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ABSTRACT

To find defects in software, one needs test cases that ex-
ecute the software systematically, and oracles that assess
the correctness of the observed behavior when running these
test cases. This paper presents EVOSUITE, a tool that au-
tomatically generates test cases with assertions for classes
written in Java code. To achieve this, EVOSUITE applies a
novel hybrid approach that generates and optimizes whole
test suites towards satisfying a coverage criterion. For the
produced test suites, EVOSUITE suggests possible oracles by
adding small and effective sets of assertions that concisely
summarize the current behavior; these assertions allow the
developer to detect deviations from expected behavior, and
to capture the current behavior in order to protect against
future defects breaking this behavior.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging;
1.2.8 [Artificial Intelligence|: Problem Solving, Control
Methods, and Search

General Terms

Experimentation

Keywords

Test case generation, assertion generation, search based soft-
ware testing

1. INTRODUCTION

When writing programs in object-oriented languages such
as Java, one typically performs unit testing to identify de-
fects in the software and to capture the current behavior,
such that future defects breaking the behavior are detected.

Test cases can be generated automatically, but there is
the issue of the oracle, i.e., how to verify that the outputs of
the test cases are the expected ones. Faults can sometimes
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Figure 1: EVOSUITE can be used as a command line
tool or as an Eclipse plugin, producing coverage test
suites for Java classes fully automatically.

be automatically detected if they lead to program crashes,
deadlocks, or violate a formal specification. In many cases,
however, there are no formal specifications, and the faults do
not lead to program crashes or deadlocks. Therefore, there
is the need to provide small test suites (in terms of both
test data and assertions) to the user that can be manually
verified, i.e., are the assert statements consistent with the
semantics of the program?

EVOSUITE is a tool that automates this task by system-
atically producing test suites that achieve high code cov-
erage, are as small as possible, and provide assertions (see
Figure 1). EVOSUITE uses a search-based approach inte-
grating state-of-the-art techniques such as for example hy-
brid search [9], dynamic symbolic execution [7] and testabil-
ity transformation [8]. Furthermore, EVOSUITE implements
several novel techniques to efficiently achieve its objectives:

Whole test suite generation: EVOSUITE uses an evo-
lutionary search approach that evolves whole test suites with
respect to an entire coverage criterion at the same time [3].
Optimizing with respect to a coverage criterion rather than
individual coverage goals achieves that the result is neither
adversely influenced by the order nor by the difficulty or
infeasibility of individual coverage goals.

Mutation-based assertion generation: EVOSUITE uses
mutation testing to produce a reduced set of assertions that
maximizes the number of seeded defects in a class that are
revealed by the test cases [5]. These assertions highlight the



relevant aspects of the current behavior in order to support
developers in identifying defects, and the assertions capture
the current behavior to protect against regression faults.
EvOSUITE fully automatically produces these test suites
for individual classes or entire projects, without requiring
complicated manual steps. The tool is freely available, and
can be used on the command line, as a plugin to the Eclipse
development platform, or through a web interface.

2. WHOLE TEST SUITE OPTIMIZATION

In white box testing, when no automated oracles are avail-
able, a common systematic approach to test generation is
to select one coverage goal for a given coverage criterion
at a time (e.g., a program branch or a control flow path),
and to derive a test case that exercises this particular goal
(e.g., [9,13]). Although feasible, there is a major flaw in this
strategy, as it assumes that all coverage goals are equally im-
portant, equally difficult to reach, and independent of each
other. Unfortunately, none of these assumptions holds.

Many coverage goals are simply infeasible, meaning that
there exists no test that would exercise them; this is an in-
stance of the undecidable infeasible path problem. Even if
feasible, some coverage goals are simply more difficult to
satisfy than others. Therefore, given a limited amount of
resources for testing, a lucky choice of the order of coverage
goals can result in a good test suite, whereas an unlucky
choice can result in all the resources being spent on only
few test cases. Furthermore, a test case targeting a par-
ticular coverage goal will mostly also satisfy further cover-
age goals by accident. Again the order in which goals are
chosen influences the result — even if all coverage goals are
considered, collateral coverage can influence the resulting
test suite. There is no efficient solution to predict collateral
coverage or the difficulty of a coverage goal.

To overcome these problems, whole test suite generation [3]
is an approach that does not produce individual test cases for
individual coverage goals, but instead focuses on test suites
targeting an entire coverage criterion. Optimizing with re-
spect to a coverage criterion rather than individual coverage
goals achieves that the result is neither adversely influenced
by the order nor by the difficulty or infeasibility of individ-
ual coverage goals. In addition, the concept of collateral
coverage disappears as all coverage is intentional.

EVOSUITE implements whole test suite generation as a
search based approach, improving significantly over previ-
ous search based approaches (see Figure 2). In evolutionary
search, a population of candidate solutions is evolved using
operators imitating natural evolution such as crossover and
mutation. Individuals are selected for reproduction based
on their fitness, i.e., an estimation of how close they are to
the optimal solution, and with each generation the fitness
improves until a solution is found or the allotted resources
are used up.

