
Sound Empirical Evidence in Software Testing

Gordon Fraser
Saarland University

Saarbr̈ucken, Germany
Email: fraser@cs.uni-saarland.de

Andrea Arcuri
Certus Software V&V Center, Simula Research Laboratory

P.O. Box 134, 1325 Lysaker, Norway
Email: arcuri@simula.no

Abstract—Several promising techniques have been proposed
to automate different tasks in software testing, such as test data
generation for object-oriented software. However, reported
studies in the literature only show the feasibility of the proposed
techniques, because the choice of the employed artifacts in
the case studies (e.g., software applications) is usually done
in a non-systematic way. The chosen case study might be
biased, and so it might not be a valid representative of the
addressed type of software (e.g., internet applications and
embedded systems). The common trend seems to be to accept
this fact and get over it by simply discussing it in a threats
to validity section. In this paper, we evaluate search-based
software testing (in particular the EVOSUITE tool) when applied
to test data generation for open source projects. To achieve
sound empirical results, we randomly selected 100 Java projects
from SourceForge, which is the most popular open source
repository (more than 300,000 projects with more than two
million registered users). The resulting case study not only is
very large (8784 public classes for a total of 291,639 bytecode
level branches), but more importantly it is statistically sound
and representative for open source projects. Results show that
while high coverage on commonly used types of classes is
achievable, in practice environmental dependencies prohibit
such high coverage, which clearly points out essential future
research directions. To support this future research, ourSF100
case study can serve as a much needed benchmark for test
generation.

Keywords-test case generation; unit testing; search-based
software engineering; benchmark

I. I NTRODUCTION

Software testing is an essential yet expensive activity in
software development, therefore much research effort has
been put into the question of how to automate it as much as
possible. In this paper, we focus on test data generation for
code coverage, in particular branch coverage in the context
of object-oriented software. The simplest automated testing
technique in this context is perhapsrandom testing[17],
but during the years different sophisticated techniques have
also been proposed. At a high level, the current state of
the art can roughly be divided into three main groups:
variants of random testing (e.g., Randoop [31]), dynamic
symbolic execution(e.g., CUTE [36]) and search-based
software testing(e.g., [28]). A recent trend also goes towards
combining the individual techniques (e.g., [26]).

For “simple” techniques such as random testing, it is
possible to provide rigorous answers based on theoreti-

cal analyses (e.g., see [6]). For more complex techniques
where mathematical proofs become infeasible or too hard,
researchers have to rely on empirical analyses. There are
several challenges when carrying out empirical studies,
among which there is the choice of the case study. If a
technique works well in the lab on a specific case study,
will it also work well in the real-world when it is applied
by practitioners on their software? It might be that a novel
technique works well in the lab just because the case study
is too simple or small, but then it might fail on real-world
instances. Even if real-world instances are used in a case
study, the proposed technique might be too specific/biased
toward those instances, and still fail when applied on new
instances by practitioners.

How are case studies chosen in the literature? In most
cases, this choice is not made in a systematic way, i.e.,
researchers choose software artifacts without providing any
specific and unbiased motivation. Notice that, in many
software testing contexts, this is the only viable option. This
is a typical example in the context of testing techniques
targeted for industrial systems. Obtaining real data from
industry is a very difficult and time consuming activity,
and so case studies tend to be either “small” or biased
toward a specific kind of software (e.g., software in the
automotive industry [48], seismic acquisition systems [5],
video-conference and safety-critical control systems [22]).

