
Empir Software Eng
DOI 10.1007/s10664-015-9424-2

A detailed investigation of the effectiveness
of whole test suite generation

José Miguel Rojas1 ·Mattia Vivanti2 ·
Andrea Arcuri3,4 ·Gordon Fraser1

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract A common application of search-based software testing is to generate test cases
for all goals defined by a coverage criterion (e.g., lines, branches, mutants). Rather than gen-
erating one test case at a time for each of these goals individually, whole test suite generation
optimizes entire test suites towards satisfying all goals at the same time. There is evidence
that the overall coverage achieved with this approach is superior to that of targeting individ-
ual coverage goals. Nevertheless, there remains some uncertainty on (a) whether the results
generalize beyond branch coverage, (b) whether the whole test suite approach might be infe-
rior to a more focused search for some particular coverage goals, and (c) whether generating
whole test suites could be optimized by only targeting coverage goals not already covered.
In this paper, we perform an in-depth analysis to study these questions. An empirical study
on 100 Java classes using three different coverage criteria reveals that indeed there are some
testing goals that are only covered by the traditional approach, although their number is only

Communicated by: Claire Le Goues and Shin Yoo

� Gordon Fraser
gordon.fraser@sheffield.ac.uk

José Miguel Rojas
j.rojas@sheffield.ac.uk

Mattia Vivanti
mattia.vivanti@usi.ch

Andrea Arcuri
aa@scienta.no

1 Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello, S1 4DP,
Sheffield, UK

2 Università della Svizzera italiana (USI), Lugano, Switzerland

3 Scienta, Oslo, Norway

4 SnT Centre, University of Luxembourg, Esch-sur-Alzette, Luxembourg

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10664-015-9424-2-x&domain=pdf
mailto:gordon.fraser@sheffield.ac.uk
mailto:j.rojas@sheffield.ac.uk
mailto:mattia.vivanti@usi.ch
mailto:aa@scienta.no

Empir Software Eng

very small in comparison with those which are exclusively covered by the whole test suite
approach. We find that keeping an archive of already covered goals along with the tests cov-
ering them and focusing the search on uncovered goals overcomes this small drawback on
larger classes, leading to an improved overall effectiveness of whole test suite generation.

Keywords Automated test generation · Unit testing · Search-based testing · EvoSuite

1 Introduction

Search-based software engineering has been applied to numerous different software devel-
opment activities (Harman et al. 2012), and software testing is one of the most successful of
these (McMinn 2004; Ali et al. 2010). One particular software testing task for which search-
based techniques are well suited is the automated generation of unit tests. For example, there
are search-based tools like AUSTIN for C programs (Lakhotia et al. 2010) or EVOSUITE

for Java programs (Fraser and Arcuri 2011).
In search-based software testing, the testing problem is cast as a search problem. For

example, common scenarios are to generate a set of test cases maximizing their code cover-
age or maximizing their fault detection capability. A code coverage criterion describes a set
of typically structural aspects of the system under test (SUT) which should be exercised by
a test suite, for example all statements, lines or branches. Mutation testing is traditionally
used to assess the fault detection capability of a test suite: artificial faults are inserted in the
SUT one at a time and the ability of the test suite to detect such faults is measured. For both
cases, the search space would consist of all possible data inputs for the SUT. A search algo-
rithm (e.g., a genetic algorithm) is then used to explore this search space to find the input
data that maximize the given objective (e.g., cover as many branches as possible or achieve
the highest possible mutation score).

Traditionally, to achieve this testing objective a search is carried out on each individual
coverage goal (McMinn 2004) (e.g., a branch). To guide the search, the fitness function
exploits information like the approach level (Wegener et al. 2001) and branch distance
(Korel 1990). It may happen that during the search for a coverage goal there are other goals
that can be “accidentally” covered, and by keeping such test data one does not need to per-
form search for those accidentally covered goals. However, there are several potential issues
with such an approach:

– Search budget distribution: If a coverage goal is infeasible, then all search effort to try
to cover it would be wasted (except for any other coverage goals accidentally covered
during the search). Unfortunately, determining whether a goal is feasible or not is an
undecidable problem. If a coverage goal is trivial, then it will typically be covered by
the first random input. Given a set of coverage goals and an overall available budget
of computational resources (e.g., time), how to assign a search budget to the individual
goals to maximize the overall coverage?

– Coverage goal ordering: Unless some smart strategies are designed, the search for
each coverage goal is typically independent, and potentially useful information is
not shared between individual searches. For example, to cover a nested branch one
first needs to cover its parent branch, and test data for the latter could be used
to help the search for the nested branch (instead of starting from scratch). In this
regard, the order in which coverage goals are sought can have a large impact on final
performance.

Empir Software Eng

To overcome these issues, previous work introduced thewhole test suite approach (Fraser
and Arcuri 2013b, 2015). Instead of searching for a single test for each individual coverage
goal in sequence, the search problem is changed to a search for a set of tests that covers
all coverage goals at the same time; accordingly, the fitness function guides to cover all
goals. The advantage of such an approach is that both the questions of how to distribute the
available search budget between the individual coverage goals, and in which order to target
those goals, disappear. With the whole test suite approach, large improvements have been
reported for both branch coverage (Fraser and Arcuri 2013b) and mutation testing (Fraser
and Arcuri 2015).

Despite this evidence of higher overall coverage, the question remains of how the use of
whole test suite generation influences individual coverage goals. In particular:

– Even if the whole test suite approach covers more goals, those are not necessar-
ily going to be a superset of those that the traditional approach would cover. Is the
higher coverage due to more easy goals being covered? Is the coverage of other goals
adversely affected? Are there goals that the traditional one goal at a time approach can
cover and the whole approach can not? Although higher coverage might lead to better
regression test suites, for testing purposes some coverage goals might be more “valu-
able” than others. So, from a practical point of view, preferring the whole test suite
approach over the traditional one may not necessarily lead to improvement in testing
effectiveness.

– When generating individual tests, once a coverage goal is satisfied, it is no longer
involved in test generation, and resources are invested only on uncovered goals. In
whole test suite generation, all goals, including those already covered during the search,
are part of the optimization until the search ends. For example, after mutation in the
genetic algorithm a test suite may cover a new branch, but if the mutation meant that
two already covered goals are “lost” by that test suite, the fitness evaluation would not
consider this new test an improvement. Does this affect whole test suite optimization in
practice? An easy solution to overcome this problem would be to keep a test “archive”
for the already covered goals, and focus the search only on those goals not yet covered.

In this paper, we aim to empirically study these two aspects in detail. We investigate
whether there are specific coverage goals for which the traditional approach is better and,
if that is the case, we attempt to characterise those scenarios. Based on an empirical study
performed on 100 Java classes, our study shows that indeed there are cases in which the
traditional approach provides better results. However, those cases are rare (nearly one hun-
dred times less) compared to the cases in which only the whole test suite approach is able
to cover the goals. Using an archive does improve performance on average, but it also has
negative side-effects on some testing targets.

This paper is an extension to earlier work (Arcuri and Fraser 2014). In particular, in this
paper we analyze three different coverage criteria, namely line coverage, branch coverage
and weak mutation, instead of just branch coverage. Furthermore, we investigate the effects
of using a test archive during whole test suite generation by replicating the previous exper-
iments (Arcuri and Fraser 2014) and performing another set of experiments on a sample of
more complex classes.

The structure of this paper is as follows. Section 2 provides background information,
whereas the whole test suite approach is discussed in details in Section 3. The performed
empirical study is presented in Section 4. A discussion on the threats to the validity of the
study follows in Section 5. Finally, Section 6 concludes the paper.

Empir Software Eng

2 Background

Search-based techniques have been successfully used for test data generation (Ali et al.
2010) and McMinn (McMinn 2004) amply surveyed this topic). The application of search
for test data generation can be traced back to the 70s (Miller and Spooner 1976), and
later the key concepts of branch distance (Korel 1990) and approach level (Wegener
et al. 2001) were introduced to help search techniques in generating the right test
data.

More recently, search-based techniques have also been applied to test object-oriented
software (e.g., (Tonella 2004; Fraser and Zeller 2012; Wappler and Lammermann 2005;
Ribeiro 2008)). One specific issue that arises in this context is that test cases are sequences
of calls, and their length needs to be controlled by the search. Since the early work of Tonella
(Tonella 2004), researchers have tried to deal with this problem, for example by penalizing
the length directly in the fitness function. However, longer test sequences can lead to achieve
higher code coverage (Arcuri 2012), yet properly handling their growth/reduction during
the search requires special care (Fraser and Arcuri 2013a).

Most approaches described in the literature aim at generating test suites that achieve as
high as possible branch coverage. In principle, any other coverage criterion is amenable to
automated test generation. For example, mutation testing (Jia and Harman 2009) is often
considered a worthwhile test goal, and has been used in a search-based test generation
environment (Fraser and Zeller 2012).

When test cases are sought for individual goals in such coverage-based approaches, it is
important to keep track of the accidental collateral coverage of the remaining goals. Oth-
erwise, it has been proven that random testing would fare better under some scalability
models (Arcuri et al. 2012). Recently, Harman et al. (2010) proposed a search-based multi-
objective approach in which, although each coverage goal is still targeted individually, there
is the secondary objective of maximizing the number of collateral goals that are acciden-
tally covered. However, no particular heuristic is used to help covering these other coverage
goals.

All approaches mentioned so far target a single test goal at a time – this is the pre-
dominant method. There are some notable exceptions in search-based software testing. The
works of Arcuri and Yao (2008) and Baresi et al. (2010) use a single sequence of function
calls to maximize the number of covered branches while minimizing the length of such a test
case. A drawback of such an approach is that there can be conflicting testing goals, and it
might be impossible to cover all of them with a single test sequence regardless of its length.

The whole test suite approach (Fraser and Arcuri 2013b, 2015) was devised to over-
come those issues. In this approach, instead of evolving individual tests, whole test suites
are evolved, with a fitness function that considers all the coverage goals at the same time.
Promising results were obtained for both branch coverage (Fraser and Arcuri 2013b) and
mutation testing (Fraser and Arcuri 2015).

As an alternative to the whole test suite approach, Panichella et al. (2015) recently refor-
mulated the generation of test suites for branch coverage as a many-objective optimization
problem. The idea is to simultaneously minimize the distance between a test case and each
uncovered branch in the class under test. To this end, an archive of solutions is used to store
test cases which cover new branches, continuing the search with only uncovered branches
as target goals. To which extent the reported benefits stem from the many-objective refor-
mulation of the problem or from the use of this archiving mechanism remains unclear. The
archive-based whole test suite approach presented in this paper opens the way for further
empirical evaluations.

Empir Software Eng

3 Whole Test Suite Generation

To make this paper self-contained, in this section we provide a summarized description of
the traditional approach used in search-based software testing, the whole test suite approach,
and the archive-based extension of the whole test suite approach. For more details on the
traditional approach, the reader can for example refer to McMinn (2004) and Wegener
et al. (2001). For the whole test suite approach, the reader can refer to Fraser and Arcuri
(2013b, 2015).

Given a SUT, assume X to be the set of coverage goals we want to automatically cover
with a set of test cases T (i.e., a test suite). Coverage goals could be for example branches
if we are aiming at branch coverage, or any other element depending on the chosen cover-
age criterion (e.g., mutants in mutation testing). In this paper, we consider three coverage
criteria: The dominant coverage criterion in the literature is branch coverage, hence we
include it as well. In practice, statement coverage often serves as a simpler alternative when
practitioners measure the coverage of their tests. However, many modern bytecode-based
tools (Li et al. 2013) measure coverage on lines of code as a proxy for statement cover-
age. Consequently, we use line coverage as the second criterion in this paper. Finally, the
third criterion we consider is weak mutation testing (Fraser and Arcuri 2015), where each
mutants is expected to lead to a state change.

3.1 Generating Tests for Individual Coverage Goals

Given |X| = n coverage goals, traditionally there would be one search for each of them.
To give more gradient to the search (instead of just counting “yes/no” on whether a goal is
covered), usually the approach level A(t, x) and branch distance d(t, x) are employed for
the fitness function (McMinn 2004; Wegener et al. 2001). The approach level A(t, x) for a
given test t on a coverage goal x ∈ X is used to guide the search toward the target goal. It
is determined as the minimal number of control dependent edges in the control dependency
graph between the target goal and the control flow represented by the test case. The branch
distance d(t, x) is used to heuristically quantify how far a predicate in a branch x is from
being evaluated as true. In this context, the considered predicate xc is taken for the closest
control dependent branch where the control flow diverges from the target branch.

Branch Coverage The Branch Coverage fitness function to minimize the approach level
and branch distance between a test t and a branch coverage goal x is defined as:

f (t, x) = A(t, x) + ν(d(t, xc)) , (1)
where ν is any normalizing function in the [0, 1] range (Arcuri 2013). For example, consider
this trivial function:

With a test case t50 having the value z = 50, the execution would diverge at the second
if-condition, hence the resulting fitness function for the target xz>200 would be

f (t50, xz>200) = 1 + ν(|50 − 100| + 1) = 1 + ν(51) , (2)
where the first component is the approach level (i.e., 1) and the second component deter-
mines the distance to executing the “then” branch of the second if-condition. Now, the test

Empir Software Eng

with z = 50 would have higher fitness (i.e., it would be worse) than the following test case
which uses z = 101, due to the lower approach level (i.e., 0) and the normalization of the
branch distance values:

f (t101, xz>200) = 0 + ν(|101 − 200| + 1) = 0 + ν(100) . (3)

Line Coverage Once the control flow graph of the SUT is constructed, the problem of
determining the closeness to a line being covered boils down to determining how close the
basic block it belongs to is from being covered. Hence, the definition of Line Coverage
fitness function is identical to the one for Branch Coverage.

