Sound Empirical Evidence in Software Testing

Gordon Fraser Andrea Arcuri
Saarland University Certus Software V&V Center, Simula Research Laboratory
Saarbiicken, Germany P.O. Box 134, 1325 Lysaker, Norway
Email: fraser@cs.uni-saarland.de Email: arcuri@simula.no

Abstract—Several promising techniques have been proposed cal analyses (e.g., se€]]. For more complex techniques
to automate different tasks in software testing, such astestda where mathematical proofs become infeasible or too hard,
generation for object-oriented software. However, reported yagaqrchers have to rely on empirical analyses. There are

studies in the literature only show the feasibility of the proposed | chall h . t irical studi
techniques, because the choice of the employed artifacts in several challenges when carrying out empirical studies,

the case studies (e.g., software applications) is usually done @mong which there is the choice of the case study. If a
in a non-systematic way. The chosen case study might be technique works well in the lab on a specific case study,

biased, and so it might not be a valid representative of the il it also work well in the real-world when it is applied
addressed type of software (e.g., internet applications and 1, yracitioners on their software? It might be that a novel

embedded systems). The common trend seems to be to acceptt hni K Ilin the lab iust b th tud
this fact and get over it by simply discussing it in a threats echnique works well In the lab just because the case study

to validity section. In this paper, we evaluate search-based IS too simple or small, but then it might fail on real-world
software testing (in particular the EvoSUITE tool) when applied instances. Even if real-world instances are used in a case
to test data generation for open source projects. To achieve study, the proposed technique might be too specific/biased

sound empirical results, we randomly selected 100 Java projects yq\vard those instances. and still fail when applied on new
from SourceForge, which is the most popular open source . L
instances by practitioners.

repository (more than 300,000 projects with more than two)))
million registered users). The resulting case study not only is How are case studies chosen in the literature? In most

very large (8784 public classes for a total of 291,639 bytecode cases, this choice is not made in a systematic way, i.e.,
level branches), but more importantly it is statistically sound researchers choose software artifacts without providing a

and representative for open source projects. Results showd gnoific and unbiased motivation. Notice that, in many
while high coverage on commonly used types of classes is

achievable, in practice environmental dependencies prohibit —SOftware testing contexts, this is the only viable optiohisT
such high coverage, which clearly points out essential future IS a typical example in the context of testing techniques
research directions. To support this future research, ourSF100 targeted for industrial systems. Obtaining real data from
case study can serve as a much needed benchmark for test industry is a very difficult and time consuming activity,
generation. and so case studies tend to be either “small” or biased
Keywords-test case generation; unit testing; search-based toward a specific kind of software (e.g., software in the
software engineering; benchmark automotive industry 48], seismic acquisition systems][
video-conference and safety-critical control syste@i§)[

The case of test data generation égen sourcesoftware
Software testing is an essential yet expensive activity ins very different from industrial software. The world wide
software development, therefore much research effort hageb hosts a huge amount of open source projects, and there

been put into the question of how to automate it as much agre specialized repositories that are freely accessibég, (e
possible. In this paper, we focus on test data generation fogourceForge or Google Cod®. A researcher can easily
code coverage, in particular branch coverage in the conteXfownload open source software and use those programs as
of object-oriented software. The simplest automatedrtgsti case study. But how to choose them? For example, it is
technique in this context is perhapandom testing[17], quite common that empirical studiesly involve container

but during the years different sophisticated technique® ha classes (e.g., lists and vectors, sék [45]). It is quite hard

also been proposed. At a high level, the current state ofp generalize the conclusions from such empirical studies
the art can roughly be divided into three main groups:to any other kind of software. Even when case studies are
variants of random testing (e.g., Randodfi]], dynamic |arge andvariegated(e.g., several hundreds of classes from
symbolic executione.g., CUTE B€]) and search-based different kinds of softwarel[d], [31]), still a manual choice

software testinge.qg., P8]). A recent trend also goes towards of software artifacts might introduce bias in the resulis: F
combining the individual techniques (e.g26]).

FO_I’ “simple” tgchniques such as random testing, it iS_ Lhttp://sourceforge.net/, accessed September 2011.
possible to provide rigorous answers based on theoreti- 2http://code.google.com/, accessed September 2011.

I. INTRODUCTION

example, if a proposed testing technique does not support

Table |

EVALUATION SETTINGS IN THE LITERATURE. THE CONTAINER

file system I/O, then that kind of software might have beencoLumN DENOTES HOW MANY OF THE CLASSES ARE CONTAINER DATA
excluded from the case study, although programs with I/OSTRUCTURES IN THOSE CASES WHERE THIS WAS DETERMINABLETHE

SOURCE COLUMN DESCRIBES WHETHER CASE STUDIES WERE CHOSEN
FROM AVAILABLE OPEN SOURCE PROJECT$0S),INDUSTRY PROJECTS
TAKEN FROM THE LITERATURE, OR CREATED BY THE AUTHORS

may be very common in practice.
To the best of our knowledge, we are not aware of any
empirical study in the literature in which this kind thfreats