The case of test data generation foropen sourcesoftware
is very different from industrial software. The world wide
web hosts a huge amount of open source projects, and there
are specialized repositories that are freely accessible (e.g.,
SourceForge1 or Google Code2). A researcher can easily
download open source software and use those programs as
case study. But how to choose them? For example, it is
quite common that empirical studiesonly involve container
classes (e.g., lists and vectors, see [4], [45]). It is quite hard
to generalize the conclusions from such empirical studies
to any other kind of software. Even when case studies are
large andvariegated(e.g., several hundreds of classes from
different kinds of software [18], [31]), still a manual choice
of software artifacts might introduce bias in the results. For

1http://sourceforge.net/, accessed September 2011.
2http://code.google.com/, accessed September 2011.

example, if a proposed testing technique does not support
file system I/O, then that kind of software might have been
excluded from the case study, although programs with I/O
may be very common in practice.

To the best of our knowledge, we are not aware of any
empirical study in the literature in which this kind ofthreats
to external validityhas been addressed. To cope with this
problem, in this paper we present what is perhaps the first
empirical study where the choice of the case study is statis-
tically sound, as far as open source software is concerned.
We randomly selected 100 Java projects from SourceForge,
which is the most popular open source repository. Currently,
it hosts more than 300,000 projects in several programming
languages and it has more than two million registered users.
The resulting case study is very large, consisting of 8784
classes for a total of 291,639 bytecode level branches.
Because the case study is randomly selected from an open
source repository, the proportions of kinds of software (e.g.,
numerical applications and video games) arestatistically
representative for open source software (a more precise
definition will be presented later in the paper).

On this large case study we applied EVOSUITE [18], [19],
which is a search-based test data generation tool for object-
oriented software written in Java. EVOSUITE is an advanced
research prototype that can efficiently handle all the different
kinds of programming structures in Java (e.g., it has specific
operators to handle string objects and arrays). Furthermore,
it uses asandboxwhere potentially unsafe operations (e.g.,
class methods that take as input the name of a file to delete)
are caught and properly taken care of. This feature was
essential for the chosen case study, as 100 real-world open
source programs likely have at least one unsafe operation.

The results of our empirical analysis show that, as demon-
strated by previous empirical studies, test generation can
indeed achieve high coverage – but only on a certain type of
classes. In practice, dependencies on the environment inhibit
high coverage, and thus clearly point out directions into
which future research needs to investigate more.

In many research disciplines, common benchmarks allow
tool comparisons and exploration of novel ideas – in the
field of software testing there is no such common bench-
mark, despite recent community efforts to provide one. Our
selection of 100 SourceForge projects (which we provide to
the research community) can serve as a benchmark for the
field of test generation for object-oriented software. We call
this benchmark SF100.

The paper is organized as follows. SectionII surveys the
literature on test generation for object-oriented software to
gain insights into the current practice in performing experi-
ments. SectionIII then describes the first sound experiment
in software testing, which allows us to draw conclusions
about where the actual problems in this domain are. Based
on these results, SectionIV discusses the threats of choosing
an unsuitable case study, and SectionV concludes the paper.

Table I
EVALUATION SETTINGS IN THE LITERATURE. THE CONTAINER

COLUMN DENOTES HOW MANY OF THE CLASSES ARE CONTAINER DATA

STRUCTURES, IN THOSE CASES WHERE THIS WAS DETERMINABLE. THE

SOURCE COLUMN DESCRIBES WHETHER CASE STUDIES WERE CHOSEN

FROM AVAILABLE OPEN SOURCE PROJECTS(OS), INDUSTRY PROJECTS,
TAKEN FROM THE LITERATURE, OR CREATED BY THE AUTHORS.