Weak Mutation Testing Mutation testing consists in applying small changes, one at a
time, in the code of the SUT and then checking if a test distinguishes between the original
SUT and the changed versions, called mutants. Weak mutation considers a mutant covered
(“killed”) if the execution of the test on the mutant is observably different from its execution
on the original SUT, that is, if state infection is reached by the test. Otherwise, the mutant
remains uncovered (“alive”). The Weak Mutation Testing fitness function for a test t and a
mutant μ is hence given by the sum of the approach level, branch distance and the minimal
infection distance function dinf(t, μ):

f (t, μ) = A(t, μ) + ν(d(t, μc)) + ν(dinf(t, μ)) , (4)

where the dinf(t, μ) estimates the distance to an execution of the mutant in which state
infection occurs. Intuitively, if the mutation (i.e., the specific instruction where the mutant
differs from the original SUT) is not executed, the infection distance is 1.0 (maximum). If
the mutation is executed, on the other hand, the minimal state infection distance is specific
to each mutation operator (Fraser and Zeller 2012). For simple operators such as for instance
Delete Statement and Insert Unary Operator, the minimal infection distance solely depends
on the execution distance (that is, it is 0.0 whenever the approach level and branch distances
are 0.0 as well). For other operators, the infection distance depends on the comparison of
the executions of the original and mutated code; for example, the minimal infection distance
for the Replace Arithmetic Operator is 0.0 only when the outcome of the original arithmetic
operation and the outcome of the mutation differ, and 1.0 when the outcomes are the same.

While implementing this traditional approach, we tried to derive a faithful representation
of current practice, which means that there are some optimizations proposed in the literature
which we did not include:

– New test cases are only generated for goals that have not already been covered through
collateral coverage of previously created test cases. However, we do not evaluate the
collateral coverage of all individuals during the search, as this would add a significant
overhead, and it is not clear what effects this would have given the fixed timeout we
used in our experiments.

– When applying the one goal at a time approach, a possible improvement could be to
use a seeding strategy (Wegener et al. 2001). During the search, we could store the test
data that have good fitness values on coverage goals that are not covered yet. These
test data can then be used as starting point (i.e., for seeding the first generation of
a genetic algorithm) in the successive searches for those uncovered goals. However,
we decided not to implement this, as Wegener et al. (2001) do not provide sufficient
details to reimplement the technique, and there is no conclusive data regarding several
open questions; for example, potentially a seeding strategy could reduce diversity in the

Empir Software Eng

population, and so in some cases it might in fact reduce the overall performance of the
search algorithm.

– The order in which coverage goals are selected might also influence the result. As in
the literature usually no order is specified (e.g., Tonella 2004; Harman et al. 2010),
we selected the branches in random order. However, in the context of procedural code
approaches to prioritize coverage goals have been proposed, e.g., based on dynamic
information (Wegener et al. 2001). However, the goal of this paper is neither to study the
impact of different orders, nor to adapt these prioritization techniques to object-oriented
code.

– In practice, when applying a single goal strategy, one might also bootstrap an initial
random test suite to identify the trivial test goals, and then use a more sophisticated
technique to address the difficult goals; here, a difficult, unanswered question is when
to stop the random phase and start the search.

3.2 Whole Test Suite Generation

For the whole test suite approach, we used exactly the same implementation used by Fraser
and Arcuri (2013b, 2015). In the Whole approach, the approach level A(t, x) is not needed
in the fitness function, as generally all control dependencies are included in the optimization
target, and thus the approach level is optimized to 0 for all cases automatically.

The Branch Coverage fitness function to minimize for a set of test cases T on a set of
branches B is:

fBC(T , B) =
∑

b∈B

d(T , b) , (5)

where d(T , b) is defined as:

d(T , b) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if branch b has been covered,
ν(dmin(t ∈ T , b)) if the predicate has been

executed at least twice,
1 otherwise.

(6)

Similarly, the Line Coverage fitness function to minimize for a set of test cases T on a
set of source code lines L is:

fLC(T , L) = ν(|L| − |LCovered|) +
∑

bk∈BCUT

d(T , b) , (7)

where L is the set of all non-comment lines of code in the CUT, LCovered is the subset of
non-comment lines of code covered with the execution of all the tests in T , and BCUT is
the set of branches that are control dependencies (i.e., branches that have child nodes in the
control dependence tree).

TheWeak Mutation fitness function optimizes test suites for weak mutation score:

fWM(T ,M) =
∑

μ∈M
dw(T , μ) , (8)

where M is the set of all mutants generated for the SUT using a set of mutation operators
(Fraser and Arcuri 2015) and dw(T , μ) guides the search by calculating the state infection
distance to a mutant μ:

dw(T , μ) =
{

ν(dinf(T , μ)) if mutant μ was reached,
1 otherwise.

(9)

Empir Software Eng

Note that the total set of coverage goals for any of the fitness functions defined could
be considered as different objectives. Instead of linearly combining them in a single fitness
score, a multi-objective algorithm could be used. However, a typical class can have hun-
dreds if not thousands of objectives (e.g., branches), making a multi-objective algorithm
not ideal due to scalability problems. Specialized many-objective fitness functions may
be applicable (Panichella et al. 2015), but have only been considered for branch coverage
so far.

3.3 Archive-based Whole Test Suite Generation

The fitness functions shown above all assume that all coverage goals are targeted at the
same time. That is, even when we already have a test for a coverage goal, it will still
influence the search, as an optimal test suite needs to consist of tests for all goals. This
potentially can have adverse effects on the effectiveness of the search: A share of the search
budget will be devoted to covering goals that have already been covered in the past, and
the search may at times focus less on exploring new, completely uncovered code, but more
on exploiting existing coverage. For example, even if a newly covered branch is an impor-
tant control dependency required to cover a large section of the code, if the mutation that
led to coverage of this branch “lost” coverage of several other branches already covered
in the past, then the fitness function will not reward this individual. On the other hand, a
change that reduces the branch distance towards several uncovered goals may result in a bet-
ter fitness value even if this reduces coverage (this effect can be observed by EVOSUITE’s
progress bar not increasing monotonically, but sometimes jumping back to lower coverage
values).

These issues can be overcome by using a concept that is common in multi-objective
optimization: an archive of individuals. During fitness evaluation, each time we discover
that a new branch (or line or mutant) has been covered, we add the covering test and the
covered goal to an archive. The fitness function is modified to no longer take these covered
goals into account. However, it is important that this modification of the fitness function
is not done in the middle of the fitness evaluation of one test suite, or the creation of a
new population in a standard genetic algorithm approach, as it would make fitness values
between individuals inconsistent. Therefore, we modify the fitness function only at the end
of an iteration, after the fitness of all individuals has been evaluated. The modification
simply consists of removing already covered goals. For example, for branch coverage the
fitness function becomes:

fBC(T , B) =
∑

b∈B\C
d(T , b) , (10)

where C is the set of goals already covered in the archive.
The impact of not taking already covered goals into account for fitness computation

can be demonstrated in the following example. Assume there are two test suites T1 and
T2 and a set of branch goals B = {b1, b2}, such that d(T1, b1) = 0, d(T1, b2) = 0.7,
and d(T2, b1) = 1, d(T2, b2) = 0.1. Using the fitness function defined in (5), we have
fBC(T1, B) = 0 + 0.7 = 0.7 and fBC(T2, B) = 1 + 0.1 = 1.1. Hence, T1, with a lower
fitness value, is a fitter individual than T2 and has higher chances of remaining in the popula-
tion in further generations than T2, even though T2 is much closer than T1 to covering branch
b2. In contrast, by using the archive-based fitness function definition (10), the branch b1 is
omitted in the fitness computation and we have fBC(T1, B) = 0.7 and fBC(T2, B) = 0.1.

Empir Software Eng

Therefore, T2 is a fitter individual, and by selecting it the search is more likely to evolve a
test suite covering b2 in future generations.

At the end of the search, by definition the best individual of the genetic algorithm
population will not cover any of the remaining coverage objectives (it may cover any
number of other goals already covered in the archive). Thus, the test suite used by
EVOSUITE for its postprocessing steps (e.g., minimization, assertion generation) is not
taken from the search population, but is a test suite consisting of all the tests in the
archive.

The simplicity of the fitness functions for whole test suite generation is based on the
assumption that all coverage goals are targeted at the same time. That is, the approach
level is not included in the fitness function because all control dependencies are part of the
optimization. If this assumption no longer holds and the fitness function only targets a subset
of the coverage goals, then this potentially results in a lack of guidance, for example if some
of the control dependencies of code not yet covered are no longer optimized for. There are
different ways to address this issue; for example, the approach level could be included in the
fitness function to provide the missing guidance. A simpler solution is provided by ensuring
that the genetic material covering the control dependencies is not lost, even if the coverage
goals are removed from the fitness function. EVOSUITE achieves this in two ways. In the
simplest case, EVOSUITE keeps the tests in the population even after removing a coverage
goal. Moreover, EVOSUITE ’s search operators further try to exploit the archive by creating,
with a certain probability, new tests by mutating tests from the archive rather than always
adding new random tests. These two simple mechanisms suffice, although more intelligent
ways of exploiting the archive, e.g., alternative seeding strategies, could be explored in the
future.

Besides the fitness function, the search operators (e.g., mutation of tests) are also
intended to optimize for all coverage goals. For example, in EVOSUITE, if a new statement
is inserted during mutation or generation of a random test, then with a probability of 50 %
this is a call on an existing object in the test, else the new statement is a call to a method of
the CUT. The choice of CUT method is made randomly with a uniform distribution, based
on the assumption that all methods need to be covered. However, once all branches (or lines
or mutants) in a method have been covered, then inserting a call to the method will not lead
to an improvement of the fitness value (unless the call leads to a state change, for which the
other 50 % probability of call insertion is intended). Therefore, as an optimization of the
search operators, we modify the selection of CUT methods to a random choice out of only
those methods that are not yet fully covered.

4 Empirical Study

In this paper, we carried out an empirical study to compare the traditional one goal at a
time approach (OneGoal), the whole test suite approach (Whole) and the whole test suite
approach using the archive (Archive). For each of the test coverage criteria Branch, Line and
Mutation, we aim at answering the following research questions:

RQ1: Are there coverage goals in which OneGoal performs better than Whole ?
RQ2: How many coverage goals found by Whole get missed by OneGoal ?
RQ3: Which factors influence the relative performance of Whole and OneGoal ?
RQ4: How does using an archiving solution, Archive , influence the performance of

Whole ?

Empir Software Eng

4.1 Experimental Setup

For the experiments, we randomly chose 100 Java classes from the SF100 corpus (Fraser
and Arcuri 2012), which is a collection of 100 projects randomly selected from the Source-
Forge open source software repository. We randomly selected from SF100 to avoid possible
bias in the selection procedure, and to have higher confidence to generalize our results to
other Java classes as well. The domain of the selected classes varies; for example, there
are classes dealing with lexical analysis (XPathLexer in project 24 saxpath), visual compo-
nents (e.g., SiteListPanel in 35 corina), multi-threading (BlockThread in 78 caloriecount)
and complex differential geometry operations (LocalDifferentialGeometry in 89 jiggler).
In total, the selected 100 classes contain 2,383 branches, 3,811 lines and 12,473 mutants,
which we consider as test goals.

The SF100 corpus contains more than 11,000 Java classes. We only used 100 classes
instead of the entire SF100 due to the type experiments we carried out: a large number of
classes, multiple configurations and a large number of repetitions. In particular, for each
class in the selected sample we ran EVOSUITE in three modes:

(a) The one goal at a time approach (OneGoal)
(b) The whole test suite approach (Whole)
(c) The archive-based whole test suite approach (Archive)

The three modes were used in combination with the three test coverage criteria under
study, i.e, Branch, Line and Mutation, which are implemented as fitness functions in EVO-
SUITE , giving a total of nine configurations. Each experiment consists in running one
particular configuration on one of the sampled classes. To take randomness into account,
each experiment was repeated 500 times, for a total of 100 × 9 × 500 = 450, 000 runs of
EVOSUITE .

When choosing how many classes to use in a case study, there is always a tradeoff
between the number of classes and the number of repeated experiments. On one hand, a
higher number of classes helps to generalize the results. On the other hand, a higher number
of repetitions helps to better study in detail the differences on specific classes. For exam-
ple, given the same budget to run the experiments, we could have used 10,000 classes and 5
repetitions. However, as we want to study the “corner cases” (i.e., when one technique com-
pletely fails while the other compared one does produce results), we gave more emphasis
on the number of repetitions to reduce the random noise in the final results.

Each experiment was run for up to two minutes (the search on a class was also stopped
once 100 % coverage was achieved). Therefore, in total the entire case study had an upper
bound of 450, 000× 2/(24× 60) = 625 days of computational resources, which required a
large cluster to run1. When running the OneGoal approach, the search budget (i.e., the two
minutes) is equally distributed among the coverage goals in the SUT. When the search for
a coverage goal finishes earlier (or a goal is accidentally covered by a previous search), the
remaining budget is redistributed among the other goals still to cover.

Observe that the experimental setup used in this journal extension differs from
the one used for the experiments reported in the original paper (Arcuri and Fraser
2014). First, the number of configurations under study increased from two (OneGoal

1The high computational power needed to run these exhaustive experiments does not reflect the actual
requirements of the approach in a day-to-day industrial scenario, where unit tests for a class under test can
be automatically generated within seconds using the available tool interfaces.