to external validityhas been addressed. To cope with thisTool

Reference Projects Classes Container

Source

problem, in this paper we present what is perhaps the firshrtoo [11] 1 8 8 Open Source
empirical study where the choice of the case study is statisAlrJ]tOTKEStC A %i} % 27) 1; gge/”L_StOUffe
- - eck'n’Cras ? iterature
tically sound, as far as open source software is concerned ., 501 5 388 - Open Source
We randomly selected 100 Java projects from SourceForgaitfGen [40] 1 21 8 Literature
which is the most popular open source repository. CurrentlyDS(|3DCrasher [ﬁ} 1% s 7254% - ?Pde“ts_olurce
. . . .~ DyGen . - Industrial
it hosts more th_an 300,000 projects in .s_everal programming B0 7 31 16 OS/Lit/Constr.
languages and it has more than two million registered userscrash 34] 1 2 2 Open Source
The resulting case study is very large, consisting of 8784Crash 83 1 2 2 Open Source
classes for a total of 291,639 bytecode level branchesS ¢ B ! 6 6 Open Source
s Yy Sevacon B3 1 6 6 Open Source
Because the case study is randomly selected from an opafvoSuite Lg 6 727 - 0S + Industrial
source repository, the proportions of kinds of softwarg.(e. Jartege [1138% é % - gonstrucieg
. - onstructe
numerical gppllcanns and video games) atatistically _ ICrasher 13 1 8 > Literature
representative for open source software (a more precisgcute B5] 1 6 6 Open Source
definition will be presented later in the paper). jFuzz [29] 1 ? - Open Source
On this large case study we applied@&SuUITE [18], [19] i Bel ! ! 1~ Open Source
N1l g y pp : . v JPF B7] 1 4 4 Constructed
which is a search-based test data generation tool for ebjectTest+Daikon %3] 1 9 9 Constructed / Lit.
oriented software written in JavavBSUITE is an advanced JWalk g 6 13 - Constructed
research prototype that can efficiently handle all the bfie ~ F oot o1 ! 6 6 Literature
- P yp . X y . ..MSeqGen 42 2 450 - Open Source
kinds of programming structures in Java (e.g., it has specifi MuTest R0 10 952 - Open Source
operators to handle string objects and arrays). Furtheﬂmorm!gm:awt E’d i 52 §2 ('-)itefatgfe
. . . [¢o] awi pen sSource
it uses asandboxwhere potgnually unsafe operat_|0ns (€.9-, ocaT 124 3 529 - Open Source
class methods that take as input the name of a file to delet@alus p5] 6 4,664 - 0OS + Industrial
are caught and properly taken care of. This feature WageXM o [gi} i g 1 gO”StrgCtEd
. _ XMutator pen source
essential for the chosen case study, as 100 real-world _optﬁﬁndoop 31] 14 4576 - 0S/ Industrial
source programs likely have at least one unsafe operationRrostra B 1 11 9 Constructed / Lit.
The results of our empirical analysis show that, as demonRUteJI . [1%% é 1% 1; (épentSOltthée/ i
. . . . ymcla onstructe it.
gtrated by Pprevious empirical studies, test genergnon ca§ msira 521 1 7 7 Literature
indeed achieve high coverage — but only on a certain type ofymbolic JPF 32 1 1 - Industrial
classes. In practice, dependencies on the environmetitinhi ?XQgO“C JPF é% g 2 g g‘gllll_s_tt”a'/os
. It
hlg_h coverage, and thus clearly point out directions iNtOy.giera 7] 4 4 2 Open Source
which future research needs to investigate more. TestFul B 4 15 12 OS + Literature
In many research disciplines, common benchmarks alloww/g [A[lg % Z Z 8pen gource
. . . . pen source
tool comparisons and exploration of novel ideas — in they 1] 5 5 1 Open Source

field of software testing there is no such common bench
mark, despite recent community efforts to provide one. Our
selection of 100 SourceForge projects (which we provide to
the research community) can serve as a benchmark for the

Il. SOFTWARE ENGINEERING EXPERIMENTATION

field of test generation for object-oriented software. Wi ca
this benchmark SF100.

To get a better picture of the current practice in evaluation
in software engineering research, we surveyed the litexatu
The paper is organized as follows. Sectibrsurveys the on test generation for object-oriented software. This is no
literature on test generation for object-oriented sofevar meant to be an exhaustive and systematic survey, but rather
gain insights into the current practice in performing exper a representative sample of the literature to motivate thdwo
ments. Sectiorll then describes the first sound experimentpresented in this paper. Tallésts the inspected papers and
in software testing, which allows us to draw conclusionstools, together with statistics on their experiments.
about where the actual problems in this domain are. Based We explicitly list how many out of the considered classes
on these results, Sectidv discusses the threats of choosing are container classes, if this was clearly specified. This is
an unsuitable case study, and Sectibooncludes the paper. of interest as container classes represent a particula typ

of classes that avoids many problems such as environme#t. Objectives
interaction, and recent studies have shown that even “sim- The performance of test generation tools is commonly

ple” random testing can achieve high coverage on sucly,,ated in terms of the achieved code coverage. High code
classes §7]. Interestingly, 17 papers exclusively focus on ., erage by itself is not sufficient in order to find defects

container classes, and many other papers include containgg ere are further major obstacles, most prominently the
classes. oracle problem: Except for special kinds of defects, such
We also list how the evaluation classes were selectedis program crashes or undeclared exceptions, the tester has
interestingly, not a single paper out of those consideredp provide an oracle that decides whether a given test run
justifies why this particular set of classes was selected, andetected an error or not. This oracle could be anything
how this selection was done. In principle, this could meanfrom a formal specification, test assertions, up to manual
that the presented set represents the entire set of classggsessment. The oracle problem entails further problems; f
on which the particular tool was ever tried on, but it could example, in order to be able to come up with a test assertion
also mean that it is a subset on which the tool performs generated test case needs to be easily understandable and
particularly well. An exception is industrial code, where preferably short. However, in all cases a prerequisite éo th
often there is no choice, because the case study is selectgghcle problem is to find an input that takes the program to
by an industrial partner. a desired state. Therefore, in our experiments we compare
Out of 44 evaluations we considered in our literaturethe results in terms of the achieved branch coverage.
survey, 29 selected their case study programs from open In Sectionll we saw that many case studies focus on
source programs, while only six evaluations included induscontainer classes, which are often chosen simply because
trial code. This is to be expected, as it is difficult to getthey are “nice” to test: There is no 1/O, no interaction with
access to industrial code, and even if one gets access it iae environment, no multi-threading, etc. In practice, one
not always easy to publish results achieved on this code dugften uses existing libraries of container classes but svemt
to privacy and confidentiality issues. We also include theapply testing tools to other types of classes, which may very
.NET libraries as industrial code here, although the bydeco well try to interact with their environment. Test generatio
is available freely. On the other hand, 17 evaluations useébr such code isunsafeas the tested code might interact
artificially created examples, either by generating them owith its environment in undesired ways, for example by
by reusing them from the literature. creating or deleting files. To evaluate to what extent this is
Xiao et al. p0] evaluated problems in structural test the case, we want to find out how many unsafe operations
generation, concluding that the main problems in strutturadre attempted during test generation. This results in the
testing are related to object creation and external methotpllowing two research questions:

calls. In related work, Jaygarl et al24] performed an RQ1: What is the probability distribution of achievab
experiment on open source libraries to determine the main branch coverage on open source software?

reasons why branches were not covered by random testing. RQ2: How often can classes execute unsafe operatjons?
In their experiment, the main reason was also the problem
generating complex objects, followed by string compargson B. The EvoSuite Tool for Search-based Test Generation
and container object access. Out of the analyzed branches
only 3.1% were not covered because of environmentag
dependencies that were not satisfied. However, the resul
that we will present later in this paper lead to different
conclusions.

e

-

'As context of our experiments we chose the/oE
UITE [18], [19 tool, which automatically generates test
ﬁjites for Java classes, targeting branch coverage- E
SUITE uses an evolutionary approach to derive these test
suites: A genetic algorithm evolves candidate individuals
(chromosomes) using operators inspired by natural ewsluti
(e.g., selection, crossover and mutation), such thativeha
better solutions with respect to the optimization targeg.(e
branch coverage) are produced.