Tool Reference Projects Classes Container Source

Artoo [11] 1 8 8 Open Source
AutoTest [12] 1 27 17 Open Source
Check’n’Crash [14] 2 ? 1 OS / Literature
Covana [50] 2 388 - Open Source
DiffGen [40] 1 21 8 Literature
DSDCrasher [15] 2 24 - Open Source
DyGen [41] 10 5,757 - Industrial
Eclat [30] 7 631 16 OS/Lit./Constr.
eCrash [34] 1 2 2 Open Source
eCrash [33] 1 2 2 Open Source
eToc [44] 1 6 6 Open Source
EvaCon [23] 1 6 6 Open Source
EvoSuite [18] 6 727 - OS + Industrial
Jartege [29] 1 1 - Constructed
JAUT [10] 3 7 - Constructed
JCrasher [13] 1 8 2 Literature
JCute [35] 1 6 6 Open Source
jFuzz [25] 1 ? - Open Source
JPF [46] 1 1 1 Open Source
JPF [47] 1 4 4 Constructed
JTest+Daikon [53] 1 9 9 Constructed / Lit.
JWalk [38] 6 13 - Constructed
Korat [9] 1 6 6 Literature
MSeqGen [42] 2 450 - Open Source
MuTest [20] 10 952 - Open Source
NightHawk [3] 2 20 20 Literature
NightHawk [4] 1 34 34 Open Source
OCAT [24] 3 529 - Open Source
Palus [55] 6 4,664 - OS + Industrial
Pex [43] 2 8 - Constructed
PexMutator [54] 1 5 1 Open Source
Randoop [31] 14 4,576 - OS / Industrial
Rostra [51] 1 11 9 Constructed / Lit.
RuteJ [2] 1 1 1 Open Source
Symclat [16] 5 16 12 Constructed / Lit.
Symstra [52] 1 7 7 Literature
Symbolic JPF [32] 1 1 - Industrial
Symbolic JPF [39] 6 6 4 Industrial/OS
TACO [21] 6 6 6 OS/Lit.
Testera [27] 4 4 2 Open Source
TestFul [8] 4 15 12 OS + Literature
N/A [7] 1 7 7 Open Source
N/A [49] 2 4 4 Open Source
N/A [1] 2 2 1 Open Source

II. SOFTWARE ENGINEERING EXPERIMENTATION

To get a better picture of the current practice in evaluations
in software engineering research, we surveyed the literature
on test generation for object-oriented software. This is not
meant to be an exhaustive and systematic survey, but rather
a representative sample of the literature to motivate the work
presented in this paper. TableI lists the inspected papers and
tools, together with statistics on their experiments.

We explicitly list how many out of the considered classes
are container classes, if this was clearly specified. This is
of interest as container classes represent a particular type

of classes that avoids many problems such as environment
interaction, and recent studies have shown that even “sim-
ple” random testing can achieve high coverage on such
classes [37]. Interestingly, 17 papers exclusively focus on
container classes, and many other papers include container
classes.

We also list how the evaluation classes were selected;
interestingly, not a single paper out of those considered
justifies why this particular set of classes was selected, and
how this selection was done. In principle, this could mean
that the presented set represents the entire set of classes
on which the particular tool was ever tried on, but it could
also mean that it is a subset on which the tool performs
particularly well. An exception is industrial code, where
often there is no choice, because the case study is selected
by an industrial partner.

Out of 44 evaluations we considered in our literature
survey, 29 selected their case study programs from open
source programs, while only six evaluations included indus-
trial code. This is to be expected, as it is difficult to get
access to industrial code, and even if one gets access it is
not always easy to publish results achieved on this code due
to privacy and confidentiality issues. We also include the
.NET libraries as industrial code here, although the bytecode
is available freely. On the other hand, 17 evaluations used
artificially created examples, either by generating them or
by reusing them from the literature.

Xiao et al. [50] evaluated problems in structural test
generation, concluding that the main problems in structural
testing are related to object creation and external method
calls. In related work, Jaygarl et al. [24] performed an
experiment on open source libraries to determine the main
reasons why branches were not covered by random testing.
In their experiment, the main reason was also the problem of
generating complex objects, followed by string comparisons
and container object access. Out of the analyzed branches,
only 3.1% were not covered because of environmental
dependencies that were not satisfied. However, the results
that we will present later in this paper lead to different
conclusions.