Empir Software Eng

vs Whole, both for Branch Coverage only) to nine ({OneGoal, Whole, Archive} ×
{BranchCoverage, LineCoverage, WeakMutationScore}). To accommodate for this
setup, less repetitions were run for each configuration, namely 500 instead of 1,000. Fur-
thermore, the search budget used for each run was reduced from three to two minutes.
Importantly, the EVOSUITE tool has evolved, bugs were fixed and improvements were
made, hence it is expected that the exact coverage values may vary slightly with respect to
the earlier study.

Given the nature of the Archive approach, it is expected that it will deliver larger benefits
when applied to more complex classes. To investigate whether that is actually the case, we
conducted a second experiment of reduced magnitude targeting a more challenging set of
classes. We selected from each project in the SF100 corpus the class with the highest number
of branches (full list with details is in Table 8 in the Appendix). The three approaches were
evaluated for each of the test criteria on this case study as well, but only 30 repetitions
were run. As discussed before, the results obtained for a lower number of repetitions may
be influenced by randomness. However, in this case even this small number of repetitions
is expected to suffice in demonstrating the effects of using the Archive approach, as they
are only used to provide more support to our main results. In total, this added a further
100 × 9 × 30 = 27, 000 runs of EVOSUITE .

To properly analyse the randomized algorithms used in this paper, we followed the guide-
lines proposed by Arcuri and Briand (2014). In particular, when branch coverage values
were compared, statistical differences were measured with the Wilcoxon-Mann-Whitney
U-test, where the effect size was measured with the Vargha-Delaney Â12. An Â12 = 0.5
means no difference between the two compared algorithms.

When checking how often a goal was covered, because whether or not a goal is covered is
a binary variable, we used the Fisher exact test. As effect size, we used the odds ratios, with
a δ = 1 correction to handle the zero occurrences. When there is no difference between two
algorithms, then the odds ratio is equal to one. Note, in some of the graphs we rather show
the natural logarithm of the odds ratios, and this is done only to simplify their representation.

4.2 RQ1: Are There Coverage Goals in Which OneGoal Performs Better
thanWhole ?

Tables 1, 2 and 3 show the average coverage results obtained for each of the test criteria
on the selected 100 Java classes. The results in Table 1 confirm previous results (Fraser
and Arcuri 2013b): the Whole test suite approach leads to higher branch coverage. In this
case, the average branch coverage increases from 63 % to 78 %, with a 0.67 effect size. The
Whole approach leads to significantly higher branch coverage for 45 % of the classes, and
to lower coverage in none of them.

Results for Line Coverage are also positive: Table 2 shows that theWhole approach leads
to a 16 % average increase, from 62 % to 78 % with a 0.69 effect size. We observed an
individual statistically significant improvement for 47 classes. Whereas there is no class
with significantly lower line coverage, class JSListSubstitution in project 85 shop is worth
looking into since it shows a decrease in coverage with an effect size of 0.47. Figure 1 lists
the relevant code from this class.

By default, EVOSUITE uses the length of the test suite as a secondary optimization
objective for Whole test suite generation. The general advantage is that resulting test suites
tend to be shorter using this secondary objective. However, optimizing the test suite’s size
can sometimes have undesired effects, e.g., less randomness and less diversity. For class
JSListSubstitution in particular, the use of the test suite size as secondary objective seems

Empir Software Eng

Table 1 For each class with statistically significant results, the table reports the average Branch Coverage
obtained by the OneGoal approach and by the Whole approach

Project Class OneGoal Whole Â12 p-value

13 jdbacl AbstractTableMapper 0.20 0.71 0.97 < 0.001

18 jsecurity IniResource 0.11 0.73 0.99 < 0.001

18 jsecurity ResourceUtils 0.26 0.80 1.00 < 0.001

18 jsecurity DefaultWebSecurityManager 0.02 0.42 1.00 < 0.001

21 geo-google AddressToUsAddressFunctor 0.00 0.55 0.99 < 0.001

24 saxpath XPathLexer 0.10 0.70 1.00 < 0.001

32 httpanalyzer ScreenInputFilter 0.58 0.83 0.77 < 0.001

35 corina TRML 0.00 0.20 1.00 < 0.001

35 corina SiteListPanel 0.00 0.00 0.94 < 0.001

43 lilith EventIdentifier 0.98 1.00 0.53 < 0.001

43 lilith LogDateRunnable 0.36 0.59 0.69 < 0.001

44 summa FacetMapSinglePackedFactory 0.01 0.46 0.99 < 0.001

45 lotus Phase 0.97 1.00 0.54 < 0.001

46 nutzenportfolio KategorieDaoService 0.00 0.16 1.00 < 0.001

54 db-everywhere Select 0.00 0.08 0.95 < 0.001

58 fps370 MouseMoveBehavior 0.08 0.53 0.99 < 0.001

61 noen DataType 0.00 1.00 1.00 < 0.001

61 noen WatchDog 0.22 0.54 0.87 < 0.001

62 dom4j STAXEventReader 0.00 0.01 1.00 < 0.001

62 dom4j CloneHelper 0.77 1.00 0.82 < 0.001

62 dom4j PerThreadSingleton 0.66 0.85 0.63 < 0.001

66 openjms SecurityConfigurationDescriptor 0.27 0.68 0.98 < 0.001

66 openjms And 0.90 1.00 0.68 < 0.001

66 openjms BetweenExpression 0.23 0.87 0.98 < 0.001

69 lhamacaw CategoryStateEditor 0.00 0.08 0.95 < 0.001

70 echodep PackageDissemination 0.00 0.09 0.99 < 0.001

74 fixsuite ListView 0.06 0.10 0.71 < 0.001

75 openhre User 0.19 0.98 1.00 < 0.001

75 openhre HL7SegmentMapImpl 0.99 1.00 0.51 < 0.001

78 caloriecount BudgetWin 0.01 0.12 0.99 < 0.001

78 caloriecount ArchiveScanner 0.01 0.63 1.00 < 0.001

78 caloriecount RecordingEvent 0.75 1.00 0.96 < 0.001

78 caloriecount BlockThread 0.46 0.82 0.93 < 0.001

79 twfbplayer BattlefieldCell 0.00 0.36 0.95 < 0.001

80 wheelwebtool Block 0.08 0.81 0.98 < 0.001

84 ifx-framework ChkOrdInqRs Type 0.92 1.00 0.69 < 0.001

84 ifx-framework PassbkItemInqRs Type 0.98 1.00 0.52 < 0.001

85 shop JSListSubstitution 0.90 0.97 0.59 < 0.001

88 jopenchart InterpolationChartRenderer 0.00 0.05 0.96 < 0.001

89 jiggler SignalCanvas 0.19 0.97 1.00 < 0.001

89 jiggler ImageOutputStreamJAI 0.05 0.79 0.99 < 0.001

Empir Software Eng

Table 1 (continued)

Project Class OneGoal Whole Â12 p-value

89 jiggler LocalDifferentialGeometry 0.03 0.32 0.99 < 0.001

92 jcvi-javacommon PhdFileDataStoreBuilder 0.21 0.80 0.99 < 0.001

93 quickserver SimpleCommandSet 0.66 0.83 0.65 < 0.001

93 quickserver AuthStatus 0.12 0.33 0.80 < 0.001

Average 0.63 0.78 0.67

∗There were 53 classes with no statistically significant difference

to hamper the generation of a data structure that can satisfy the condition if(s1!=null), as
the fitness function in general provides no incentive to add more values into the vector
data-structure. To verify this conjecture, we ran EVOSUITE 30 times for this configuration
(class JSListSubstitution, mode Whole and criterion Line Coverage) with and without the
secondary objective. The result of this comparison indeed indicates that not using the sec-
ondary objective leads to higher Whole Line Coverage on this class, with a 0.6 effect size
and 0.04 p-value.

The largest increase in coverage is observed for the Weak Mutation Testing criterion. As
shown in Table 3, Whole significantly outperforms OneGoal on 69 classes, leading to an
average increase of 0.41 (0.77 − 0.36) with an effect size of 0.83. Recall that OneGoal
has an inherent limitation related to the number of goals and the search budget distribution.
The overall search budget, two minutes in our experiments, must be evenly distributed to
target each coverage goal at a time. When the number of goals is high, as in our sample
where 125 mutants are generated per class on average, the small time budget assigned to
each goal is often not sufficient for a genetic algorithm to find any solution at all, i.e., zero
coverage.

To study the difference between OneGoal and Whole at a finer grained level, Table 4
shows on how many coverage goals (i.e., respectively branches, lines and mutants) one
approach is better than the other. These results indicate that there are only three goals for
which OneGoal leads to better Branch Coverage results; however, all of them are covered
byWhole at least once. A closer look reveals that all three goals are in the same class JSON-
Stringer, which in fact is fully covered by both techniques in all their runs; but there are six
datapoints for Whole missing, which is sufficient for the Fisher test to claim a significant
difference. This may happen with experiments of this type, e.g., if there are problems on the
cluster computer, or competing processes. This is the reason why we used as many as pos-
sible repetitions for our analysis. As this is a random effect, one would expect same odds
regardless of the technique, which means that the number of cases where Whole is better
because of crashes in OneGoal runs should be the same on average.

The results for Line Coverage andWeak Mutation Testing are similar. For Line Coverage
, OneGoal is significantly better than Whole at covering four lines, but in this case Whole
never manages to cover two of them. Also for Weak Mutation Testing, there is one mutant
that is only covered by the OneGoal approach. These lines and the mutant are both in the
class BlockThread (where all techniques resulted in 500 runs), which only has a single con-
ditional branch, all other methods contain just sequences of statements (in EVOSUITE , a
method without conditional statements is counted as a single branch, based on the con-
trol flow graph interpretation). However, the class spawns a new thread, and several of the
methods synchronize on this thread (e.g., by calling wait() on the thread). EVOSUITE uses

Empir Software Eng

Table 2 For each class with statistically significant results, the table reports the average Line Coverage
obtained by the OneGoal approach and by the Whole approach

Project Class OneGoal Whole Â12 p-value

13 jdbacl H2Util 0.64 0.81 0.62 < 0.001

13 jdbacl AbstractTableMapper 0.22 0.68 0.99 < 0.001

18 jsecurity IniResource 0.20 0.80 0.99 < 0.001

18 jsecurity ResourceUtils 0.50 0.97 0.99 < 0.001

18 jsecurity DefaultWebSecurityManager 0.04 0.43 1.00 < 0.001

21 geo-google AddressToUsAddressFunctor 0.00 0.53 0.99 < 0.001

24 saxpath XPathLexer 0.13 0.86 1.00 < 0.001

32 httpanalyzer ScreenInputFilter 0.56 0.92 0.94 < 0.001

35 corina TRML 0.01 0.43 0.99 < 0.001

35 corina SiteListPanel 0.00 0.00 0.96 < 0.001

44 summa FacetMapSinglePackedFactory 0.24 0.49 0.95 < 0.001

46 nutzenportfolio KategorieDaoService 0.01 0.19 1.00 < 0.001

54 db-everywhere Select 0.04 0.29 1.00 < 0.001

57 hft-bomberman RoundTimeOverMsg 0.46 0.66 0.65 < 0.001

58 fps370 MouseMoveBehavior 0.12 0.66 0.99 < 0.001

58 fps370 Teder 0.12 0.33 0.80 < 0.001

6 jnfe CST COFINS 0.23 0.57 0.95 < 0.001

61 noen DataType 0.00 1.00 1.00 < 0.001

61 noen WatchDog 0.27 0.55 0.91 < 0.001

62 dom4j STAXEventReader 0.00 0.01 1.00 < 0.001

62 dom4j CloneHelper 0.11 0.38 0.99 < 0.001

62 dom4j PerThreadSingleton 0.67 0.86 0.83 < 0.001

63 objectexplorer LoggerFactory 0.64 0.80 0.60 < 0.001

66 openjms SecurityConfigurationDescriptor 0.30 0.66 1.00 < 0.001

66 openjms And 0.94 1.00 0.66 < 0.001

66 openjms BetweenExpression 0.84 0.99 0.86 < 0.001

70 echodep PackageDissemination 0.00 0.12 1.00 < 0.001

74 fixsuite ListView 0.53 0.55 0.51 < 0.001

75 openhre User 0.27 0.98 1.00 < 0.001

75 openhre HL7SegmentMapImpl 0.99 1.00 0.52 < 0.001

78 caloriecount BudgetWin 0.03 0.26 0.99 < 0.001

78 caloriecount ArchiveScanner 0.02 0.68 1.00 < 0.001

78 caloriecount RecordingEvent 0.70 0.97 1.00 < 0.001

78 caloriecount BlockThread 0.28 0.62 0.91 < 0.001

79 twfbplayer BattlefieldCell 0.04 0.41 0.92 < 0.001

79 twfbplayer CriticalHit 0.81 0.99 0.60 < 0.001

80 wheelwebtool Block 0.04 0.70 0.99 < 0.001

83 xbus ByteArrayConverterAS400 0.00 0.06 0.97 < 0.001

84 ifx-framework ChkOrdInqRs Type 0.80 1.00 0.83 < 0.001

84 ifx-framework PassbkItemInqRs Type 0.92 0.99 0.62 < 0.001

85 shop JSListSubstitution 0.97 0.98 0.47 0.019

Empir Software Eng

Table 2 (continued)

Project Class OneGoal Whole Â12 p-value

88 jopenchart InterpolationChartRenderer 0.00 0.02 0.97 < 0.001

89 jiggler SignalCanvas 0.13 0.89 1.00 < 0.001

89 jiggler ImageOutputStreamJAI 0.09 0.91 0.99 < 0.001

89 jiggler LocalDifferentialGeometry 0.11 0.48 0.99 < 0.001

92 jcvi-javacommon PhdFileDataStoreBuilder 0.29 0.80 0.99 < 0.001

93 quickserver SimpleCommandSet 0.75 0.87 0.67 < 0.001

93 quickserver AuthStatus 0.02 0.16 0.91 < 0.001

Average 0.62 0.78 0.69

∗There were 50 classes with no statistically significant difference

a timeout of five seconds for each test execution, and any test case or test suite that con-
tains a timeout is assigned the maximum (worst) fitness value, and not considered as a valid
solution in the final coverage analysis. In BlockThread, many tests lead to such timeouts,
and a possible conjecture for the worse performance of theWhole approach may be that the
chances of having an individual test case without timeout are simply higher than the chances
of having an entire test suite without timeouts.