Sectionll illustrated that the choice of case studies in Chromosomes in ¥O0SUITE are test suites, and each test
software engineering experiments is often unclear, riegult suite consists of a variable number of test cases, which are
in a threat to the external validity of these experiments. Insequences of method calls. Crossover produces offspiihg te
this section, we describe sound experiment on software suites by exchanging test cases from two parent individuals
testing which does not suffer from this threat to externaland mutation either adds new randomly generated test cases,
validity. Given these data, we perform a reality check on theor mutates individual test cases. Mutation of test cases may
research field of test generation for object-oriented samftww add, remove, or change the method calls in a sequence.
How good is the state of the art really, and what are the redFitness is calculated with respect to branch coveragegusin
problems? a calculation based on the well-established branch distanc

1. A STATISTICALLY SOUND EXPERIMENT

For each branch we consider the minimum branch distance
over all test cases of a test suite. The overall fitness of a
test suite is the sum of these minimal values, such that an
individual with 100% branch coverage has fitnéss

Through its use of method sequences/OBSUITE can
handle any datatype, and can be applied out of the box to
any Java program. It only requires the bytecode to produce
test suites, which it outputs in JUnit format.

Calculating the fitness value requires executing code, and
if this code interacts with its environment then unexpected
undesirable side-effects might occur. For example, the cod
might access the filesystem or network, causing damage to
data or affecting other users on the network. To overcome
this problem, EFOSUITE provides its own custorsecurity
manager The Java language is designed with a permission
system, such that potentially undesired actions first ask
a security manager for permission.v&SUITE uses its
own security manager that can be activated to restrict test
execution.

When running test generation on unknown code, using

a sandbox in which permissions are restricted is essential.
We therefore enabled the custom security manager for all
our experiments. With respect to RQ2, we are interested
in finding out to what extent these unsafe operations are a
problem for test generation. Consequently, we kept track of
which kinds of permissions were requested from the code
under test. However, no permissions were granted, except
for three permissions which we determined necessary to run
most code in the first place in our earlier experimei®:[
(1) Reading from properties, (2) Loading classes, and (3)
Reflection. Except for these permissions, all other permis-
sions were denied. This might be overly strict, and indee
finding a suitable set of permissions for test generation is
future research question.

In our previous experiments @], we applied EZOSUITE

. . Table Il
measurementZf]. The branch distance estimates how cloSe peraj s oF THE SF100cASE STUDY. FOR EACH PROJECTWE REPORT

a branch is to evaluating to true or false for a particular run How MANY CLASSES IT IS COMPOSED OFAND THE TOTAL NUMBER OF
BYTECODE BRANCHES

Name

Classes

Branches

Name

Classes

Branches

ifx-framework
jevi-javacommon
caloriecount
openjms
summa

lilith

corina

heal
at-robots2-j
lhamacaw
xbus

jiggler

domd4j

jnfe
hft-bomberman
jiprof
wheelwebtool
shmireader2
jdbacl
db-everywhere
quickserver
beanbin
echodep
jsecurity
objectexplorer
jhandballmoves
schemaspy
twfbplayer
nutzenportfolio
openhre
apbsmem
geo-google
petsoar

lotus

follow

jwbf

lagoon
gfarcegestionfa
adj
dash-framework
javathena
lavalamp
jtailgui
javabullboard
fim1
water-simulator
jopenchart
newzgrabber
feudalismgame
jmca

2189
565
524
486
428

311
310
186
174
168
168
140
136
128
125
101
100
85
84
84
78
75
74
72
70
68
67
61
59
58
52
52
52
52
52
50
49
46
45
45
44
43
42
42
i
2
38
37
36
35

93307
7347
12064
11744
13711
17063
10731
6070
2201
4973
4422
6325
5702
2428
1956
5222
7246
4841
5188
1786
3648
986
3606
998
1516
1507
3493
1178
1835
1468
1641
1344
523
228
814
1371
1140
797
952
425
2412
306
430
2197
1194
1074
693
1354
1454
2521

mygrid
jigen
shop
dsachat
jaw-br
gangup
inspirento
rif
extdj
fixsuite
xisemele
biblestudy
imsmart
Igaap
templateit
javaviewcontrol
tullibee
httpanalyzer
asphodel
noen
diebierse
cards24
gsftp
jni-inchi
io-project
fps370
battlecry
celwars2009
ipcalculator
sugar
dvd-homevideo
bpmail
byuic
jclo
omjstate
saxpath
sfmis
falselight
diffi
nekomud
biff
classviewer
gae-app-manager
resources4j
dcparseargs
trans-locator
shp2kml
jipa
templatedetails
greencow

35
35
32
31
29
29
26
25
23
22
21
21
21
19
19
18
17
17
16
16
15
14
14
12
12
12
11
11
10
9
9

©
o ®® g g

[

o
~

NEgogoo

-

1266
631
1035
951
811
991
571
488
525
519
343
630
183
222
692
3071
1185
499
137
138
352
323
614
178
129
325
705
964
644
135
332
108
703
143
80
1064
90
40
130
57
825
524
88
381
100
74
51
34
125
1

(}he dominant site of this type, having more than 300,000
5egistered projects at the time of our experiments.

We based our selection on the dataset of all projects
tagged as being written in the Java programming language.

with a timeout of 10 minutes per class. As we apply the!n total there wered8,109 such projects at the time of
technique to a larger set of classes in this experiment, and @ €xperiments, and applyingvBSUITE to all of them

developer might not be willing to wait for 10 minutes to seeWould not be possible in reasonable time. Therefore, we
a result, we chose a timeout of two minutes per class, aftef@mpled the dataset, picking one randomly chosen project
which the search always ended, except if 100% coverag@Ut Of this data set at a time. For each chosen project we
was already achieved earlier. For all other settings, wel usedoWnloaded the most recent sources from the corresponding

EVOSUITE with its default parameter settings. source repository and tried to build the program. It turned
out that many projects on SourceForge have no files (i.e.,

they were created but then no files were ever added). A
small number of projects was also misclassified by their
To select an unbiased sample of Java software, we cordevelopers as Java project although in fact it was written
sider the SourceForge open source development platfornm a different programming language. Finally, we did not
SourceForge provides infrastructure for open source devekucceed in compiling all of the projects, sometimes because
opers, ranging from source code repositories, webspacéhey were too old and relying on particular Java APIs that are
discussion forums, to bug tracking systems. There are otheato longer available. Where available, we downloaded binary
similar services on the web, for example Google Codereleases for projects we could not build, asdSuUITE does
GitHub, or Assembla. We chose SourceForge because it isot actually require the source code for test generation. In

C. Case Study Selection

total, we therefore had to consider 321 projects until we had
a set of 100 projects in binary format.