III. A S TATISTICALLY SOUND EXPERIMENT

Section II illustrated that the choice of case studies in
software engineering experiments is often unclear, resulting
in a threat to the external validity of these experiments. In
this section, we describe asound experiment on software
testing which does not suffer from this threat to external
validity. Given these data, we perform a reality check on the
research field of test generation for object-oriented software:
How good is the state of the art really, and what are the real
problems?

A. Objectives

The performance of test generation tools is commonly
evaluated in terms of the achieved code coverage. High code
coverage by itself is not sufficient in order to find defects
as there are further major obstacles, most prominently the
oracle problem: Except for special kinds of defects, such
as program crashes or undeclared exceptions, the tester has
to provide an oracle that decides whether a given test run
detected an error or not. This oracle could be anything
from a formal specification, test assertions, up to manual
assessment. The oracle problem entails further problems; for
example, in order to be able to come up with a test assertion
a generated test case needs to be easily understandable and
preferably short. However, in all cases a prerequisite to the
oracle problem is to find an input that takes the program to
a desired state. Therefore, in our experiments we compare
the results in terms of the achieved branch coverage.

In Section II we saw that many case studies focus on
container classes, which are often chosen simply because
they are “nice” to test: There is no I/O, no interaction with
the environment, no multi-threading, etc. In practice, one
often uses existing libraries of container classes but wants to
apply testing tools to other types of classes, which may very
well try to interact with their environment. Test generation
for such code isunsafeas the tested code might interact
with its environment in undesired ways, for example by
creating or deleting files. To evaluate to what extent this is
the case, we want to find out how many unsafe operations
are attempted during test generation. This results in the
following two research questions:

RQ1: What is the probability distribution of achievable
branch coverage on open source software?

RQ2: How often can classes execute unsafe operations?

B. The EvoSuite Tool for Search-based Test Generation

As context of our experiments we chose the EVO-
SUITE [18], [19] tool, which automatically generates test
suites for Java classes, targeting branch coverage. EVO-
SUITE uses an evolutionary approach to derive these test
suites: A genetic algorithm evolves candidate individuals
(chromosomes) using operators inspired by natural evolution
(e.g., selection, crossover and mutation), such that iteratively
better solutions with respect to the optimization target (e.g.
branch coverage) are produced.

Chromosomes in EVOSUITE are test suites, and each test
suite consists of a variable number of test cases, which are
sequences of method calls. Crossover produces offspring test
suites by exchanging test cases from two parent individuals,
and mutation either adds new randomly generated test cases,
or mutates individual test cases. Mutation of test cases may
add, remove, or change the method calls in a sequence.
Fitness is calculated with respect to branch coverage, using
a calculation based on the well-established branch distance

measurement [28]. The branch distance estimates how close
a branch is to evaluating to true or false for a particular run.
For each branch we consider the minimum branch distance
over all test cases of a test suite. The overall fitness of a
test suite is the sum of these minimal values, such that an
individual with 100% branch coverage has fitness0.

Through its use of method sequences, EVOSUITE can
handle any datatype, and can be applied out of the box to
any Java program. It only requires the bytecode to produce
test suites, which it outputs in JUnit format.

Calculating the fitness value requires executing code, and
if this code interacts with its environment then unexpectedor
undesirable side-effects might occur. For example, the code
might access the filesystem or network, causing damage to
data or affecting other users on the network. To overcome
this problem, EVOSUITE provides its own customsecurity
manager: The Java language is designed with a permission
system, such that potentially undesired actions first ask
a security manager for permission. EVOSUITE uses its
own security manager that can be activated to restrict test
execution.

When running test generation on unknown code, using
a sandbox in which permissions are restricted is essential.
We therefore enabled the custom security manager for all
our experiments. With respect to RQ2, we are interested
in finding out to what extent these unsafe operations are a
problem for test generation. Consequently, we kept track of
which kinds of permissions were requested from the code
under test. However, no permissions were granted, except
for three permissions which we determined necessary to run
most code in the first place in our earlier experiments [18]:
(1) Reading from properties, (2) Loading classes, and (3)
Reflection. Except for these permissions, all other permis-
sions were denied. This might be overly strict, and indeed
finding a suitable set of permissions for test generation is a
future research question.