4.3 RQ2: How Many Coverage Goals Found byWhole Get Missed by OneGoal ?

Let us now quantify the goals on which Whole outperformed OneGoal . There are 11,851
goals (out of 18,666) in whichWhole gives statistically better results: 1,239 branches, 1,978
lines and 8,634 mutants. For 4,055 of them (385 branches, 468 lines and 3,202 mutants), the
OneGoal approach never managed to generate any results in any of the 500 runs. In other
words, even if there are some (i.e., three) goals that only OneGoal can cover, there are many
more goals that only Whole does cover.

4.4 RQ3: Which Factors Influence the Relative Performance of Whole
and OneGoal ?

Having showed that theWhole approach leads to higher coverage, it is important to investi-
gate the conditions in which this improvement is obtained. For each coverage criterion and
for each goal, we calculated the odds ratio betweenWhole and OneGoal (i.e., we quantified
what are the odds that Whole has higher chances to cover the goal compared to OneGoal).
For each odds ratio, we studied its correlation with three different properties: (1) the Â12
effect size between Whole and OneGoal on the class the goal belongs to; (2) the raw aver-
age coverage obtained by OneGoal on the class the goal belongs to; and, finally, (3) the size
of the class, measured as number of coverage targets (branches, lines, mutants) in it. Table
5 shows the results of these correlation analyses for the three coverage criteria.

Empir Software Eng

Table 3 For each class with statistically significant results, the table reports the average Weak Mutation
Score obtained by the OneGoal approach and by the Whole approach

Project Class OneGoal Whole Â12 p-value

13 jdbacl H2Util 0.78 0.93 0.67 < 0.001

13 jdbacl AbstractTableMapper 0.13 0.67 0.99 < 0.001

18 jsecurity Md2CredentialsMatcher 0.00 1.00 1.00 < 0.001

18 jsecurity IniResource 0.12 0.70 0.99 < 0.001

18 jsecurity ResourceUtils 0.23 0.84 1.00 < 0.001

18 jsecurity DefaultWebSecurityManager 0.06 0.46 0.99 < 0.001

21 geo-google AddressToUsAddressFunctor 0.00 0.63 1.00 < 0.001

21 geo-google PremiseNumberSuffix 0.00 1.00 1.00 < 0.001

24 saxpath XPathLexer 0.08 0.70 1.00 < 0.001

27 gangup MapCell 0.00 1.00 1.00 < 0.001

32 httpanalyzer ScreenInputFilter 0.50 0.86 0.92 < 0.001

35 corina TRML 0.00 0.22 0.99 < 0.001

35 corina SiteListPanel 0.00 0.00 0.94 < 0.001

43 lilith EventIdentifier 0.70 1.00 1.00 < 0.001

43 lilith LogDateRunnable 0.26 0.55 0.75 < 0.001

44 summa FacetMapSinglePackedFactory 0.22 0.49 0.94 < 0.001

45 lotus Phase 0.25 1.00 1.00 < 0.001

46 nutzenportfolio KategorieDaoService 0.00 0.09 1.00 < 0.001

52 lagoon Wildcard 0.66 0.99 1.00 < 0.001

54 db-everywhere Select 0.00 0.04 1.00 < 0.001

57 hft-bomberman RoundTimeOverMsg 0.00 1.00 1.00 < 0.001

58 fps370 MouseMoveBehavior 0.02 0.39 1.00 < 0.001

58 fps370 Teder 0.00 0.50 1.00 < 0.001

6 jnfe CST COFINS 0.55 0.88 0.95 < 0.001

61 noen WatchDog 0.43 0.60 0.85 < 0.001

61 noen MeasurementReport 0.00 1.00 1.00 < 0.001

61 noen OperationResult 0.00 1.00 1.00 < 0.001

62 dom4j STAXEventReader 0.00 0.00 1.00 < 0.001

62 dom4j CloneHelper 0.10 0.64 0.99 < 0.001

62 dom4j PerThreadSingleton 0.28 0.69 0.87 < 0.001

63 objectexplorer LoggerFactory 0.00 1.00 1.00 < 0.001

66 openjms SecurityConfigurationDescriptor 0.12 0.54 1.00 < 0.001

66 openjms And 0.46 0.98 1.00 < 0.001

66 openjms BetweenExpression 0.22 0.93 0.99 < 0.001

69 lhamacaw CategoryStateEditor 0.00 0.04 0.89 < 0.001

70 echodep PackageDissemination 0.00 0.13 1.00 < 0.001

74 fixsuite ListView 0.09 0.09 0.54 < 0.001

75 openhre User 0.17 0.97 1.00 < 0.001

75 openhre HL7SegmentMapImpl 0.45 0.98 1.00 < 0.001

78 caloriecount BudgetWin 0.03 0.15 0.94 < 0.001

78 caloriecount ArchiveScanner 0.01 0.62 1.00 < 0.001

Empir Software Eng

Table 3 (continued)

Project Class OneGoal Whole Â12 p-value

78 caloriecount RecordingEvent 0.52 0.98 1.00 < 0.001

78 caloriecount BlockThread 0.34 0.83 0.99 < 0.001

79 twfbplayer BattlefieldCell 0.03 0.38 0.96 < 0.001

79 twfbplayer CriticalHit 0.63 0.97 0.88 < 0.001

80 wheelwebtool Block 0.00 0.84 0.99 < 0.001

80 wheelwebtool JSONStringer 0.00 1.00 1.00 < 0.001

84 ifx-framework ChkAcceptAddRs Type 0.00 1.00 1.00 < 0.001

84 ifx-framework ChkInfo Type 0.00 1.00 1.00 < 0.001

84 ifx-framework ChkOrdInqRs Type 0.00 1.00 1.00 < 0.001

84 ifx-framework CreditAdviseRs Type 0.00 1.00 1.00 < 0.001

84 ifx-framework DepAcctStmtInqRq Type 0.00 1.00 1.00 < 0.001

84 ifx-framework EMVCardAdviseRs Type 0.00 1.00 1.00 < 0.001

84 ifx-framework ForExDealMsgRec Type 0.00 1.00 1.00 < 0.001

84 ifx-framework PassbkItemInqRs Type 0.00 1.00 1.00 < 0.001

84 ifx-framework RecPmtCanRq Type 0.00 1.00 1.00 < 0.001

84 ifx-framework StdPayeeId Type 0.00 1.00 1.00 < 0.001

84 ifx-framework SvcAcctStatus Type 0.00 1.00 1.00 < 0.001

84 ifx-framework TINInfo Type 0.00 1.00 1.00 < 0.001

85 shop JSListSubstitution 0.22 0.88 0.99 < 0.001

86 at-robots2-j RobotScoreKeeper 0.69 1.00 1.00 < 0.001

88 jopenchart InterpolationChartRenderer 0.00 0.02 0.91 < 0.001

89 jiggler SignalCanvas 0.37 0.92 0.99 < 0.001

89 jiggler ImageOutputStreamJAI 0.07 0.82 0.99 < 0.001

89 jiggler LocalDifferentialGeometry 0.03 0.32 0.99 < 0.001

9 falselight falselight 0.00 1.00 1.00 < 0.001

92 jcvi-javacommon PhdFileDataStoreBuilder 0.17 0.77 1.00 < 0.001

93 quickserver SimpleCommandSet 0.00 0.91 1.00 < 0.001

93 quickserver AuthStatus 0.00 0.16 1.00 < 0.001

Average 0.36 0.77 0.83

∗There were 29 classes with no statistically significant difference

We used Pearson’s r correlation coefficient, as well as Kendall’s τ and Spearman’s ρ.
The strengths of correlation are interpreted as follows: negligible (.01 to .19), weak (.20 to
.29), moderate (.30 to .39), strong (.40 to .69), very strong (.70 to 1), and similarly on the
negative range (−1 to −0.1) (Kotrlik and Williams 2003). All three correlation coefficients
are generally in agreement, except for the case of correlation with the OneGoal coverage
for Branch Coverage and Line Coverage. There, it is weak/moderate for Pearson’s r and
negligible for the other two.

There is a positive correlation between the odds ratios and the Â12 effect sizes for the
three criteria. This is expected: on a class in which the Whole approach obtains higher
coverage on average, it is also more likely that Whole will have higher coverage on each

Empir Software Eng

Fig. 1 Excerpt of class JSListSubstitution: Using test suite sizes as a secondary optimization objective makes
it harder for Whole to generate a data structure that satisfies the condition of the if-statement, hence often
failing to cover the “then” branch

goal in isolation. This correlation is moderate for Branch Coverage and Line Coverage , at
53 % and 40 % respectively, and weak forWeak Mutation Testing, at only 23 %.

On classes with many infeasible branches (or too difficult to cover for both Whole and
OneGoal), one could expect higher results for Whole (as it is not negatively affected
by infeasible branches (Fraser and Arcuri 2013b)). It is not possible to determine for all
branches if they are feasible or not. However, we can estimate the difficulty of a class by

Table 4 For each criterion, we report how often (number of goals) the Whole approach is better (higher
effect size) than OneGoal, how often they are equivalent, and how often it is OneGoal that is better

Criterion # of Targets Statistically at 0:05 Never Covered

by the Other

Branch Coverage Whole is better: 1410 1239 385

Equivalent: 717

OneGoal is better: 255 3 0

Total: 2382

Line Coverage Whole is better: 2292 1978 468

Equivalent: 1457

OneGoal is better: 62 4 2

Total: 3811

Weak Mutation Testing Whole is better: 9335 8634 3202

Equivalent: 3137

OneGoal is better: 1 1 1

Total: 12473

We also report the number of comparisons that are statistically significant at 0:05 level, and when only one
of the two techniques ever managed to cover a goal out of the 500 repeated experiments

Empir Software Eng

Ta
bl
e
5

Fo
r
ea
ch

cr
ite
ri
on
,c
or
re
la
tio

n
an
al
ys
es

be
tw
ee
n
th
e
od
ds

ra
tio

s
fo
r
ea
ch

go
al
an
d
th
re
e
di
ff
er
en
tp

ro
pe
rt
ie
s

C
ri
te
ri
on

Pr
op
er
ty

r
C
on
fi
de
nc
e
in
te
rv
al

p-
va
lu
e

τ
p-
va
lu
e

ρ
p-
va
lu
e

B
ra
nc
h
C
ov
er
ag
e

W
ho
le
vs
.O

ne
G
oa
l

0.
53

[0
.5
0,

0.
55
]

≤
0.
00
1

0.
50

≤
0.
00
1

0.
62

≤
0.
00
1

O
ne
G
oa
lc
ov
er
ag
e

−0
.3
8

[-
0.
41
,-
0.
34
]

≤
0.
00
1

−0
.0
2

0.
11
7

−0
.0
6

0.
00
7

#
of

br
an
ch
es

0.
42

[0
.3
9,

0.
45
]

≤
0.
00
1

0.
34

≤
0.
00
1

0.
46

≤
0.
00
1

L
in
e
C
ov
er
ag
e

W
ho
le
vs
.O

ne
G
oa
l

0.
40

[0
.3
7,

0.
43
]

≤
0.
00
1

0.
35

≤
0.
00
1

0.
44

≤
0.
00
1

O
ne
G
oa
lc
ov
er
ag
e

−0
.2
0

[-
0.
23
,-
0.
17
]

≤
0.
00
1

0.
03

0.
02
0

0.
07

≤
0.
00
1

#
of

lin
es

0.
17

[0
.1
4,

0.
20
]

≤
0.
00
1

0.
16

≤
0.
00
1

0.
23

≤
0.
00
1

W
ea
k
M
ut
at
io
n
Te
st
in
g

W
ho
le
vs
.O

ne
G
oa
l

0.
23

[0
.2
1,

0.
24
]

≤
0.
00
1

0.
46

≤
0.
00
1

0.
56

≤
0.
00
1

O
ne
G
oa
lc
ov
er
ag
e

0.
29

[0
.2
8,

0.
31
]

≤
0.
00
1

0.
35

≤
0.
00
1

0.
45

≤
0.
00
1

#
of

m
ut
an
ts

−0
.1
9

[-
0.
21
,-
0.
18
]

≤
0.
00
1

−0
.1
1

≤
0.
00
1

−0
.1
5

≤
0.
00
1

W
e
us
ed

th
re
e
di
ff
er
en
tc
or
re
la
tio

n
m
ea
su
re
s:
Pe
ar
so
n?
s
r,
K
en
da
ll?
s
τ
an
d
Sp

ea
rm

an
?s

ρ
.F

or
ea
ch

an
al
ys
is
,w

e
re
po
rt
th
e
ob
ta
in
ed

co
rr
el
at
io
n
va
lu
e,
its

co
nf
id
en
ce

in
te
rv
al
at

0:
05

le
ve
l(
on
ly

fo
r
Pe
ar
so
n?
s
r)
an
d
th
e
ob
ta
in
ed

p-
va
lu
e
(o
f
th
e
te
st
w
he
th
er

th
e
co
rr
el
at
io
n
is
di
ff
er
en
tf
ro
m

ze
ro
)

Empir Software Eng

the obtained code coverage for the considered coverage criterion. Furthermore, one would
expect better results of the Whole approach on larger, more complex classes. This is con-
firmed by the negative correlation of the odds ratios with the obtained average OneGoal
coverage for Branch Coverage and Line Coverage. However, this is not the case for Weak
Mutation Testing, which is the criterion with most targets. Similarly, the higher number of
targets (so the class would likely be more difficult) leads to better performance for Whole.
This is shown by a positive 42 % correlation for Branch Coverage and 17 % for Line Cov-
erage. However, again we see the opposite trend for Weak Mutation Testing, i.e., a negative
−19 % correlation.

