolean bar = sx.foo("");
 }
}

 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample sx = new StringExample();
 boolean bar = sx.foo("");
 assertFalse(bar);
 }

Normative
Model

Software
Artefact

Further
attributes

Readability Model

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

Contents
1. Search Based Software Testing

2. Building an SBST Tool  
Hill climbing simple programs 
Alternating Variable Method 
Genetic Algorithms

3. The EvoSuite Test Generation Tool  
Running experiments with EvoSuite  
Extending EvoSuite

4. Lessons Learned

5. Future Work

General Chair:
Franz Wotawa,  
Graz University of Technology,
Austria !
Program Chairs:
Gordon Fraser,  
University of Sheffield, UK
Darko Marinov,  
University of Illinois, Urbana-
Champaign, USA !
Steering Committee:
John Penix, Google, USA
Benoit Baudry, IRISA-INRIA,
France
Antonia Bertolino, ISTI-CNR,
Italy
Lionel Briand, University of
Luxembourg, Luxembourg
Gordon Fraser, University of
Sheffield, UK
Yvan Labiche, Carleton
University, Canada
Yves Le Traon, University of
Luxembourg, Luxembourg
Alex Orso, Georgia Institute of
Technology, USA
Ina Schieferdecker,
Fraunhofer FOKUS, Germany !
Important Dates:
• Technical paper deadline:

October 24, 2014
• Acceptance notification:

December 22, 2014
• Conference dates:  

April 13-17, 2015

We are pleased to announce ICST 2015, the eighth edition of the IEEE International
Conference on Software Testing, Verification, and Validation. ICST is the premier conference
for research in all areas related to software quality.

The ever increasing complexity, ubiquity, and dynamism of modern software systems is
making software quality assurance activities, and in particular software testing and analysis,
more challenging. The development of a software system involves human judgement and,
sometimes, political, legal and social processes. As a result, software testing, verification
and validation includes testing, inspections, safety certification, security, privacy and draws
upon a wide spectrum of disciplines, including engineering, mathematics and also
psychology. Verification and validation touches all aspects of computer science and software
engineering research and impacts every software practitioner.

ICST seeks to meet these challenges by bringing together researchers and practitioners for
a conference that includes all aspects of software testing, verification, and validation. It
provides an ideal forum where academics, industrial researchers, and practitioners can
present their latest approaches for ensuring the quality of today’s complex software
systems, exchange and discuss ideas, and compare experiences. !
Technical Program

We invite the submission of high-quality papers in all areas of software testing, verification,
and validation. Research papers should present original and significant work that advances
the state of the art. Industrial experience reports present real world experience from which
others can benefit. Tool demonstrations are also welcome, especially those openly available
for others to use. Finally, we are seeking tutorials that are relevant to both practitioners and
researchers. See the specific calls for more details.

Extended versions of the best papers from ICST conferences are regularly published in
special editions of JSTVR. !
Location

Graz is the second largest city in Austria, with a population of about 300,000. Some 50,000
of this population is made up of students, as Graz is home to no less than six universities,
and is associated with names as illustrious as Johannes Kepler, Erwin Schrödinger and Nikola
Tesla. In 1999, Graz was added to the UNESCO list of World Cultural Heritage Sites, and the
site was extended in 2010 by Schloss Eggenberg. Graz was sole Cultural Capital of Europe
for 2003 and got the title of a City of Culinary Delights in 2008.

8th IEEE International Conference on  
Software Testing, Verification and Validation

http://icst2015.ist.tugraz.atSubmit your SBST papers here:

http://aster.or.jp/conference/icst2017

http://goo.gl/kyO2Jq

http://aster.or.jp/conference/icst2017