We call this case study SF100 benchmark. Tabkhows —
the number of classes and branches per each of the 100
projects, whereas Tabl# presents the summarized statistics g
(e.g, mean and standard deviation). These numbers werg
derived using EOoSUITE, which only lists top-level classes;
EVOSUITE attempts to cover member or anonymous classe
together with their parent classes. Furthermorep&UITE
might exclude certain classes it determines that it cannot
handle, such as private classes. In total, there are 8784 D
classes and 291,639 bytecode branches reportedvioy E T
SUITE in this case study. Both in terms of the number of
classes and branches, what stands out is the large variation Coverage Intervals
in the data; e.g., the number of classes in a project ranges
from 1 to 2189, and the number of branches in a clas$igure 1. For each 10% code coverage interval, we reportriyoption of
ranges from 0 to 2480. Furthermore, these distributiongrojects that have an average coverage (averaged out ohs®nuall their

. classes) within that interval. Labels show the upper limicl{isive). For
present infrequent extreme deviations, which is represent example, the group 40% represent all the projects with agecagerage
by high kurtosis values (kurtosis is the fourth moment ofgreater than 30% and lower or equal to 40%.

a distribution), and are highly skewed (skewness is the

third moment of a distribution, and represents its asymynetr
between its left and right probability tails). Notice that,
the normal distribution skewness and kurtosis are equal to
zero regardless of the variance.

Tablesll andlll report data only for the classes for which
EvVOSUITE run without problems. However, there were a
further 87 classes in these projects for whickoSuITE
“crashed” without outputting any result. The reasons behin
these crashes are still under investigation. At any rateg
because these special cases represent only a tiny fraction
of the case study, i.&7/8871 < 1% of the case study, they

do not pose any particularly serious threat to the validfty o i D I:l D D L] I:l I:l I:l —

H 0/ 0, 0, 0, 0/ 0/ 0/ 0/ 0, 0/
thlS Study_ 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.15

PerceMUial of Py
0.10

0.05
1

HaEEN

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.00

ntual of Classes

Pé&rce

0.00 0.05 0.10 0.15 0.20 0.25 0.30
L

Coverage Intervals

D. Results

To aCL_:ount for the randomness of the evolutlonary SearCt-,Zigure 2. For each 10% code coverage interval, we reportrthoption of
we applied EFOSUITE to each of the selected case study cjasses that have an average coverage (averaged out of0witinin that
objects 10 times with different random seeds and therinterval. Labels show the upper limit (inclusive). For exaenthe group
averaged the values. In each run, we lefolSUITE running I‘L?;ggff;j;‘lt t";" ;g;) classes with average coverage gtbate0% and
up to two minutes. In total, running these experiments took '

up to (8784 x 10 x 2)/(60 x 24) = 122 days (recall that,

when 100% coverage was achieved, we stopped the search).the |arge number of classes with full coverage suggests
Flggrel shows the distribution of the coverage results petnat there are many classes that are trivially covered by
project. , _ EvoSuITE. To analyze this further, Figur@ illustrates, for
[EVOSuITE produces test suites per class, and each projeciach 1096 code coverage interval, the average number of
might have some more difficult classes and some easigfanches of the classes within this interval. The 90%-100%
classes. Figure2 therefore illustrates the distribution of ;. iarval contains on average the smallest classes, sigest
coverage across the classes (RQ1). This shows that there i 5 jarge number of classes are indeed easily coverable.
large number of classes which can easily be fully covered by . the other hand. the large number of classes that
EvVOSUITE (coverage 90%-100%), and also a large numbet,,»rently have problems (0%-10% coverage) is very large.
of classes with problems (coverage 0%-10%), while the resh hossiple reason for low coverage is if the tested classes
is evenly distributed across the 10%-90% range. try to execute unsafe code, such that the security manager
3The details of this selection process and the case studyvaikatzde prohibits execution. _TO see to what extent this is 'ndeed
online at http:/Awww.st.cs.uni-saarland.de/ fraset®F the case, TabldV lists the average coverage achieved

Table Il
SUMMARIZED STATISTICS OF THESF100THE CASE STUDY

Min Median Average Std. Deviation = Max Skewness Kurtosis aflot
of Classes per Project 1 35 87.84 237.00 2189 7.30 63.46 8784
of Branches per Class 0 18 33.20 75.79 2480 16.66 429.14 32916
Table IV

FOR EACH TYPE OF PERMISSION EXCEPTIONVE REPORT IN HOW MANY CLASSES IT IS THROWN AT LEAST ONCEAND THE AVERAGE COVERAGE
FOR THOSE CLASSESWE ALSO SHOW HOW MANY PROJECTS HAVE AT LEAST ONE CLASS IN WHICHISCH EXCEPTION IS THROWN AND THE AVERAGE
COVERAGE FOR THOSE PROJECTENCLUDING ALSO THE CLASSES IN THOSE PROJECTS FOR WHICH THATIKD OF EXCEPTION IS THROWN.

Type Per Class Per Project
Occurrence Mean Coverage Occurence Mean Coverage
No Exception 0.093 0.90 0.03 0.91
AllPermission 0.00 - 0.00 -
SecurityPermission 0.11 0.54 0.36 0.51
UnresolvedPermission 0.00 - 0.00 -
AWTPermission 0.00 - 0.00 -
FilePermission 0.71 0.41 0.87 0.54
SerializablePermission 2e-04 0.79 0.01 0.44
ReflectPermission 0.00 - 0.00 -
RuntimePermission 0.52 0.49 0.85 0.55
NetPermission 0.49 0.51 0.79 0.56
SocketPermission 0.061 0.39 0.22 0.56
SQLPermission 0.00 - 0.00 -
PropertyPermission 0.074 0.50 0.16 0.59
LoggingPermission 0.00 - 0.00 -
SSLPermission 0.00 - 0.00 -
AuthPermission 0.00012 0.20 0.01 0.25
AudioPermission 0.00 - 0.00 -
OtherPermission 0.00022 0.73 0.01 0.25
I o I
8 — g ° —]
£, m £ 3]
g2 ®] S
g o § 8 n
5 9 o 2
5 T ©
£ 8- = 3
2 2
° o g 3
? S| o o
g S
] HDDD N
4
o S | S | S g | - SR S
o
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

Figure 3. Average number of branches of classes within eah ddile
coverage interval. Classes in the 90%-100% coverage raadheasmallest,

Coverage Intervals

Figure 4. Average number of threads for classes within eaéh ¢6de
coverage interval: Multi-threaded code does not per séinboverage.