The analyses presented in Table 5 numerically quantify the correlations between the odds
ratios and the different studied properties. To study them in more details, we present scatter
plots for the Â12 effect sizes, for the OneGoal average coverage and for the number of
target goals. Figure 2 presents said plots for Branch Coverage, Fig. 3 for Line Coverage and
Fig. 4 for Weak Mutation Testing.

Figures 2a, 3a, 4a are in line with the positive correlation values shown in Table 5 for
Whole vs. OneGoal . In these figures, there are clear major clusters at Â12 close to 1 for
logarithms of odds greater than 0. These are classes where Whole is very likely to lead
to better results, although the number of coverage goals on which it improves are only
small.

Regarding the comparisons with the difficulty of a class, Fig. 2b for Branch Coverage
and Fig. 3b for Line Coverage show a similar trend. Most classes are located for low values
of OneGoal coverage, with high odds ratios. For higher coverage, odds ratios decrease.
However, in both cases, there is a consistent number of classes for which OneGoal achieves
high coverage (clusters in the top-left borders in those figures). This is not the case for
Weak Mutation Testing, as shown in Fig. 4b, where, such a cluster does not appear. This
explains the correlation values in Table 5. For Weak Mutation Testing, there is no simple
class for which both OneGoal and Whole achieve very good results, and that would skew
the correlations by creating that kind of cluster. Furthermore, for many classes, OneGoal
achieves very low coverage (recall Table 4). By looking at the number of targets in Fig. 4c,
we can see there are many classes with high number of mutations. On these classes, we can
hence infer that OneBranch achieves low coverage, regardless of whether those targets are
difficult or not. This is due to how the search budget is split: trying to give same budget to all
targets would result in very little budget per target if those are many, so low that even simple
targets would not be covered. It would likely be more effective to use a higher budget per
target, but addressing just a subset of them. In other words, the effectiveness of OneGoal
on Weak Mutation Testing on complex classes is not a good indicator of how Whole will
perform on those.

Still, there is a negative -19 % correlation between the odds ratios and the number of
targets for Weak Mutation Testing (recall Table 5). In Fig. 4c, there are three main clusters:
(a) odds ratios between 0 and 10 for less than 1000 mutations, (b) similar odds ratios but for
approximately 4000 mutations, and (c) very high odds ratios (above 30) for low number of
targets. The odds ratio in cluster (b) are slightly smaller than in (a) and, considering (c), that
would lead to the negative correlation. Although the number of mutants in these classes does
not seem particularly high, it seems that nevertheless the overall search budget per mutant
is too low in the OneGoal approach. For example, even a lower number of mutants can be
problematic if the time EVOSUITE requires to generate the tests is high, or if the execution
time of the tests is high. For example, class wheel.components.Block has only 46 mutants,
yet EVOSUITE struggles to create dependency classes: When creating dependency objects,

Empir Software Eng

Fig. 2 For Branch Coverage ,
scatter plots of the (logarithm of)
odds ratios compared to the Â12
effect sizes (a), average class
coverage obtained by OneGoal
(b), and the total number of
coverage goals (c)

0 10 20 30

0.5

0.6

0.7

0.8

0.9

1

Log of Odds Ratios

E
ffe

ct
 S

iz
e

A
12

1

22

43

64

85

106

127

148

170

191

212

233

254

275

296

317

338

Counts

(a) Â12 effect sizes.

−2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Log of Odds Ratios

A
ve

ra
ge

 C
rit

er
io

n
C

ov
er

ag
e

fo
r

O
ne

G
oa

l

1

22

44

65

87

108

130

151

172

194

215

237

258

280

301

323

344

Counts

(b) Average class coverage obtained by OneGoal

0 10 20 30

0

100

200

300

400

Log of Odds Ratios

N
um

be
r

of
 T

ar
ge

ts

1

13

25

37

49

61

73

85

97

109

121

133

145

157

169

181

193

Counts

(c) Total number of branches

Empir Software Eng

Fig. 3 For Line Coverage ,
scatter plots of the (logarithm of)
odds ratios compared to the Â12
effect sizes (a), average class
coverage obtained by OneGoal
(b), and the total number of
coverage goals (c)

0 10 20 30

0.5

0.6

0.7

0.8

0.9

1

Log of Odds Ratios

E
ffe

ct
 S

iz
e

A
12

1

35

69

103

137

171

205

239

272

306

340

374

408

442

476

510

544

Counts

(a) Â12 effect sizes

0 10 20 30

0

0.2

0.4

0.6

0.8

1

Log of Odds Ratios

A
ve

ra
ge

 C
rit

er
io

n
C

ov
er

ag
e

fo
r

O
ne

G
oa

l

1

33

64

96

128

159

191

222

254

286

317

349

380

412

444

475

507

Counts

(b) Average class coverage obtained by OneGoal

0 10 20 30

0

50

100

150

200

250

300

350

Log of Odds Ratios

N
um

be
r

of
 T

ar
ge

ts

1

15

29

44

58

72

86

100

114

129

143

157

171

185

200

214

228

Counts

(c) Total number of lines

Empir Software Eng

Fig. 4 ForWeak Mutation
Testing , scatter plots of the
(logarithm of) odds ratios
compared to the Â12 effect sizes
(a), average class coverage
obtained by OneGoal (b), and the
total number of mutants (c)

0 10 20 30

0.5

0.6

0.7

0.8

0.9

1

Log of Odds Ratios

E
ffe

ct
 S

iz
e

A
12

1

78

156

233

310

387

464

542

619

696

774

851

928

1005

1082

1160

1237

Counts

(a) Â12 effect sizes

0 10 20 30

0

0.2

0.4

0.6

0.8

Log of Odds Ratios

A
ve

ra
ge

 C
rit

er
io

n
C

ov
er

ag
e

fo
r

O
ne

G
oa

l

1

95

189

284

378

472

566

660

754

849

943

1037

1131

1225

1320

1414

1508

Counts

(b) Average class coverage obtained by OneGoal

0 10 20 30

0

1000

2000

3000

4000

Log of Odds Ratios

N
um

be
r

of
 T

ar
ge

ts

1

73

144

216

288

360

432

503

575

647

718

790

862

934

1006

1077

1149

Counts

(c) Total number of mutants

Empir Software Eng

EVOSUITE calls methods/constructors to create these objects, and then recursively creates
objects for parameters of these calls. In the case of wheel.components.Block the depth of
this recursion frequently hits the maximum (which is 10 by default), in which case EvoSuite
aborts the recursion and starts over with creating the same object. As a result, in the time
given per mutant when targeting individual mutants, EVOSUITE barely manages to generate
sufficient tests to even fill the initial population, whereas Whole can spend more time on
generating the initial population.

To summarize in a graphical way the results obtained in the experiments conducted to
address RQ1-3, Fig. 5 presents the boxplots of the effect sizes in the comparison between
OneGoal and Whole for Branch Coverage , Line Coverage and Weak Mutation Testing ,
which show that Whole overall performed better than OneGoal for the three criteria.

4.5 RQ4: How Does Using an Archiving Solution, Archive, Influence
the Performance ofWhole ?

In order to answer RQ4, we now compare the Archive and the Whole test suite genera-
tion approaches; Table 6 shows the results of this comparison. There are more cases where
using Archive is significantly better than Whole, demonstrating the beneficial effects of the
archive. However, there are also many cases where using Archive achieves worse results
compared to Whole. The fact that this is less often the case for Weak Mutation Testing sug-
gests that the benefit achieved by Archive is larger for more complex classes. To verify this
conjecture, we replicated our experiments comparing Archive and Whole for a selection of

Branch Coverage Line Coverage Weak Mutation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 5 For each criterion, boxplot of effect size in the comparison between OneGoal andWhole

Empir Software Eng

Table 6 For each criterion, we report how often (number of goals) the Archive approach is better (higher
effect size) than Whole, how often they are equivalent, and how often it is Whole that is better

Criterion # of Targets Statistically at 0:05 Never Covered

by the Other

Branch Coverage Archive is better: 530 370 20

Equivalent: 703

Whole is better: 1149 254 42

Total: 2382

Line Coverage Archive is better: 986 444 12

Equivalent: 1984

Whole is better: 841 263 124

Total: 3811

Weak Mutation Testing Archive is better: 5479 4076 310

Equivalent: 5139

Whole is better: 1855 271 126

Total: 12473

We also report the number of comparisons that are statistically significant at 0:05 level, and when only one
of the two techniques ever managed to cover a goal out of the 500 repeated experiments for the random
sample of 100 classes

classes with higher complexity than the random sample used so far. The results of these
analyses are shown in Table 7, and here the number of cases where Archive is significantly
better is much higher in general. This is also confirmed by Fig. 6, which summarizes in
boxplots the effect sizes between Archive and Whole . Clearly, Archive is generally better,
and for larger classes the benefit is larger. More per class details are in the Appendix, in
Tables 9, 10, 11, 12, 13 and 14.

The observation that there are cases where using an archive leads to a negative effect sug-
gests that the search operators need to be further optimized in order to accommodate for the
archive. In particular, when mutating test suites, EVOSUITE either changes existing tests,
or adds new tests. New tests are generated randomly, and over time the search would be
expected to focus on more difficult coverage goals when using an archive. However, random
tests are less likely to cover these goals. The minimization used as a secondary objective
would thus gradually remove these additional tests, and the search may prematurely con-
verge on sub-optimal individuals. Using specialized search operators helps in alleviating
this problem by sampling tests from the archive and mutating them instead of constantly
generating random tests. Other optimisations, like for instance applying seeding strategies,
could help increase the benefits of using the archive.

Extended Search Budget Intuitively, it is conceivable that the improvements observed
for Archive compared toWholemight be less apparent with an increased search budget. The
Archive approach builds up an artificial test suite by collecting test cases across evolving
test suites. Given a more generous amount of time, could Whole converge towards a best

Empir Software Eng

Table 7 For each criterion, we report how often (number of goals) the Archive approach is better (higher
effect size) than Whole, how often they are equivalent, and how often it is Whole that is better

Criterion # of Targets Statistically at 0:05 Never Covered

by the Other

Branch Coverage Archive is better: 6288 2039 711

Equivalent: 23566

Whole is better: 4196 1726 2588

Total: 34050

Line Coverage Archive is better: 8466 5109 1391

Equivalent: 32651

Whole is better: 3934 930 1376

Total: 45051

Weak Mutation Testing Archive is better: 57621 20358 8327

Equivalent: 106946

Whole is better: 14270 167 1896

Total: 17883

We also report the number of comparisons that are statistically significant at 0:05 level, and when only one
of the two techniques ever managed to cover a goal out of the 30 repeated experiments for the selection of
100 classes with highest number of branches (one per SF100 project)

individual with similar coverage to the one produced by Archive? To address this notion,
we ran an experiment on a selection of the 10 classes with the highest number of branches
in SF100 (ten largest classes in Table 8 in the Appendix). For this experiment, we used
an extended search budget of 10 minutes and 50 repetitions. Figure 7 compares the per-
formance of Archive and Whole on Branch Coverage , Line Coverage and Weak Mutation

Branch Coverage Line Coverage Weak Mutation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Random sample of 100 classes

Branch Coverage Line Coverage Weak Mutation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) 100 classes with highest number of branches

Fig. 6 Boxplots of effect sizes in the comparisons between Whole and Archive for the two selection of
classes (random sample of 100 classes, and selection of 100 clases, one per SF100 project, with highest
number of branches)

Empir Software Eng

2 4 6 8 10

Passed Time In Minutes

Li
ne

Whole
Archive15

20

25

30

35

40

(a) Line

2 4 6 8 10

Passed Time In Minutes
B

ra
nc

h

Whole
Archive15

20

25

30

35

40

(b) Branch

2 4 6 8 10

Passed Time In Minutes

W
ea

kM
ut

at
io

n

Whole
Archive15

20

25

30

35

40

(c) Weak Mutation

Fig. 7 Comparison of the performance of Whole and Archive for the 10 classes with the highest number of
branches overall (at most one per SF100 project), using an increased search budget of 10 min

Testing over time. The plots show that the improvement of performance by the archive per-
sist over time for Branch Coverage and Line Coverage and increases in the case of Weak
Mutation Testing . It is important to notice, however, that coverage on these large classes
is not saturated even with a 10 minutes budget. A plausible conjecture is that Whole would
have the opportunity to catch up once Archive achieves full coverage; before that, though, a
steady advantage can be expected with the Archive approach.