A candidate solution in EVOSUITE is a test suite, consist-
ing of a variable number of individual test cases. Each of
these test cases is a sequence of method calls again of vari-
able length, exercising the unit under test (UUT) and setting
up complex objects in order to do so. Crossover between two
test suites exchanges test cases based on a randomly chosen
crossover position. This type of crossover removes the diffi-
culties of crossover on method sequences (e.g., [13]) due to
dependencies between statements of a test case. Mutation
of a test suite may add new test cases, or mutate individual
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Figure 2: Average branch coverage achieved with
EVOSUITE on six case study libraries, compared to
the standard approach of targeting one branch at
a time (“Single”): Even with an evolution limit of
1,000,000 statements, EVOSUITE achieves higher cov-
erage [3].

tests. Test cases, in turn, are mutated by adding, deleting,
or changing individual statements and parameters. To help
the generation of appropriate input data, EVOSUITE also
makes use of focused local searches and dynamic symbolic
execution after every predefined number of generations.

The fitness of individuals is measured with respect to an
entire coverage criterion. For example, for branch coverage
the fitness calculates the sum of the individual (normalized)
branch distances of all the branches in the UUT. The branch
distance is a commonly used estimation of how far an indi-
vidual execution is from having a branch evaluate to true or
to false; for example, the condition x = 42 with the value
10 for = has a branch distance of |42 — 10| = 32 of becoming
true. Consequently, an individual has fitness 0 if it covers
all branches of a UUT.

As longer method sequences make it easier to reach cov-
erage goals, EVOSUITE allows the search to dive into long
sequences, but applies several bloat control techniques [4] to
ensure that individuals do not become excessively large. At
the end of the search, test suites are minimized such that
only statements contributing to coverage remain.

3. MUTATION-BASED ASSERTION GENER-
ATION

The aim of producing a coverage test suite is to provide
the developer with a representative set of test cases. This
allows the software engineer to check and capture the func-
tional correctness of the UUT that cannot be captured with
automated oracles. In order to do so, test cases need some
kind of manual oracles, which in the case of unit tests typ-
ically are assertions. The test oracle problem is one of the
main problems in traditional white-box test generation.

Given an automatically generated unit test, there is only
a finite number of things one can assert — the choice of as-
sertions is defined by the possible observations one can make
on the public API of the UUT and its dependent classes. For
example, one can write assertions on return values, compare
objects with each other, or call inspector methods on ob-
jects. Consequently, synthesizing the possible assertions is
easily possible [14]. However, presenting all assertions to
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Figure 3: Effectiveness of the mutation-based as-
sertion minimization, evaluated on 10 open source
projects [5]. The boxplots summarize the statistics
on assertions before (“All”) and after (“Minimized”)
applying the mutation-based minimization.

the developer is problematic, as there might be too many of
them, and many of them will be irrelevant: A fault in the
current version of the program can only be detected if the
developer verifies the correctness of the synthesized asser-
tion and identifies a problem. Similarly, a test case might
fail at a later point, indicating a regression failure, when in
fact having too many assertions might simply overspecify
the test case, leading to false alarms.

In order to determine the important and effective asser-
tions, EVOSUITE applies mutation testing. This was origi-
nally developed as part of the tool uTEST [5], which is now a
component of EVOSUITE. In mutation testing, artificial de-
fects (mutants) are seeded into a program, and test cases are
evaluated with respect to how many of these seeded defects
they can distinguish from the original program. A mutant
that is not detected shows a deficiency in the test suite and
indicates in most cases that either a new test case should be
added, or that an existing test case needs a better test oracle.
A mutant is detected if an assertion fails; conversely, if an
assertion does not detect any of the mutants of a program,
it is likely irrelevant to the test case, similarly in principle
to a vacuously satisfied property in verification.

After the test case generation process EVOSUITE runs each
test case on the unmodified software as well as all mutants
that are covered by the test case, while recording informa-
tion on which mutants are detected by which assertions.
Then, EVOSUITE calculates a reduced set of assertions that
is sufficient in order to detect all the mutants of the UUT
that the given test case may reveal. Figure 3 shows how
effective this reduction is, evaluated on a set of open source
libraries. The theory of mutation testing suggests that us-
ing only these assertions is sufficient to detect most other
possible faults in the UUT [10].

4. IMPLEMENTATION

To generate test suites for Java classes, EVOSUITE requires
only the Java bytecode of the class under test and its depen-
dencies. The bytecode is analyzed and instrumented, and at

the end of the search EVOSUITE produces a JUnit test suite
for a given class. EVOSUITE works fully automatically; it
can generate test suites for entire packages without requir-
ing user intervention.