and thus potentially “easiest” classes.

are a prime source of problems in achieving coverage (RQ2).
for classes for each of the possible permissions that thé is striking that 71% of all classes lead to some kind of
security manager may deny. Classes that raise no exceptioriePermission — in other words, almost three quarters of
achieve an average coverage of 90%, whereas all classa#i classes tried to access the filesystem in some way! It is
that require some permission that is not granted have lowdmportant to note that this I/0O might not come directly from
coverage. Consequently, interactions with the enviroimerthe class under test but one of its parameters: When testing

object-oriented code one needs sequences of method cals, Manual Inspection

and as part of the evolutionary searchdSuITE attempts On a high level view, the results of the experiments give
to create various different types and calls many different 9 o i P 9
s a clear message: Test generation works well as long as

methods on them. This means that just the existence o"f1 . :) N
. . L o the environment is not involved — but usually it is involved.
a denied FilePermission does not yet indicate a problen:]_

as there might be other ways to cover the target codeo understand the problems in test generation better, we

that do not cause file access; indeed even classes th@{anually inspected 10 classes that had low coverage but

achieve high coverage often lead to some kind of denied'® permission problems, 10 classes that had file permission

permission check. However, the fact that classes with fild” 2:;21;’“;?“zlt?rf;esetgﬁgs?gg rr]glgvlveor:; p;g?lﬁgss’ @im; 10
access achieved significantly lower average coverage (41(@ P P : e
is a clear indication that file acceissa real problem. e sorted the classes by coverage, and then chose the classes

The other two dominant types of permissions we observe&v'th the lowest coverage for each of the categories, but only

were RuntimePermissions and NetPermissions. RuntimePe? < PEf project per category. i i
1) Classes without permission problem€&lasses with

missions can have various reasons, such as for example

attempts to shut down the virtual machine or to accesiOW coverage but no permission problems are of particular
interest with respect to improving®SuITE, but might not

environment variables. On closer inspection, many case)]
of RuntimePermissions turned out to be attempts to loa@€neralize to other tools. For example, in the 10 classes we

GUI toolkit libraries, which are not Java bytecode librarie nvestigated we identified the following main reasons for
but platform-dependent libraries. Therefore, a large parf®V coverage: 1) Complex string handling, 2) Java generics

of the classes causing RuntimePermission checks (529 &nd dynamic type handling, and 3) branches in exception
the classes) are classes related to GUIs. The number §fndling code. _ . _
classes causing NetPermission checks is also surprisingly EVOSUITE has basic support for string handling; for ex-
large (49%). Again, a NetPermission check does not auto@MPle; it replaces calls Bt r i ng. equal s with a custom
matically mean that the code under test immediately triegnethod tha_t calculates the _Levenshtem_dlstance, which can
to access the network, but it might happen through thdhen serve in brar)ches_to give bgtt_er guidance to the se.arch.
parameter generation sequences, and NetPermission chedt@WeVver, this by itself is not sufficient to properly exegcis
are also caused for example by generation of an invali¢®mplex parsers and string handling functions — at least
URL. However, the Java language is by construction wellin the two minute limit given for test generation in our
suited for web applications and several of the 100 project§XPeriments. However, there are dedicated string solvefs a
are indeed web applications. tephmques to handle rggular expressions, so these classes
Finally, a common assumption for test generation toolgMight not be problematic for other tools.
is that the code under test is single-threaded, as multi- The second problem is largely due to Java’s handling of
threaded code adds an additional level of difficulty to thegenerics — all type information is erased during compitatio
testing problem. Creating a new thread does not require anfyor example, for the construct@t at eMachi ne(Li st
permissions in Java, only terminating or changing running<Tf ansi tion> transitions) EvVOSUITE only sees
threads leads to permission checks. We therefore observédde parameter of typéi st, but not that this is supposed
the number of running threads each time any permissiof® be a list of Transiti on objects. When generating
check was performed, and each time a test execution timeli St objects EFOSUITE only sees that it can add instances
out (EvoSUITE by default uses a timeout of 5s for execution Of type Gbj ect to these lists, and thus the chances of
of one test case). Figuré illustrates the relation of code PuttingTransi ti on objects into the list are small. These
coverage to the frequency of cases where we observed moRéoblems could be overcome by incorporating static anslysi
than one thread: Classes that achieved 90%-100% covera§é support for type constraints. FinallyvBSUITE usually
had the fewest cases of additional threads, but in gener&las no guidance in reaching exception handling blocks,
the existence of threads does not per se seem to have a Bigless there is an explicit branch in the target class that
impact on coverage, as the largest number of multi-threadel@ads to & hr ow statement. Consequentlyy&SUITE only
classes was observed in the 80%-90% range. However, i#oVers such statements by chance.
the case of multi-threaded code simply covering the code is Note that other tools might have other problems. For
usually not sufficient as test cases might become nondetegxample, tools based on dynamic symbolic execution have
ministic. Furthermore, multi-threading introduces newetly ~ more problems related to object creati@#[[50].
of faults (deadlocks etc), and using a randomized algorithm 2) Classes with file permission checksile handling is
(like EVOSUITE uses) on code that spawns new threads mayery common in Java classes, both in reading as well as in
cause problems, as Java offers no way to forcefully stopvriting mode. Branches do not necessarily depend on file
running threads. However, on average we observed problent®ntents, but sometimes just depend on file existence or file
with multi-threading in only6.4% of all projects. names. However, even though these example branches do

not depend on the file content, usually such branches aref a URL for a resource to which the program would
followed by code that manipulates these files. normally not have access to (like file:/foo/fum/). It will

Another file permission we frequently observed is whenrequire further experimentation to determine how many of
code tries to read custom property files. Even though granthese permissions were caused by the test generation itself
ing read access to property files might not pose an immediatg.g., random strings propagating to URL generation), and
danger, such files still need to exist and contain apprapriathow many were real attempts to access resources through
content in order to allow testing. URLs. In general, our observations suggest that in many

Consequently, automatically setting up a suitable filecases théNet Per mi ssi on checks are in fact very similar
environment for testing classes is a major technical olestac to Fi | ePer m ssi on checks, which would mean that 1/0

Besides the difficulty in covering branches, there is alsaemains the most important issue.
always the danger that code manipulating the filesystem can In general, the question of finding a perfect setting of
cause unwanted effects; for example, whenever new files afgermissions for test execution is a research question on its
generated it is highly undesirable to let the genetic athori own, and it might be possible to increase coverage by being
pass random strings as filenames, as that way the filesystemore gratuitous with permissions for tests.
will be cluttered with files with random names — which is
something we observe(_j f(_)r several classes in_the SF10@ Threats to Validity
benchmark when deactivating the custom security manager.