In our previous experiments [18], we applied EVOSUITE

with a timeout of 10 minutes per class. As we apply the
technique to a larger set of classes in this experiment, and a
developer might not be willing to wait for 10 minutes to see
a result, we chose a timeout of two minutes per class, after
which the search always ended, except if 100% coverage
was already achieved earlier. For all other settings, we used
EVOSUITE with its default parameter settings.

C. Case Study Selection

To select an unbiased sample of Java software, we con-
sider the SourceForge open source development platform.
SourceForge provides infrastructure for open source devel-
opers, ranging from source code repositories, webspace,
discussion forums, to bug tracking systems. There are other
similar services on the web, for example Google Code,
GitHub, or Assembla. We chose SourceForge because it is

Table II
DETAILS OF THE SF100CASE STUDY. FOR EACH PROJECT, WE REPORT

HOW MANY CLASSES IT IS COMPOSED OF, AND THE TOTAL NUMBER OF

BYTECODE BRANCHES.

Name # Classes # Branches Name # Classes # Branches

ifx-framework 2189 93307 mygrid 35 1266
jcvi-javacommon 565 7347 jigen 35 631
caloriecount 524 12064 shop 32 1035
openjms 486 11744 dsachat 31 951
summa 428 13711 jaw-br 29 811
lilith 311 17063 gangup 29 991
corina 310 10731 inspirento 26 571
heal 186 6070 rif 25 488
at-robots2-j 174 2201 ext4j 23 525
lhamacaw 168 4973 fixsuite 22 519
xbus 168 4422 xisemele 21 343
jiggler 140 6325 biblestudy 21 630
dom4j 136 5702 imsmart 21 183
jnfe 128 2428 jgaap 19 222
hft-bomberman 125 1956 templateit 19 692
jiprof 101 5222 javaviewcontrol 18 3071
wheelwebtool 100 7246 tullibee 17 1185
sbmlreader2 85 4841 httpanalyzer 17 499
jdbacl 84 5188 asphodel 16 137
db-everywhere 84 1786 noen 16 138
quickserver 78 3648 diebierse 15 352
beanbin 75 986 cards24 14 323
echodep 74 3606 gsftp 14 614
jsecurity 72 998 jni-inchi 12 178
objectexplorer 70 1516 io-project 12 129
jhandballmoves 68 1507 fps370 12 325
schemaspy 67 3493 battlecry 11 705
twfbplayer 61 1178 celwars2009 11 964
nutzenportfolio 59 1835 ipcalculator 10 644
openhre 58 1468 sugar 9 135
apbsmem 52 1641 dvd-homevideo 9 332
geo-google 52 1344 bpmail 8 108
petsoar 52 523 byuic 8 703
lotus 52 228 jclo 8 143
follow 52 814 omjstate 8 80
jwbf 50 1371 saxpath 8 1064
lagoon 49 1140 sfmis 8 90
gfarcegestionfa 46 797 falselight 8 40
a4j 45 952 diffi 8 130
dash-framework 45 425 nekomud 7 57
javathena 44 2412 biff 6 825
lavalamp 43 306 classviewer 6 524
jtailgui 42 430 gae-app-manager 6 88
javabullboard 42 2197 resources4j 6 381
fim1 41 1194 dcparseargs 6 100
water-simulator 41 1074 trans-locator 5 74
jopenchart 38 693 shp2kml 4 51
newzgrabber 37 1354 jipa 2 34
feudalismgame 36 1454 templatedetails 2 125
jmca 35 2521 greencow 1 1

the dominant site of this type, having more than 300,000
registered projects at the time of our experiments.