Figure 7 shows the manifest improvements in coverage achieved by the Archive
approach, but where does this overall increase in performance stem from?While the data we
collected does not comprise specific timing information about the phases of the search, we
take the number of generations and fitness evaluations as proxy metrics. In this experiment
with extended search budget we observed that on average the Archive approach evolved
more generations (4,186 vs. 3,020) and performed more fitness evaluations (209,370 vs.
151,005) than the Whole approach. Our interpretation of these results is that in the Archive
approach, individuals tend to be smaller and their fitness evaluation cheaper, allowing for a
more exhaustive search than in the Whole approach.

5 Threats to Validity

Threats to internal validity might come from how the empirical study was carried out.
To reduce the probability of having faults in our testing framework, it has been carefully
tested. But it is well known that testing alone cannot prove the absence of defects. Further-
more, randomized algorithms are affected by chance. To cope with this problem, we ran
each experiment 500 times, and we followed rigorous statistical procedures to evaluate their
results. To enable fair comparisons and to avoid possible confounding factors when differ-
ent tools are used, the three approaches, OneGoal, Whole and Archive , were implemented
in the same tool (i.e., EVOSUITE). Furthermore, the same default values were used for all
relevant parameters of the tool, e.g., population size, mutation rates and test length.

Empir Software Eng

When addressing the difficulty of covering certain goals in our experiments, we rely on
the underlying assumption that a high number of branches in a class implies that it con-
tains more difficult coverage goals. Often in practice, the larger a class, the more complex
behaviour it represents, and the more complex behaviour it represents, the more difficult it
gets for an automated technique to to recreate specific states and configurations to cover
certain branches. Nevertheless, since this assumption may not always hold, it represents a
threat to the construct validity of our study.

There is the threat to external validity regarding the generalization to other types of
software, which is common for any empirical analysis. Because of the large number of
experiments required (in the order of hundreds of days of computational resources), we
only used 100 classes for our in depth evaluations. These classes were randomly chosen
from the SF100 corpus, which is a random selection of 100 projects from SourceForge. We
only experimented for Java software using branch, line and mutation coverage. Whether
our results do generalize to other programming languages and testing criteria is a matter of
future research.

6 Conclusions

Existing research has shown that the whole test suite approach can lead to higher code cov-
erage (Fraser and Arcuri 2013b, 2015). However, there was a reasonable doubt on whether
it would still perform better on particularly difficult coverage goals when compared to a
more focused approach.

To shed light on this potential issue, in this paper we performed an in-depth analysis
to study if such cases do indeed occur in practice. Based on a random selection of 100
Java classes in which we aim at automating test generation for different testing criteria
(branch, line and mutation coverage) with the EVOSUITE tool, we found out that there
are indeed coverage goals for which the whole test suite approach leads to worse results.
However, these cases are very few compared to the cases in which better results are obtained
(nearly two orders of magnitude in difference), and all coverage goals that were covered by
OneGoal but not covered by Whole at all turned out to be special cases, rather than general
deficiencies of the approach.

Our experiments also showed that the use of an archive does lead to better results on
average, but it may have some negative side-effects on some testing targets, as the use of
an archive would require specialized search operators that use the archive; designing these
search operators will require further research. Furthermore, the incorporation of the archive
as part of the Whole approach raises the question of whether it can still be regarded as evo-
lution of “test suites”. Whereas from the practical point of view we have demonstrated the
usefulness of this optimization, there might be theoretical implications related to construct-
ing the resulting test suite incrementally from multiple test suites instead of just producing
the fittest individual in the final population. Since these aspects escape the scope of this
paper, we plan to investigate them in future work.

The results presented in this paper provide more support to the validity and useful-
ness of the whole test suite approach in the context of test data generation. Whether
such an approach could be successfully adapted also to other search-based software
engineering problems and whether the whole approach is more suitable than the tra-
ditional per-goal approach for industrial testing practitioners will be a matter of future
research.

To learn more about EVOSUITE , visit our website at: http://www.evosuite.org.

http://www.evosuite.org

Empir Software Eng

Acknowledgments This project has been funded by the EPSRC project “EXOGEN” (EP/K030353/1), a
Google Focused Research Award on “Test Amplification”, and by the National Research Fund, Luxembourg
(FNR/P10/03).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Table 8 For each project in the SF100 corpus, selection of the class with the highest number of branch goals

Project Class Public methods LOC Branch goals

1 tullibee EClientSocket 39 55 350
2 a4j ProductDetails 102 101 130
3 gaj GAAlgorithm 11 13 14
4 rif RIFInvoker 3 5 47
5 templateit Poi2ItextUtil 11 11 78
6 jnfe TransportKeyStoreBean 12 10 28
7 sfmis Loader 20 19 82
8 gfarcegestionfa ModifTableStockage 10 9 123
9 falselight Services 6 9 9
10 water-simulator SuiteGUI 3 8 47

11 imsmart MContentManagerFileNet 6 6 26

12 dsachat Challenge 9 14 136

13 jdbacl SQLParser 78 152 2195

14 omjstate Transition 11 12 30

15 beanbin LuceneIndexManager 8 23 91

16 templatedetails JoomlaOutput 9 87 18

17 inspirento MonthlyCalendar 45 50 150

18 jsecurity AuthorizingRealm 29 44 193

19 jmca JavaParser 122 477 7910

20 nekomud Connection 5 6 19

21 geo-google ObjectFactory 87 86 86

22 byuic TokenStream 1 34 1030

23 jwbf SimpleArticle 28 28 72

24 saxpath XPathLexer 4 44 484

25 jni-inchi INCHI KEY 4 5 47

26 jipa Main 14 16 129

27 gangup AbstractMap 8 9 166

28 greencow Main 3 1 1

29 apbsmem Main 10 23 275

30 bpmail EmailFacadeImpl 20 25 78

31 xisemele WriterEditorImpl 23 25 48

32 httpanalyzer HttpAnalyzerView 5 66 84

33 javaviewcontrol JVCParserTokenManager 8 63 2380

http://creativecommons.org/licenses/by/4.0/

Empir Software Eng

Table 8 (continued)

Project Class Public Methods LOC Branch Goals

34 sbmlreader2 SBMLGraphReader 6 6 38

35 corina GrapherPanel 42 50 290

36 schemaspy Config 115 124 408

37 petsoar Pet 20 20 28

38 javabullboard PropertyUtils 31 31 366

39 diffi StringIncrementor 6 4 35

40 glengineer Scheme 15 46 241

41 follow FollowAppAttributes 55 68 116

42 asphodel DefaultRepositoryManager 12 14 42

43 lilith MainFrame 68 158 411

44 summa DatabaseStorage 21 91 533

45 lotus Phase 4 2 28

46 nutzenportfolio AuswahlfeldDaoService 34 38 218

47 dvd-homevideo GUI 14 89 184

48 resources4j AbstractResources 55 55 176

49 diebierse Drink 46 45 81

50 biff Scanner 6 38 817

51 jiprof MethodWriter 25 43 824

52 lagoon XMLSerializer 30 41 287

53 shp2kml GeomConverter 12 10 27

54 db-everywhere MysqlTableStructure 16 14 161

55 lavalamp DeviceProperties 18 17 22

56 jhandballmoves HandballModel 66 78 317

57 hft-bomberman ServerGameModel 6 9 128

58 fps370 Fps370Panel 18 23 151

59 mygrid Job 24 24 108

60 sugar SCLLexer 21 24 207

61 noen EFSMGenerator 26 35 142

62 dom4j XMLWriter 57 93 426

63 objectexplorer ExplorerFrameEventConverter 20 42 175

64 jtailgui JTailLogger 32 34 125

65 gsftp RemoteFileBrowser 14 18 167

66 openjms URI 30 44 470

67 gae-app-manager QuotaDetailsParser 3 6 47

68 biblestudy ServletConnection 34 35 60

69 lhamacaw SQLVariableManager 39 58 179

70 echodep HaSMETSValidator 15 18 792

71 ext4j Functions 28 28 154

72 battlecry bcGenerator 4 19 281

73 fim1 ModernChatServer 53 60 369

74 fixsuite TreeView 6 18 62

75 openhre LdapService 15 19 132

Empir Software Eng

Table 8 (continued)

Project Class Public Methods LOC Branch Goals

76 dash-framework Main 3 5 7

77 io-project ClientGroup 8 12 66

78 caloriecount WindowHelper 325 337 387

79 twfbplayer BattleStatistics 37 44 156

80 wheelwebtool MethodWriter 25 44 838

81 javathena UserManagement 60 66 328

83 xbus RecordTypeDescriptionChecker 11 15 281

84 ifx-framework BankSvcRq Type 304 304 304

85 shop JSTerm 19 22 192

86 at-robots2-j AtRobotLineLexer 6 14 119

87 jaw-br JanelaPrincipal 3 70 62

88 jopenchart CoordSystemUtilities 14 13 92

89 jiggler ImageOps 3 7 337

90 dcparseargs ArgsParser 10 9 80

91 classviewer ClassInfo 19 27 153

92 jcvi-javacommon Nucleotide 14 15 240

93 quickserver QuickServer 146 167 725

94 jclo JCLO 27 37 129

95 celwars2009 Entity 18 20 287

96 heal MetadataDAO 44 46 392

97 feudalismgame Battle 9 8 788

98 trans-locator FoxHuntFrame 3 16 26

99 newzgrabber Downloader 19 20 268

100 jgaap jgaapGUI 3 4 23

Total 3049 4609 32794

Table 9 For each class with statistically significant results, the table reports the average Branch Coverage
obtained by theWhole approach and by the Archive approach

Project Class Whole Archive Â12 p-value

13 jdbacl AbstractTableMapper 0.71 0.68 0.40 < 0.001

18 jsecurity IniResource 0.73 0.79 0.75 < 0.001

18 jsecurity DefaultWebSecurityManager 0.42 0.46 0.66 < 0.001

24 saxpath XPathLexer 0.70 0.86 1.00 < 0.001

32 httpanalyzer ScreenInputFilter 0.83 0.87 0.60 < 0.001

35 corina TRML 0.20 0.22 0.72 < 0.001

44 summa FacetMapSinglePackedFactory 0.46 0.49 0.59 < 0.001

58 fps370 MouseMoveBehavior 0.53 0.56 0.65 < 0.001

61 noen WatchDog 0.54 0.57 0.56 < 0.001

66 openjms BetweenExpression 0.87 0.94 0.69 < 0.001

78 caloriecount ArchiveScanner 0.63 0.58 0.33 < 0.001

78 caloriecount BlockThread 0.82 1.00 0.95 < 0.001

Empir Software Eng

Table 9 For each class with statistically significant results, the table reports the average Branch Coverage
obtained by theWhole approach and by the Archive approach (continued)

Project Class Whole Archive Â12 p-value

79 twfbplayer BattlefieldCell 0.36 0.42 0.58 < 0.001

80 wheelwebtool Block 0.81 0.68 0.37 < 0.001

85 shop JSListSubstitution 0.97 0.98 0.53 < 0.001

89 jiggler SignalCanvas 0.97 0.99 0.71 < 0.001

89 jiggler ImageOutputStreamJAI 0.79 0.63 0.31 < 0.001

89 jiggler LocalDifferentialGeometry 0.32 0.45 0.82 < 0.001

92 jcvi-javacommon PhdFileDataStoreBuilder 0.80 0.84 0.88 < 0.001

Average 0.78 0.78 0.52

∗There were 79 classes with no statistically significant difference

Table 10 For each class with statistically significant results, the table reports the average Line Coverage
obtained by theWhole approach and by the Archive approach

Project Class Whole Archive Â12 p-value

13 jdbacl AbstractTableMapper 0.68 0.65 0.30 < 0.001

18 jsecurity IniResource 0.80 0.74 0.21 < 0.001

18 jsecurity ResourceUtils 0.97 0.96 0.25 < 0.001

18 jsecurity DefaultWebSecurityManager 0.43 0.48 0.67 < 0.001

21 geo-google AddressToUsAddressFunctor 0.53 0.19 0.17 < 0.001

24 saxpath XPathLexer 0.86 0.92 0.99 < 0.001

35 corina TRML 0.43 0.38 0.23 < 0.001

44 summa FacetMapSinglePackedFactory 0.49 0.45 0.19 < 0.001

61 noen WatchDog 0.55 0.56 0.55 < 0.001

62 dom4j STAXEventReader 0.01 0.01 0.50 < 0.001

66 openjms SecurityConfigurationDescriptor 0.66 0.66 0.48 < 0.001

66 openjms BetweenExpression 0.99 0.99 0.51 0.009

75 openhre User 0.98 0.97 0.34 < 0.001

78 caloriecount ArchiveScanner 0.68 0.57 0.10 < 0.001

78 caloriecount BlockThread 0.62 0.80 1.00 < 0.001

79 twfbplayer BattlefieldCell 0.41 0.45 0.52 0.018

80 wheelwebtool Block 0.70 0.43 0.08 < 0.001

85 shop JSListSubstitution 0.98 0.93 0.26 < 0.001

89 jiggler SignalCanvas 0.89 0.92 0.75 < 0.001

89 jiggler ImageOutputStreamJAI 0.91 0.73 0.11 < 0.001

89 jiggler LocalDifferentialGeometry 0.48 0.52 0.64 < 0.001

92 jcvi-javacommon PhdFileDataStoreBuilder 0.80 0.76 0.02 < 0.001

93 quickserver SimpleCommandSet 0.87 0.89 0.58 < 0.001

Average 0.78 0.77 0.47

∗There were 75 classes with no statistically significant difference

Empir Software Eng

Table 11 For each class with statistically significant results, the table reports the average Weak Mutation
Score obtained by the Whole approach and by the Archive approach