3) Classes with runtime permission checks&s in- Threats tointernal validity come from how experiments
dicated in the previous section, a large share of thavere carried out. We used thev&SUITE tool for our ex-
runtime permission checks we observed were due t®€riments, which is an advanced research prototype for Java
code trying to set up a graphical user interface. Totestdata generation. Although/BSUITE has been carefully
do so, Java first tries to read the environment variabldested, it might have internal faults that compromised the

DI SPLAY, and then attempts to read a custom GUI toolkitvalidity of the results. Furthermore, becausedSuITE is
(e.g.,jrellib/antd64/ xawt /| i bmawt . so). Further- based on randomized algorithms, we repeated each experi-

more, most GUI applications try to access files (e.g.ment on each class 10 times to take this randomness into
.accessi bi | i ty. properti es).Java hasits own class account. However, because our study was focused on ob-

of AWIPer i ssi on that are related to GUI events; as taining insights on the challenges of applying test germrat
loading of GUI toolkits was prohibited, we did not observe tools in realistic settings, our research questions dictieat
any such permission checks. with comparisons of algorithms, and so statistical testeewe
We tried to see what happens when granting permishot required.
sions to load libraries. However, even with these permis- The main goal of this paper was to deal with theeats
sions the coverage does not increase, as it opens up ta external validitythat afflict current research in software
range of other permissions that GUI programs requirefesting. The SF100 benchmark is a statistically sound
AWIPer i ssi ons to access the mouse pointer, a largerepresentative of open source projects, and our results are
amount of thread manipulation, special exception handlersilso statistically valid for the other Java projects stoired
permissions to open windows, etc. SourceForge. For example, even if we encountered high
Besides GUI related runtime checks, there are othekurtosis in the number of classes per project and branches
common permissions that are undesirable during test geneper class, median values are not particularly affected by
ation, most prominent probably the permissiaxi t VM 0 extreme outliers.
which is required to shut down the running virtual machine. Our results might not extend to all open source projects,
Other instances of runtime permission checks includeagtio as other repositories (e.g., Google Code)ght contain
on running threads (modifyThread, stopThread), loading okoftware with statistically different distribution prapies
libraries, queuing of printer jobs, or changing the segurit (e.g., number of classes per project, difficulty of the safev
manager — none of these actions are desirable during teBbm the point of view of test data generation). Furthermore
execution. there might be a significant percentage of open source
4) Classes with network permission checks: projects that are not stored in any repository. Furthermore
Only few classes directly attempted to open socketgesults on open source projects might not extend to software
(Socket Per mi ssi on), although dependent classes orthat is developed in industry, as for example financial and
parameters did this more frequently (in total for 6% of embedded systems might be under represented in open
all classes). Net Per m ssi ons were more frequent, source repositories. At any rate, considering the two amilli
and the most common type of such network permissiorsubscribers of SourceForge, even if our results would be
that we observed was due to invalid URL generationvalid only for SourceForge projects, still they would be
(speci fyStreanHandl er). This particular permission of practical value and important for a large number of
does not immediately signify network access, but creatiorpractitioners (both developers and final users).

IV. | MPLICATIONS FOR SOFTWARE ENGINEERING caused by the choice of case studies for experimentation.

EXPERIMENTATION In this paper, we have presented the SF100 benchmark,

In the previous section we described and analyzed a sounghich is a statistically sound representative of open sourc
empirical study in software testing. Given the insightarfro projects. It is composed of 100 Java projects that were
this experiment, we now discuss the potential implicationgandomly selected from SourceForge, which, given that it
of the choice of case studies. In other words, we can answéras more than 300 thousand projects and two millions

the following research question: subscribers, is perhaps the most used open source project
RQ3: What are the consequences of choosing a $mall€pository on the web. The SF100 benchmark consists of
case study in a biased way? 8784 classes, for a total of 291,639 bytecode branches. To

the best of our knowledge (see Sectib)y this benchmark
An analysis of the literature in test data generation hasloes not only represent the largest case study in the literat
shown, in Sectiorl, that a large portion of research body of test data generation for object-oriented software te@,dat
has practically ignored the issues of test data generatiohut most importantly it is the only one that is not negatively
when the system under test interacts with its environmenaffected by threats to external validity. External valdis
(e.g., file systems and networks). But our empirical analysi one of the main barriers for a successful transfer of rekearc
(Section lll) has shown that0.7% of classes may lead results to software development practices.
to interactions with their environment. When there are no op this statistically valid benchmark, we applied our
interactions with the environment (i.e., in the% of cases), research prototype \EOSUITE. EVOSUITE is an advanced
a research prototype such as/dSUITE can achieve an research prototype that uses many of the most advanced
average coverage as high 988% (see TablelV). On the techniques from the literature on search-based software
other hand, when we applyM&SUITE on a statistically testing. Our analysis shows that the large majority of eass
valid sample of open source projects, the average coveragge . 90.3%) may lead to execution of “unsafe” operations,
is only 48%. Therefore, our analysis casts serious doubtsyhich can potentially harm the execution environment (e.g.
about the external validity of many empirical analyses thaty geleting files at random in the file systems). On classes
reported successful results on only a small number of dass&yithout unsafe operations,®SUITE achieves on average
with no interaction with their environment (e.g., containe gp impressive 90% branch coverage, while on the entire
classes are a typical example). SF100 benchmark it “only” achieves 48% of coverage on
Does using a large and variegated case study solve th'&verage. As most of the research body in the software
problem of external validity? The answer is unfortunat®y testing literature seems to ignore these issues (e.g., bow t
If we look at Figurel, we can see that there are 23 projectsgafely write/read on file systems and open/close network
for which EvOSUITE achieves on average a coverage highetconnections without negative side effects), our empirical
than80%. If we wanted to boast and promote our researchypalysis is a valuable source of statistically valid infation
prototype EvOSUITE, we could have carried out an empir- to ynderstand which are theal problems that need to be

ical analysis with only those 23 projects. That would havesplyed by the software testing research community.