We based our selection on the dataset of all projects
tagged as being written in the Java programming language.
In total there were48,109 such projects at the time of
our experiments, and applying EVOSUITE to all of them
would not be possible in reasonable time. Therefore, we
sampled the dataset, picking one randomly chosen project
out of this data set at a time. For each chosen project we
downloaded the most recent sources from the corresponding
source repository and tried to build the program. It turned
out that many projects on SourceForge have no files (i.e.,
they were created but then no files were ever added). A
small number of projects was also misclassified by their
developers as Java project although in fact it was written
in a different programming language. Finally, we did not
succeed in compiling all of the projects, sometimes because
they were too old and relying on particular Java APIs that are
no longer available. Where available, we downloaded binary
releases for projects we could not build, as EVOSUITE does
not actually require the source code for test generation. In

total, we therefore had to consider 321 projects until we had
a set of 100 projects in binary format.3

We call this case study SF100 benchmark. TableII shows
the number of classes and branches per each of the 100
projects, whereas TableIII presents the summarized statistics
(e.g, mean and standard deviation). These numbers were
derived using EVOSUITE, which only lists top-level classes;
EVOSUITE attempts to cover member or anonymous classes
together with their parent classes. Furthermore, EVOSUITE

might exclude certain classes it determines that it cannot
handle, such as private classes. In total, there are 8784
classes and 291,639 bytecode branches reported by EVO-
SUITE in this case study. Both in terms of the number of
classes and branches, what stands out is the large variation
in the data; e.g., the number of classes in a project ranges
from 1 to 2189, and the number of branches in a class
ranges from 0 to 2480. Furthermore, these distributions
present infrequent extreme deviations, which is represented
by high kurtosis values (kurtosis is the fourth moment of
a distribution), and are highly skewed (skewness is the
third moment of a distribution, and represents its asymmetry
between its left and right probability tails). Notice that,in
the normal distribution, skewness and kurtosis are equal to
zero regardless of the variance.

TablesII andIII report data only for the classes for which
EVOSUITE run without problems. However, there were a
further 87 classes in these projects for which EVOSUITE

“crashed” without outputting any result. The reasons behind
these crashes are still under investigation. At any rate,
because these special cases represent only a tiny fraction
of the case study, i.e.87/8871 < 1% of the case study, they
do not pose any particularly serious threat to the validity of
this study.

D. Results

To account for the randomness of the evolutionary search,
we applied EVOSUITE to each of the selected case study
objects 10 times with different random seeds and then
averaged the values. In each run, we left EVOSUITE running
up to two minutes. In total, running these experiments took
up to (8784 × 10 × 2)/(60 × 24) = 122 days (recall that,
when 100% coverage was achieved, we stopped the search).
Figure 1 shows the distribution of the coverage results per
project.

EVOSUITE produces test suites per class, and each project
might have some more difficult classes and some easier
classes. Figure2 therefore illustrates the distribution of
coverage across the classes (RQ1). This shows that there is a
large number of classes which can easily be fully covered by
EVOSUITE (coverage 90%-100%), and also a large number
of classes with problems (coverage 0%-10%), while the rest
is evenly distributed across the 10%-90% range.

3The details of this selection process and the case study are available
online at http://www.st.cs.uni-saarland.de/˜fraser/SF100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

P
er

ce
nt

ua
l o

f P
ro

je
ct

s

0.
00

0.
05

0.
10

0.
15

Figure 1. For each 10% code coverage interval, we report the proportion of
projects that have an average coverage (averaged out of 10 runs on all their
classes) within that interval. Labels show the upper limit (inclusive). For
example, the group 40% represent all the projects with average coverage
greater than 30% and lower or equal to 40%.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

P
er

ce
nt

ua
l o

f C
la

ss
es

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 2. For each 10% code coverage interval, we report the proportion of
classes that have an average coverage (averaged out of 10 runs) within that
interval. Labels show the upper limit (inclusive). For example, the group
40% represent all the classes with average coverage greaterthan 30% and
lower or equal to 40%.