Project Class Whole Archive Â12 p-value

13 jdbacl H2Util 0.93 0.86 0.00 < 0.001

13 jdbacl AbstractTableMapper 0.67 0.65 0.22 < 0.001

18 jsecurity IniResource 0.70 0.69 0.40 < 0.001

18 jsecurity ResourceUtils 0.84 0.89 0.98 < 0.001

18 jsecurity DefaultWebSecurityManager 0.46 0.54 0.77 < 0.001

21 geo-google AddressToUsAddressFunctor 0.63 0.89 0.96 < 0.001

24 saxpath XPathLexer 0.70 0.81 0.99 < 0.001

32 httpanalyzer ScreenInputFilter 0.86 0.90 0.84 < 0.001

35 corina TRML 0.22 0.21 0.72 < 0.001

35 corina SiteListPanel 0.00 0.00 0.50 < 0.001

43 lilith LogDateRunnable 0.55 0.50 0.50 < 0.001

44 summa FacetMapSinglePackedFactory 0.49 0.56 0.80 < 0.001

46 nutzenportfolio KategorieDaoService 0.09 0.02 0.00 < 0.001

52 lagoon Wildcard 0.99 0.98 0.00 < 0.001

54 db-everywhere Select 0.04 0.00 0.00 < 0.001

58 fps370 MouseMoveBehavior 0.39 0.25 0.00 < 0.001

58 fps370 Teder 0.50 0.00 0.00 < 0.001

6 jnfe CST COFINS 0.88 0.77 0.00 < 0.001

61 noen WatchDog 0.60 0.66 0.76 < 0.001

62 dom4j STAXEventReader 0.00 0.00 0.00 < 0.001

62 dom4j CloneHelper 0.64 0.28 0.00 < 0.001

62 dom4j PerThreadSingleton 0.69 0.52 0.00 < 0.001

66 openjms SecurityConfigurationDescriptor 0.54 0.40 0.00 < 0.001

66 openjms And 0.98 0.97 0.00 < 0.001

66 openjms BetweenExpression 0.93 0.99 0.87 < 0.001

69 lhamacaw CategoryStateEditor 0.04 0.00 0.00 < 0.001

70 echodep PackageDissemination 0.13 0.18 1.00 < 0.001

74 fixsuite ListView 0.09 0.09 0.00 < 0.001

75 openhre User 0.97 0.96 0.37 < 0.001

75 openhre HL7SegmentMapImpl 0.98 0.96 0.00 < 0.001

78 caloriecount BudgetWin 0.15 0.18 1.00 < 0.001

78 caloriecount ArchiveScanner 0.62 0.66 0.58 < 0.001

78 caloriecount RecordingEvent 0.98 0.96 0.03 < 0.001

78 caloriecount BlockThread 0.83 0.93 0.95 < 0.001

79 twfbplayer BattlefieldCell 0.38 0.31 0.13 < 0.001

79 twfbplayer CriticalHit 0.97 0.93 0.05 < 0.001

80 wheelwebtool Block 0.84 0.80 0.24 < 0.001

88 jopenchart InterpolationChartRenderer 0.02 0.00 0.00 < 0.001

89 jiggler SignalCanvas 0.92 0.90 0.18 < 0.001

89 jiggler ImageOutputStreamJAI 0.82 0.80 0.65 < 0.001

89 jiggler LocalDifferentialGeometry 0.32 0.64 0.97 < 0.001

Empir Software Eng

Table 11 (continued)

Project Class Whole Archive Â12 p-value

92 jcvi-javacommon PhdFileDataStoreBuilder 0.77 0.74 0.35 < 0.001

93 quickserver SimpleCommandSet 0.91 1.00 1.00 < 0.001

93 quickserver AuthStatus 0.16 0.00 0.00 < 0.001

Average 0.77 0.77 0.43

∗There were 54 classes with no statistically significant difference

Table 12 For each top class, the table reports the average Branch Coverage obtained by theWhole approach
and by the Archive approach

Project Class Whole Archive Â12 p-value

1 tullibee EClientSocket 0.16 0.17 0.95 < 0.001

100 jgaap jgaapGUI 0.54 0.59 0.71 0.003

11 imsmart MContentManagerFileNet 0.21 0.22 0.62 0.016

13 jdbacl SQLParser 0.25 0.32 0.93 < 0.001

15 beanbin LuceneIndexManager 0.28 0.30 0.84 < 0.001

16 templatedetails JoomlaOutput 0.90 0.95 0.94 < 0.001

17 inspirento MonthlyCalendar 0.62 0.71 0.91 < 0.001

18 jsecurity AuthorizingRealm 0.72 0.75 0.68 0.014

19 jmca JavaParser 0.12 0.00 0.00 < 0.001

2 a4j ProductDetails 0.82 0.83 0.83 < 0.001

22 byuic TokenStream 0.45 0.52 0.96 < 0.001

23 jwbf SimpleArticle 0.98 0.96 0.32 0.014

24 saxpath XPathLexer 0.71 0.86 1.00 < 0.001

25 jni-inchi INCHI KEY 0.98 1.00 0.72 < 0.001

26 jipa Main 0.34 0.47 0.99 < 0.001

29 apbsmem Main 0.00 0.00 0.79 < 0.001

33 javaviewcontrol JVCParserTokenManager 0.14 0.20 0.71 0.003

36 schemaspy Config 0.77 0.85 0.98 < 0.001

38 javabullboard PropertyUtils 0.65 0.84 1.00 < 0.001

40 glengineer Scheme 0.58 0.64 0.92 < 0.001

43 lilith MainFrame 0.00 0.00 0.53 < 0.001

44 summa DatabaseStorage 0.01 0.01 0.59 < 0.001

46 nutzenportfolio AuswahlfeldDaoService 0.13 0.13 0.75 < 0.001

49 diebierse Drink 0.91 1.00 1.00 0.003

50 biff Scanner 0.15 0.16 0.97 < 0.001

51 jiprof MethodWriter 0.26 0.34 0.91 < 0.001

53 shp2kml GeomConverter 0.97 1.00 0.67 < 0.001

54 db-everywhere MysqlTableStructure 0.35 0.45 0.83 < 0.001

55 lavalamp DeviceProperties 0.99 0.97 0.34 0.003

56 jhandballmoves HandballModel 0.62 0.73 0.98 < 0.001

Empir Software Eng

Table 12 (continued)

Project Class Whole Archive Â12 p-value

57 hft-bomberman ServerGameModel 0.09 0.10 0.66 0.018

59 mygrid Job 0.94 0.94 0.68 0.005

60 sugar SCLLexer 0.43 0.51 0.82 < 0.001

61 noen EFSMGenerator 0.35 0.38 0.84 < 0.001

62 dom4j XMLWriter 0.51 0.61 0.98 < 0.001

64 jtailgui JTailLogger 0.14 0.16 0.50 < 0.001

66 openjms URI 0.74 0.83 0.99 < 0.001

69 lhamacaw SQLVariableManager 0.07 0.09 1.00 < 0.001

7 sfmis Loader 0.44 0.48 0.82 < 0.001

71 ext4j Functions 0.73 0.91 1.00 < 0.001

74 fixsuite TreeView 0.20 0.23 0.80 < 0.001

78 caloriecount WindowHelper 0.27 0.89 1.00 < 0.001

8 gfarcegestionfa ModifTableStockage 0.73 0.83 0.80 < 0.001

80 wheelwebtool MethodWriter 0.27 0.33 0.89 < 0.001

81 javathena UserManagement 0.12 0.16 0.98 < 0.001

83 xbus RecordTypeDescriptionChecker 0.19 0.21 0.75 < 0.001

84 ifx-framework BankSvcRq Type 0.93 1.00 1.00 < 0.001

85 shop JSTerm 0.34 0.46 0.92 < 0.001

88 jopenchart CoordSystemUtilities 0.35 0.40 0.84 < 0.001

90 dcparseargs ArgsParser 0.94 0.97 0.94 < 0.001

92 jcvi-javacommon Nucleotide 0.82 0.99 1.00 < 0.001

93 quickserver QuickServer 0.34 0.45 0.99 < 0.001

94 jclo JCLO 0.55 0.61 0.98 < 0.001

95 celwars2009 Entity 0.13 0.13 0.62 0.006

96 heal MetadataDAO 0.20 0.21 0.91 < 0.001

Average 0.40 0.43 0.68

∗There were 45 classes with no statistically significant difference

Table 13 For each top class, the table reports the average Line Coverage obtained by the Whole approach
and by the Archive approach

Project Class Whole Archive Â12 p-value

1 tullibee EClientSocket 0.12 0.14 0.98 < 0.001

12 dsachat Challenge 0.54 0.49 0.33 < 0.001

13 jdbacl SQLParser 0.12 0.38 1.00 < 0.001

15 beanbin LuceneIndexManager 0.39 0.29 0.01 < 0.001

16 templatedetails JoomlaOutput 0.92 0.93 0.72 0.001

17 inspirento MonthlyCalendar 0.77 0.87 0.97 < 0.001

18 jsecurity AuthorizingRealm 0.82 0.76 0.20 < 0.001

19 jmca JavaParser 0.15 0.37 1.00 < 0.001

Empir Software Eng

Table 13 (continued)

Project Class Whole Archive Â12 p-value

23 jwbf SimpleArticle 0.98 0.79 0.12 < 0.001

24 saxpath XPathLexer 0.87 0.92 1.00 < 0.001

26 jipa Main 0.29 0.42 0.99 < 0.001

30 bpmail EmailFacadeImpl 0.26 0.25 0.69 < 0.001

33 javaviewcontrol JVCParserTokenManager 0.13 0.09 0.16 < 0.001

34 sbmlreader2 SBMLGraphReader 0.20 0.19 0.32 < 0.001

36 schemaspy Config 0.85 0.88 0.95 < 0.001

38 javabullboard PropertyUtils 0.66 0.83 1.00 < 0.001

41 follow FollowAppAttributes 0.93 0.93 0.77 0.035

44 summa DatabaseStorage 0.02 0.01 0.41 0.048

46 nutzenportfolio AuswahlfeldDaoService 0.17 0.16 0.26 < 0.001

49 diebierse Drink 0.93 0.95 0.77 < 0.001

50 biff Scanner 0.12 0.11 0.06 < 0.001

51 jiprof MethodWriter 0.33 0.25 0.10 < 0.001

53 shp2kml GeomConverter 0.99 0.99 0.67 < 0.001

54 db-everywhere MysqlTableStructure 0.41 0.37 0.27 0.002

55 lavalamp DeviceProperties 0.99 0.95 0.04 < 0.001

60 sugar SCLLexer 0.35 0.48 0.92 < 0.001

61 noen EFSMGenerator 0.45 0.49 0.94 < 0.001

62 dom4j XMLWriter 0.60 0.64 0.88 < 0.001

64 jtailgui JTailLogger 0.53 0.53 0.50 < 0.001

7 sfmis Loader 0.51 0.49 0.27 < 0.001

70 echodep HaSMETSValidator 0.20 0.02 0.30 < 0.001

71 ext4j Functions 0.84 0.91 0.97 < 0.001

72 battlecry bcGenerator 0.05 0.35 0.80 < 0.001

74 fixsuite TreeView 0.39 0.40 0.84 < 0.001

75 openhre LdapService 0.45 0.45 0.62 0.039

77 io-project ClientGroup 0.92 0.89 0.36 < 0.001

78 caloriecount WindowHelper 0.27 0.67 1.00 < 0.001

8 gfarcegestionfa ModifTableStockage 0.75 0.85 0.92 < 0.001

80 wheelwebtool MethodWriter 0.30 0.26 0.21 < 0.001

81 javathena UserManagement 0.14 0.26 1.00 < 0.001

82 ipcalculator IPv4 0.42 0.41 0.26 < 0.001

83 xbus RecordTypeDescriptionChecker 0.31 0.34 0.68 0.003

84 ifx-framework BankSvcRq Type 0.91 1.00 1.00 < 0.001

85 shop JSTerm 0.41 0.44 0.72 0.002

88 jopenchart CoordSystemUtilities 0.42 0.46 0.96 < 0.001

9 falselight Services 0.84 0.85 0.58 0.046

91 classviewer ClassInfo 0.90 0.82 0.01 < 0.001

92 jcvi-javacommon Nucleotide 0.65 0.98 1.00 < 0.001

93 quickserver QuickServer 0.45 0.57 1.00 < 0.001

Empir Software Eng

Table 13 (continued)

Project Class Whole Archive Â12 p-value

94 jclo JCLO 0.64 0.67 0.93 < 0.001

95 celwars2009 Entity 0.24 0.22 0.00 < 0.001

96 heal MetadataDAO 0.21 0.22 0.97 < 0.001

Average 0.45 0.47 0.56

∗There were 48 classes with no statistically significant difference

Table 14 For each top class, the table reports the average Weak Mutation Score obtained by the Whole
approach and by the Archive approach