resulted in a variegated and large empirical analysis.Hherot) . .
9 : g P : ysIS . With this paper, we challenge the research community to
words, any case study, in which the selection of artifacts is

i i i 0,
not justified and not done in systematic way, tells verydittl develop novel testing techniques to achieve at least 80%

about the actual performance of the analyzed techniques. ict)f isbrgn\(;glic(j:O;/eer?(gseenc'zgti\tzlsofSoF1eono s%i?ggm?gkéc?seczl@e
Our empirical analysis on the SF100 benchmark clearly P P proj '

i 0,
pointed out which are thesal main problems in test data our EVOSUITE prototype only _achleve_d 48% coverage on
. . . verage. To help the community in this regard, we provide
generation for object-oriented software. For a successf

technology transfer from academic research to industriaaned?E:%OFESBCEE:JE&]Z?L m(l);sl,gf(\)/zgi]tagsrwme:bEsiLtJ(IaT;t'
practice, it will be essential that the research communitly w P '

solve all of these problems. Therefore, we can provide the
SF100 benchmark and pose this challenge to the research http://wwy. evosuite. or g/
community:

As a resgarch community, can we develop novel techn queicknowledgments. This project has been funded by
that achieve on average at least 80% of branch covefragep, ische Forschungsgemeinschaft (DFG), grant Ze509/5-

on this SF100benchmark? 1, and by a Google Focused Research Award on “Test
Amplification”. Andrea Arcuri is funded by the Norwegian
V. CONCLUSIONS Research Council. We thank Jeremias3Rr for his help in

Experimentation in software engineering research inheracquiring the SourceForge data, and Valentin Dallmeier and
ently suffers from a common threat to external validity, Yana Mileva for feedback on earlier versions of this paper.

(1]

(2]

(3]

(4]

[5] A. Arcuri, M. Z. Igbal, and L. Briand. Black-box system [20]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

J. H. Andrews, A. Groce, M. Weston, and R. G. Xu. Random
test run length and effectiveness. IEEE/ACM Int. Confer-
ence on Automated Software Engineering (AS§Epes 19—
28, 2008.

J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li. Tool
support for randomized unit testing. Proceedings of the
1st International Workshop on Random TestiRg '06, pages

36-45, New York, NY, USA, 2006. ACM.

J. H. Andrews, F. C. H. Li, and T. Menzies. Nighthawk: a two-
level genetic-random unit test data generatorPtaceedings

of the 22nd IEEE/ACM Int. Conference on Automated Soft-
ware EngineeringASE '07, pages 144-153, New York, NY,
USA, 2007. ACM.

J. H. Andrews, T. Menzies, and F. C. Li. Genetic algorithms [19]

for randomized unit testinglEEE Transactions on Software
Engineering (TSE)37(1):80-94, 2011.

testing of real-time embedded systems using random and
search-based testing. [IFIP International Conference on
Testing Software and Systems (ICT$8ges 95-110, 2010.

A. Arcuri, M. Z. Igbal, and L. Briand. Formal analysis of the
effectiveness and predictability of random testing. AGM

Int. Symposium on Software Testing and Analysis (ISSTA)
pages 219-229, 2010.

A. Arcuri and X. Yao. Search based software testing of object-
oriented containers. Information Sciences178(15):3075—
3095, 2008.

L. Baresi, P. L. Lanzi, and M. Miraz. Testful: an evolutionary
test approach for java. IFEEEE International Conference on
Software Testing, Verification and Validation (ICSPrges
185-194, 2010.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on java predicates.Aroceedings of the 2002

ACM SIGSOFT International Symposium on Software TestindZ4]

and Analysis ISSTA '02, pages 123-133, New York, NY,
USA, 2002. ACM.

F. Charreteur and A. Gotlieb. Constraint-based test input
generation for java bytecode. IRroceedings of the 2010

IEEE 21st International Symposium on Software Reliability [25]

Engineering ISSRE '10, pages 131-140, Washington, DC,
USA, 2010. IEEE Computer Society.

I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Artoo: adaptive (26]

random testing for object-oriented software. ACM/IEEE
International Conference on Software Engineering (IGSE)
pages 71-80, 2008.

I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer.
On the predictability of random tests for object-oriented
software.
Testing, Verification and Validation (ICSTpages 72-81,
2008.

C. Csallner and Y. Smaragdakis.
robustness tester for Javdoftw. Pract. Exper34:1025-1050,
September 2004.

C. Csallner and Y. Smaragdakis. Check 'n’ crash: combining
static checking and testing. IRroceedings of the 27th
international conference on Software engineeyifGSE '05,
pages 422-431, New York, NY, USA, 2005. ACM.

(16]

(17]

(18]

(21]

(22]

InIEEE International Conference on Software [28] P. McMinn.

JCrasher: an automatif29]

(30]

[15] C. Csallner, Y. Smaragdakis, and T. Xie. DSD-Crasher: A

hybrid analysis tool for bug findingACM Trans. Softw. Eng.
Methodol, 17:8:1-8:37, May 2008.

M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D.
Ernst. An empirical comparison of automated generation and
classification techniques for object-oriented unit testing. In
IEEE/ACM Int. Conference on Automated Software Engineer-
ing (ASE) pages 59-68, 2006.

J. W. Duran and S. C. Ntafos. An evaluation of random
testing. IEEE Transactions on Software Engineering (TSE)
10(4):438-444, 1984.

G. Fraser and A. Arcuri. Evolutionary generation of whole
test suites. Innternational Conference On Quality Software
(QSIC) pages 31-40, Los Alamitos, CA, USA, 2011. IEEE
Computer Society.

G. Fraser and A. Arcuri. Evosuite: Automatic test suite
generation for object-oriented software. ACM Symposium
on the Foundations of Software Engineering (FSE)11.

G. Fraser and A. Zeller. Mutation-driven generation of unit
tests and oracledEEE Transactions on Software Engineer-
ing, 99(PrePrints), 2011.

J. Galeotti, N. Rosner, C.dpez Pombo, and M. Frias. Anal-
ysis of invariants for efficient bounded verification. ACM

Int. Symposium on Software Testing and Analysis (ISSTA)
pages 25-36, 2010.

H. Hemmati, A. Arcuri, and L. Briand. Empirical investi-
gation of the effects of test suite properties on similarity-
based test case selection. IEEE International Conference
on Software Testing, Verification and Validation (ICS3gges
327-336, 2011.

K. Inkumsah and T. Xie. Improving structural testing of
object-oriented programs via integrating evolutionary testing
and symbolic execution. IHEEE/ACM Int. Conference
on Automated Software Engineering (ASEages 297-306,
2008.

H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. Ocat: object
capture-based automated testing.Plimceedings of the 19th
International Symposium on Software Testing and Analysis
ISSTA '10, pages 159-170, New York, NY, USA, 2010.
ACM.

V. G. Karthick Jayaraman, David Harvison and A. Kiezun.
jfuzz: A concolic whitebox fuzzer for Java. IRroceedings
of NASA Formal Methods Workshop (NFM 2002009.

J. Malburg and G. Fraser. Combining search-based and
constraint-based testing. IiEEE/ACM Int. Conference on
Automated Software Engineering (ASED11.