The large number of classes with full coverage suggests
that there are many classes that are trivially covered by
EVOSUITE. To analyze this further, Figure3 illustrates, for
each 10% code coverage interval, the average number of
branches of the classes within this interval. The 90%-100%
interval contains on average the smallest classes, suggesting
that a large number of classes are indeed easily coverable.

On the other hand, the large number of classes that
apparently have problems (0%-10% coverage) is very large.
A possible reason for low coverage is if the tested classes
try to execute unsafe code, such that the security manager
prohibits execution. To see to what extent this is indeed
the case, TableIV lists the average coverage achieved

Table III
SUMMARIZED STATISTICS OF THESF100THE CASE STUDY.

Min Median Average Std. Deviation Max Skewness Kurtosis Total

of Classes per Project 1 35 87.84 237.00 2189 7.30 63.46 8784
of Branches per Class 0 18 33.20 75.79 2480 16.66 429.14 291639

Table IV
FOR EACH TYPE OF PERMISSION EXCEPTION, WE REPORT IN HOW MANY CLASSES IT IS THROWN AT LEAST ONCE, AND THE AVERAGE COVERAGE

FOR THOSE CLASSES. WE ALSO SHOW HOW MANY PROJECTS HAVE AT LEAST ONE CLASS IN WHICH SUCH EXCEPTION IS THROWN, AND THE AVERAGE

COVERAGE FOR THOSE PROJECTS(INCLUDING ALSO THE CLASSES IN THOSE PROJECTS FOR WHICH THAT KIND OF EXCEPTION IS THROWN).

Type Per Class Per Project
Occurrence Mean Coverage Occurence Mean Coverage

No Exception 0.093 0.90 0.03 0.91
AllPermission 0.00 - 0.00 -
SecurityPermission 0.11 0.54 0.36 0.51
UnresolvedPermission 0.00 - 0.00 -
AWTPermission 0.00 - 0.00 -
FilePermission 0.71 0.41 0.87 0.54
SerializablePermission 2e-04 0.79 0.01 0.44
ReflectPermission 0.00 - 0.00 -
RuntimePermission 0.52 0.49 0.85 0.55
NetPermission 0.49 0.51 0.79 0.56
SocketPermission 0.061 0.39 0.22 0.56
SQLPermission 0.00 - 0.00 -
PropertyPermission 0.074 0.50 0.16 0.59
LoggingPermission 0.00 - 0.00 -
SSLPermission 0.00 - 0.00 -
AuthPermission 0.00012 0.20 0.01 0.25
AudioPermission 0.00 - 0.00 -
OtherPermission 0.00022 0.73 0.01 0.25

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

A
ve

ra
ge

 N
um

be
r

of
 B

ra
nc

he
s

0
10

20
30

40
50

60

Figure 3. Average number of branches of classes within each 10% code
coverage interval. Classes in the 90%-100% coverage range are the smallest,
and thus potentially “easiest” classes.

for classes for each of the possible permissions that the
security manager may deny. Classes that raise no exceptions
achieve an average coverage of 90%, whereas all classes
that require some permission that is not granted have lower
coverage. Consequently, interactions with the environment

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage Intervals

R
at

io
 o

f C
la

ss
es

 th
at

 S
pa

w
n

T
hr

ea
ds

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Figure 4. Average number of threads for classes within each 10% code
coverage interval: Multi-threaded code does not per se inhibit coverage.

are a prime source of problems in achieving coverage (RQ2).
It is striking that 71% of all classes lead to some kind of
FilePermission – in other words, almost three quarters of
all classes tried to access the filesystem in some way! It is
important to note that this I/O might not come directly from
the class under test but one of its parameters: When testing

object-oriented code one needs sequences of method calls,
and as part of the evolutionary search EVOSUITE attempts
to create various different types and calls many different
methods on them. This means that just the existence of
a denied FilePermission does not yet indicate a problem
as there might be other ways to cover the target code
that do not cause file access; indeed even classes that
achieve high coverage often lead to some kind of denied
permission check. However, the fact that classes with file
access achieved significantly lower average coverage (41%)
is a clear indication that file accessis a real problem.