Project Class Whole Archive Â12 p-value

1 tullibee EClientSocket 0.19 0.23 0.69 < 0.001

10 water-simulator SuiteGUI 0.00 0.00 0.50 < 0.001

11 imsmart MContentManagerFileNet 0.17 0.14 0.62 < 0.001

12 dsachat Challenge 0.43 0.53 0.51 < 0.001

13 jdbacl SQLParser 0.30 0.41 0.84 < 0.001

14 omjstate Transition 0.97 0.96 0.58 < 0.001

15 beanbin LuceneIndexManager 0.29 0.29 0.75 0.030

16 templatedetails JoomlaOutput 0.87 0.90 0.89 < 0.001

17 inspirento MonthlyCalendar 0.64 0.76 0.75 < 0.001

18 jsecurity AuthorizingRealm 0.74 0.81 0.76 < 0.001

19 jmca JavaParser 0.14 0.20 0.99 0.028

2 a4j ProductDetails 0.81 0.84 0.77 < 0.001

22 byuic TokenStream 0.51 0.62 0.62 < 0.001

24 saxpath XPathLexer 0.72 0.81 1.00 < 0.001

25 jni-inchi INCHI KEY 0.96 0.94 0.50 < 0.001

26 jipa Main 0.35 0.59 0.95 < 0.001

27 gangup AbstractMap 0.01 0.01 0.50 < 0.001

3 gaj GAAlgorithm 0.83 0.75 0.50 < 0.001

30 bpmail EmailFacadeImpl 0.17 0.13 0.70 < 0.001

31 xisemele WriterEditorImpl 0.02 0.00 0.50 < 0.001

32 httpanalyzer HttpAnalyzerView 0.01 0.00 0.50 < 0.001

33 javaviewcontrol JVCParserTokenManager 0.16 0.20 0.57 0.010

34 sbmlreader2 SBMLGraphReader 0.62 0.89 0.51 < 0.001

35 corina GrapherPanel 0.00 0.01 0.50 < 0.001

36 schemaspy Config 0.80 0.88 0.84 < 0.001

37 petsoar Pet 0.98 0.96 0.50 < 0.001

38 javabullboard PropertyUtils 0.76 0.95 1.00 < 0.001

39 diffi StringIncrementor 0.80 0.79 0.59 0.007

4 rif RIFInvoker 0.05 0.04 0.51 < 0.001

40 glengineer Scheme 0.67 0.82 0.82 < 0.001

Empir Software Eng

Table 14 (continued)

Project Class Whole Archive Â12 p-value

41 follow FollowAppAttributes 0.94 0.96 0.62 < 0.001

42 asphodel DefaultRepositoryManager 0.01 0.00 0.50 < 0.001

43 lilith MainFrame 0.00 0.00 0.53 < 0.001

46 nutzenportfolio AuswahlfeldDaoService 0.10 0.08 0.86 < 0.001

49 diebierse Drink 0.91 0.96 0.82 < 0.001

50 biff Scanner 0.13 0.10 0.57 < 0.001

51 jiprof MethodWriter 0.31 0.47 0.74 < 0.001

54 db-everywhere MysqlTableStructure 0.48 0.61 0.53 < 0.001

55 lavalamp DeviceProperties 0.98 0.97 0.50 < 0.001

56 jhandballmoves HandballModel 0.65 0.71 0.67 < 0.001

57 hft-bomberman ServerGameModel 0.42 0.75 0.49 < 0.001

58 fps370 Fps370Panel 0.01 0.02 0.50 < 0.001

59 mygrid Job 0.92 0.90 0.48 < 0.001

6 jnfe TransportKeyStoreBean 0.98 0.96 0.50 < 0.001

61 noen EFSMGenerator 0.39 0.45 0.72 < 0.001

62 dom4j XMLWriter 0.56 0.72 0.90 < 0.001

63 objectexplorer ExplorerFrameEventConverter 0.01 0.01 0.50 < 0.001

64 jtailgui JTailLogger 0.22 0.30 0.50 < 0.001

65 gsftp RemoteFileBrowser 0.00 0.00 0.50 < 0.001

66 openjms URI 0.79 0.89 0.63 < 0.001

67 gae-app-manager QuotaDetailsParser 0.15 0.16 0.50 < 0.001

68 biblestudy ServletConnection 0.01 0.00 0.50 < 0.001

69 lhamacaw SQLVariableManager 0.04 0.15 1.00 < 0.001

7 sfmis Loader 0.39 0.37 0.76 0.005

70 echodep HaSMETSValidator 0.03 0.05 0.69 0.005

71 ext4j Functions 0.76 0.86 0.92 < 0.001

73 fim1 ModernChatServer 0.00 0.00 0.50 < 0.001

74 fixsuite TreeView 0.23 0.26 0.74 < 0.001

75 openhre LdapService 0.19 0.27 0.59 < 0.001

76 dash-framework Main 0.30 0.11 0.50 < 0.001

77 io-project ClientGroup 0.93 0.94 0.67 < 0.001

78 caloriecount WindowHelper 0.36 0.74 1.00 < 0.001

8 gfarcegestionfa ModifTableStockage 0.84 0.91 0.67 < 0.001

80 wheelwebtool MethodWriter 0.33 0.48 0.73 < 0.001

81 javathena UserManagement 0.14 0.28 0.99 < 0.001

82 ipcalculator IPv4 0.17 0.13 0.50 < 0.001

83 xbus RecordTypeDescriptionChecker 0.31 0.44 0.72 < 0.001

84 ifx-framework BankSvcRq Type 0.86 1.00 0.50 < 0.001

85 shop JSTerm 0.42 0.62 0.83 < 0.001

86 at-robots2-j AtRobotLineLexer 0.14 0.15 0.50 < 0.001

87 jaw-br JanelaPrincipal 0.00 0.00 0.50 < 0.001

88 jopenchart CoordSystemUtilities 0.48 0.69 0.96 < 0.001

Empir Software Eng

Table 14 (continued)

Project Class Whole Archive Â12 p-value

89 jiggler ImageOps 0.14 0.20 0.50 < 0.001

9 falselight Services 0.77 0.83 0.69 < 0.001

90 dcparseargs ArgsParser 0.94 0.97 0.80 < 0.001

91 classviewer ClassInfo 0.86 0.91 0.59 < 0.001

92 jcvi-javacommon Nucleotide 0.88 0.99 0.98 < 0.001

93 quickserver QuickServer 0.49 0.72 0.95 < 0.001

94 jclo JCLO 0.54 0.55 0.78 0.014

95 celwars2009 Entity 0.37 0.63 0.50 < 0.001

96 heal MetadataDAO 0.22 0.26 0.89 < 0.001

97 feudalismgame Battle 0.08 0.17 0.50 < 0.001

98 trans-locator FoxHuntFrame 0.01 0.00 0.50 < 0.001

99 newzgrabber Downloader 0.19 0.26 0.46 < 0.001

Average 0.42 0.48 0.64

∗There were 16 classes with no statistically significant difference

References

Ali S, Briand L, Hemmati H, Panesar-Walawege R. (2010) A systematic review of the application and
empirical investigation of search-based test-case generation. IEEE Trans Softw Eng (TSE) 36(6):742–
762

Arcuri A (2012) A theoretical and empirical analysis of the role of test sequence length in software testing
for structural coverage. IEEE Trans Softw Eng (TSE) 38(3):497–519

Arcuri A (2013) It really does matter how you normalize the branch distance in search-based software testing.
Software Testing Verification and Reliability (STVR) 23(2):119–147

Arcuri A, Briand L (2014) A hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Software Testing Verification and Reliability (STVR) 24(3):219–250

Arcuri A, Fraser G (2014) On the effectiveness of whole test suite generation. In: International symposium
on search based software engineering (SSBSE). Springer International Publishing, pp 1–15

Arcuri A, Iqbal MZ, Briand L (2012) Random testing: theoretical results and practical implications. IEEE
Trans Softw Eng (TSE) 38(2):258–277

Arcuri A, Yao X (2008) Search based software testing of object-oriented containers. Inform. Sciences
178(15):3075–3095

Baresi L, Lanzi PL, Miraz M (2010) Testful: an evolutionary test approach for java. In: IEEE International
Conference on Software Testing, Verification and Validation (ICST), pp 185–194

Fraser G, Arcuri A (2011) EvoSuite: Automatic test suite generation for object-oriented software. In: ACM
Symposium on the Foundations of Software Engineering (FSE), pp 416–419

Fraser G, Arcuri A (2012) Sound empirical evidence in software testing. In: ACM/IEEE International
Conference on Software Engineering (ICSE), pp 178–188

Fraser G, Arcuri A (2013) Handling test length bloat. Software Testing. Verification and Reliability (STVR)
23(7):553–582

Fraser G, Arcuri A (2013) Whole test suite generation. IEEE Trans Softw Eng (TSE) 39(2):276–291
Fraser G, Arcuri A (2015) Achieving scalable mutation-based generation of whole test suites. Empir Softw

Eng (EMSE) 20(3):783–812
Fraser G, Zeller A (2012) Mutation-driven generation of unit tests and oracles. IEEE Trans Softw Eng (TSE)

28(2):278–292
Harman M, Kim SG, Lakhotia K, McMinn P, Yoo S (2010) Optimizing for the number of tests generated

in search based test data generation with an application to the oracle cost problem. In: International
Workshop on Search-Based Software Testing (SBST)

Empir Software Eng

Harman M, Mansouri SA, Zhang Y (2012) Search-based software engineering: Trends, techniques and
applications. ACM Comput Surv (CSUR) 45(1):11

Jia Y, Harman M (2009) An analysis and survey of the development of mutation testing. Technical Report
TR-09-06, CREST Centre, King’s College London, London, UK

Korel B (1990) Automated software test data generation. IEEE Trans Softw Eng (TSE) 16(8):870–879
Kotrlik JW, Williams HA (2003) The incorporation of effect size in information technology, learning, and

performance research. Inf Technol Learn Perform J 21(1):1–7
Lakhotia K, McMinn P, Harman M (2010) An empirical investigation into branch coverage for C programs

using CUTE and AUSTIN. J. Syst. Softw 83(12)
Li N, Meng X, Offutt J, Deng L (2013) Is bytecode instrumentation as good as source code instrumenta-

tion: An empirical study with industrial tools (experience report). In: IEEE International Symposium on
Software Reliability Engineering (ISSRE), pp 380–389

McMinn P (2004) Search-based software test data generation: a survey. Software Testing Verification and
Reliability (STVR) 14(2):105–156

Miller W, Spooner DL (1976) Automatic generation of floating-point test data. IEEE Trans Softw Eng (TSE)
2(3):223–226

Panichella A, Kifetew FM, Tonella P (2015) Reformulating branch coverage as a many-objective opti-
mization problem. In: IEEE International Conference on Software Testing, Verification and Validation
(ICST), pp 1–10

Ribeiro JCB (2008) Search-based test case generation for object-oriented Java software using strongly-typed
genetic programming. In: Genetic and Evolutionary Computation Conference (GECCO), pp 1819–1822.
ACM

Tonella P (2004) Evolutionary testing of classes. In: ACM International Symposium on Software Testing and
Analysis (ISSTA), pp 119–128

Wappler S, Lammermann F (2005) Using evolutionary algorithms for the unit testing of object-oriented
software. In: Genetic and Evolutionary Computation Conference (GECCO), pp 1053–1060. ACM

Wegener J, Baresel A, Sthamer H (2001) Evolutionary test environment for automatic structural testing. Inf
Softw Technol 43(14):841–854

José Miguel Rojas is a Research Associate in Software Testing at The University of Sheffield, United King-
dom. He received a Computer Science Degree from the Universidad Autònoma Gabriel René Moreno (Santa
Cruz, Bolivia 2007) and a PhD in Computer Science from the Technical University of Madrid (Madrid, Spain
2013). His research interests include automated software engineering and software testing. His research is
mainly conducted through the development of tools and techniques and through empirical methods such as
controlled experiments with human participants.

Empir Software Eng

Mattia Vivanti is a PhD student in informatics at the Università della Svizzera Italiana (USI) in Lugano,
Switzerland. He got both his bachelors and his masters degrees at University of Milano-Bicocca, Italy. His
research interests include structural testing, dynamic software analysis, and automated test case generation.

Andrea Arcuri is a senior software engineer working for a consulting company, Scienta, in Norway, with
clients like Telenor. He also collaborates with different universities on software test automation topics. He
holds a parttime position as research fellow at the University of Luxembourg. Dr. Arcuri received his PhD in
software testing from the University of Birmingham, UK, in 2009.

Empir Software Eng

Gordon Fraser is a Senior Lecturer in Computer Science at the University of Sheffield. He received his
Ph.D. from Graz University of Technology, Austria, in 2007, and worked as a post-doc researcher at Saar-
land University, Germany. His research is on improving software quality and programmer productivity. He
is chair of the steering committee of the International Conference on Software Testing, Verification, and
Validation, and is regular organising- and programme-committee member of software engineering confer-
ences and workshops. His work on software testing has achieved wide recognition both in research (e.g.,
DFG and EPSRC grants, ACM SIGSOFT distinguished and best paper awards at FSE, ISSTA, ASE, SSBSE,
and GECCO) as well as industry (e.g., Google Focused Research Award or Microsoft Software Engineering
Innovation Foundation Award).

	A detailed investigation of the effectiveness of whole test suite generation
	Abstract
	Introduction
	Background
	Whole Test Suite Generation
	Generating Tests for Individual Coverage Goals
	Branch Coverage
	Line Coverage
	Weak Mutation Testing

	Whole Test Suite Generation
	Archive-based Whole Test Suite Generation

	Empirical Study
	Experimental Setup
	 RQ1: Are There Coverage Goals in Which OneGoal Performs Better than Whole ?
	 RQ2: How Many Coverage Goals Found by Whole Get Missed by OneGoal ?
	RQ3: Which Factors Influence the Relative Performance of Whole and OneGoal ?
	RQ4: How Does Using an Archiving Solution, Archive, Influence the Performance of Whole ?
	Extended Search Budget

	Threats to Validity
	Conclusions
	Acknowledgments
	Open Access
	Appendix A
	References