[27] D. Marinov and S. Khurshid. Testera: A novel framework

for testing java programs. IEEEE/ACM Int. Conference on
Automated Software Engineering (ASEDO1.

Search-based software test data generation:
A survey. Software Testing, Verification and Reliability
14(2):105-156, 2004.

C. Oriat. Jartege: A Tool for Random Generation of Unit
Tests for Java Classes. Quality of Software Architectures
and Software Qualityvolume 3712/2005 of ecture Notes
in Computer Sciencepages 242-256, Heidelberg, 2005.
Springer Berlin.

C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. BECOOP 2005 — Object-

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39] M. Staats and C. Pasareanu. Parallel symbolic execution for
structural test generation. KCM Int. Symposium on Software [52]

[40]

[41]

[42]

Oriented Programming, 19th European Conferenpages
504-527, Glasgow, Scotland, July 27-29, 2005.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-
directed random test generation. ACM/IEEE International
Conference on Software Engineering (ICSBages 75-84,
2007.

C. S. Rsreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. Lowry, S. Person, and M. Pape. Combining unit-
level symbolic execution and system-level concrete execution
for testing nasa software. IRroceedings of the 2008 Int.
Symposium on Software Testing and Analys&STA '08,
pages 15-26, New York, NY, USA, 2008. ACM.

J. C. B. Ribeiro, M. A. Zenha-Rela, and F. F. de Vega. Test

case evaluation and input domain reduction strategies for th&46]

evolutionary testing of object-oriented softwataformation
and Software Technolog$1(11):1534-1548, 2009.

J. C. B. Ribeiro, M. A. Zenha-Rela, and F. F. de Vega. En-

abling object reuse on genetic programming-based approach?dsf?]

to object-oriented evolutionary testing. Rroceedings of the
European Conference on Genetic Programming (EurqGP)
pages 220-231, 2010.

K. Sen and G. Agha. Cute and jcute: Concolic unit testing and
explicit path model-checking tools. In T. Ball and R. Jones,
editors,Computer Aided Verificatigrvolume 4144 ot ecture
Notes in Computer Sciencpages 419-423. Springer Berlin
/ Heidelberg, 2006.

K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. IrESEC/FSE-13: Proceedings

of the 10th European Software Engineering Conference helci49]

jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineeringages 263—-272. ACM,
2005.

R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Mari-
nov. Testing container classes: Random or systematic? In
Fundamental Approaches to Software Engineering (FASE)
2011.

A. J. Simons. JWalk: a tool for lazy, systematic testing [51]

of java classes by design introspection and user interaction.
Automated Software Engdl4:369-418, December 2007.

Testing and Analysis (ISSTA)ages 183-194, 2010.

K. Taneja and T. Xie. Diffgen: Automated regression unit-
test generation. IfProceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineer-

ing, ASE '08, pages 407-410, Washington, DC, USA, 2008.[53]

IEEE Computer Society.

S. Thummalapenta, J. de Halleux, N. Tillmann, and

S. Wadsworth. Dygen: automatic generation of high-coveragg54]

tests via mining gigabytes of dynamic traces.Pimceedings

of the 4th international conference on Tests and proofs
TAP’10, pages 77-93, Berlin, Heidelberg, 2010. Springer-
Verlag.

S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and [55]

W. Schulte. MSeqGen: object-oriented unit-test generation via
mining source code. IRroceedings of the 7th Joint Meeting
of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering ESEC/FSE '09, pages 193-202, New York, NY,
USA, 2009. ACM.

(44]

[45]

(48]

(50

[43] N. Tillmann and W. Schulte. Parameterized unit tests. In

Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering
ESEC/FSE-13, pages 253-262, New York, NY, USA, 2005.
ACM.

P. Tonella. Evolutionary testing of classes. ACM Int.
Symposium on Software Testing and Analysis (ISS3aes
119-128, 2004.

W. Visser, C. S. Pasareanu, and R.dPek. Test input
generation for java containers using state matchingA@M

Int. Symposium on Software Testing and Analysis (ISSTA)
pages 37-48, 2006.

W. Visser, C. S. Rsareanu, and S. Khurshid. Test input
generation with java pathfinder. Rroceedings of the 2004
ACM SIGSOFT International Symposium on Software Testing
and AnalysisISSTA '04, pages 97-107, New York, NY, USA,
2004. ACM.

W. Visser, C. S. Rsareanu, and R. Pahek. Test input gener-
ation for java containers using state matchingPmceedings

of the 2006 International Symposium on Software Testing and
Analysis ISSTA '06, pages 37-48, New York, NY, USA,
2006. ACM.

T. Vos, A. Baars, F. Lindlar, P. Kruse, A. Windisch, and
J. Wegener. Industrial Scaled Automated Structural Testing
with the Evolutionary Testing Tool. IREEE International
Conference on Software Testing, Verification and Validation
(ICST) pages 175-184, 2010.

S. Wappler and J. Wegener. Evolutionary unit testing of
object-oriented software using strongly-typed genetic pro-
gramming. InGenetic and Evolutionary Computation Con-

ference (GECCQ)pages 1925-1932, 2006.

X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Precise
identification of problems for structural test generation. In
Proceeding of the 33rd international conference on Software
engineeringICSE '11, pages 611-620, New York, NY, USA,
2011. ACM.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit testsIHEE/ACM

Int. Conference on Automated Software Engineering (ASE)
pages 196-205, 2004.

T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. InProceedings of the 11th Int. Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systempages 365-381, 2005.

T. Xie and D. Notkin. Tool-assisted unit-test generation
and selection based on operational abstractiohstomated
Software Engg.13:345-371, July 2006.

L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, and
H. Mei. Test generation via dynamic symbolic execution for
mutation testing. IrProceedings of the 2010 IEEE Interna-
tional Conference on Software MaintenangSM '10, pages
1-10, Washington, DC, USA, 2010. IEEE Computer Society.

S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined
static and dynamic automated test generation. ISSTA
2011, Proceedings of the 2011 International Symposium on
Software Testing and AnalysiSoronto, Canada, July 19-21,
2011.

	I Introduction
	II Software Engineering Experimentation
	III A Statistically Sound Experiment
	III-A Objectives
	III-B The EvoSuite Tool for Search-based Test Generation
	III-C Case Study Selection
	III-D Results
	III-E Manual Inspection
	III-E1 Classes without permission problems
	III-E2 Classes with file permission checks
	III-E3 Classes with runtime permission checks
	III-E4 Classes with network permission checks

	III-F Threats to Validity

	IV Implications for Software Engineering Experimentation
	V Conclusions
	References