For a given package, EVOSUITE considers one class at a
time, and tries to produce a test suite maximizing branch
coverage for this class. EVOSUITE is not restricted to prim-
itive datatypes, but can handle arrays and objects of any
class. To produce instances of classes, EVOSUITE considers
all possible methods and constructors that produce an in-
stance of a required type, and recursively tries to satisfy all
dependencies. EVOSUITE treats the String class specially,
by replacing calls to string comparison methods with calls to
its own helper methods that calculate string distances based
on the Levenshtein distance. This allows the search to also
evolve strings towards desired values to satisfy conditions
on strings. As another improvement, EVOSUITE uses a pool
of constant primitive and string values it determines stati-
cally in the Java bytecode. However, EVOSUITE is currently
limited to single threading applications.

As test cases are repeatedly executed as part of the search
to measure fitness values, interactions of the code under test
with the environment can be unwanted and even dangerous:
Random sequences accessing data on the filesystem can re-
sult in clutter in the best case, and data loss in the worst
case; random accesses to networking or databases are usu-
ally not desirable either. EVOSUITE provides its own secu-
rity manager, which can be configured to prohibit unwanted
access to the environment. To overcome the problem that
random values can lead to very long execution times, Evo-
SUITE uses timeouts and penalizes long executing test cases
during the search. To overcome problems with unstoppable
very long executions, EVOSUITE applies a combination of
bytecode instrumentation, thread handling and, in the worst
case, restarting the virtual machine.

EVOSUITE can be used as a command line tool that pro-
duces test suites for individual classes or entire packages,
and produces HTML reports for further analysis. For con-
venience, EVOSUITE can also be used with an experimental
plugin to the Eclipse development platform (see Figure 1),
where test cases can be created with a simple mouse click.
Finally, EVOSUITE can also be used through a webservice,
allowing simple experimentation without any installation.

S. RELATED WORK

Recent advances allow modern testing tools to efficiently
derive test cases for realistically sized programs fully auto-
matically. Often, these test cases are generated randomly
with the objective to detect program crashes [2] or to find
contract violations [11]. To improve over random testing
and its variants, which usually achieve low code coverage,
techniques based on dynamic symbolic execution have been
presented [7]. In contrast to such tools, EVOSUITE not only
tries to find test cases that violate the automated oracles,
but it also aims at producing compact test suites achieving
high code coverage, such that developers can use them to
evaluate functional correctness.

When using code coverage, a common systematic approach
is to select one coverage goal at a time (e.g., a program
branch or a control flow path), and to derive a test case
that exercises this particular goal (e.g., [9,13]). In contrast,
EVOSUITE evolves entire test suites targeting all coverage



goals at the same time, leading to several advantages as dis-
cussed in Section 2.

A popular tool for unit testing C# code is Pex [12], which
generates input values for parameterized test cases using
dynamic symbolic execution. Pex can also produce asser-
tions based on return values of methods, but is limited with
respect to classes that require complex method sequences.
There are several tools for Java producing JUnit test cases:
Randoop [11] is well known for its ease of use, but in contrast
to EVOSUITE it randomly tests software without guidance
in covering complex code structures, reporting violations of
predefined contracts.

TestFul [1] and eToc [13] are perhaps the most related
tools. Both use a search-based approach to generate JU-
nit test suites to maximize structural coverage. However,
eToc is an old tool that has not been updated for several
years, and therefore does not feature the most recent ad-
vances in test data generation. On the other hand, TestFul
differs from EVOSUITE in many critical details, and it is not
fully automated. For example, TestFul requires the manual
editing of XML files for each class under test, which led its
empirical evaluation to be just on 15 classes. On other hand,
because EVOSUITE is fully automated like Randoop, it was
possible to evaluate it on thousands of classes [3].

In terms of assertion generation, Randoop [11] allows an-
notation of the source code to identify observer methods to
be used for assertion generation. Orstra [14] generates asser-
tions based on observed return values and object states and
adds assertions to check future runs against these observa-
tions. While such approaches can be used to derive efficient
oracles, they do not serve to identify which of these asser-
tions are actually useful, and such techniques are therefore
only found in regression testing. In contrast, through the
#TEST tool, EVOSUITE uses mutation testing to select an
effective subset of assertions.

6. CONCLUSIONS

EVOSUITE is a tool that automatically produces test suites
for Java programs that achieve high code coverage and pro-
vide assertions. EVOSUITE implements several novel tech-
niques, leading to higher structural coverage and an effi-
cient selection of assertions based on seeded defects, which
is a critical feature that other Java tools miss.

EVOSUITE currently supports branch coverage and muta-
tion testing as test objectives, but we are also working on
adding further criteria, such as criteria based on data flow,
and a further focus of our research is to produce more read-
able test cases [6].

To learn more about EVOSUITE, visit our Web site:

http://www.st.cs.uni-saarland.de/evosuite/
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