The other two dominant types of permissions we observed
were RuntimePermissions and NetPermissions. RuntimePer-
missions can have various reasons, such as for example
attempts to shut down the virtual machine or to access
environment variables. On closer inspection, many cases
of RuntimePermissions turned out to be attempts to load
GUI toolkit libraries, which are not Java bytecode libraries
but platform-dependent libraries. Therefore, a large part
of the classes causing RuntimePermission checks (52% of
the classes) are classes related to GUIs. The number of
classes causing NetPermission checks is also surprisingly
large (49%). Again, a NetPermission check does not auto-
matically mean that the code under test immediately tries
to access the network, but it might happen through the
parameter generation sequences, and NetPermission checks
are also caused for example by generation of an invalid
URL. However, the Java language is by construction well-
suited for web applications and several of the 100 projects
are indeed web applications.

Finally, a common assumption for test generation tools
is that the code under test is single-threaded, as multi-
threaded code adds an additional level of difficulty to the
testing problem. Creating a new thread does not require any
permissions in Java, only terminating or changing running
threads leads to permission checks. We therefore observed
the number of running threads each time any permission
check was performed, and each time a test execution timed
out (EVOSUITE by default uses a timeout of 5s for execution
of one test case). Figure4 illustrates the relation of code
coverage to the frequency of cases where we observed more
than one thread: Classes that achieved 90%-100% coverage
had the fewest cases of additional threads, but in general
the existence of threads does not per se seem to have a big
impact on coverage, as the largest number of multi-threaded
classes was observed in the 80%-90% range. However, in
the case of multi-threaded code simply covering the code is
usually not sufficient as test cases might become nondeter-
ministic. Furthermore, multi-threading introduces new types
of faults (deadlocks etc), and using a randomized algorithm
(like EVOSUITE uses) on code that spawns new threads may
cause problems, as Java offers no way to forcefully stop
running threads. However, on average we observed problems
with multi-threading in only6.4% of all projects.

E. Manual Inspection

On a high level view, the results of the experiments give
us a clear message: Test generation works well as long as
the environment is not involved – but usually it is involved.
To understand the problems in test generation better, we
manually inspected 10 classes that had low coverage but
no permission problems, 10 classes that had file permission
problems, 10 classes that had network problems, and 10
classes with runtime permission problems. For this selection,
we sorted the classes by coverage, and then chose the classes
with the lowest coverage for each of the categories, but only
one per project per category.

1) Classes without permission problems:Classes with
low coverage but no permission problems are of particular
interest with respect to improving EVOSUITE, but might not
generalize to other tools. For example, in the 10 classes we
investigated we identified the following main reasons for
low coverage: 1) Complex string handling, 2) Java generics
and dynamic type handling, and 3) branches in exception
handling code.

EVOSUITE has basic support for string handling; for ex-
ample, it replaces calls toString.equals with a custom
method that calculates the Levenshtein distance, which can
then serve in branches to give better guidance to the search.
However, this by itself is not sufficient to properly exercise
complex parsers and string handling functions – at least
in the two minute limit given for test generation in our
experiments. However, there are dedicated string solvers and
techniques to handle regular expressions, so these classes
might not be problematic for other tools.

The second problem is largely due to Java’s handling of
generics – all type information is erased during compilation.
For example, for the constructorStateMachine(List
<Transition> transitions) EVOSUITE only sees
the parameter of typeList, but not that this is supposed
to be a list of Transition objects. When generating
List objects EVOSUITE only sees that it can add instances
of type Object to these lists, and thus the chances of
puttingTransition objects into the list are small. These
problems could be overcome by incorporating static analysis
or support for type constraints. Finally, EVOSUITE usually
has no guidance in reaching exception handling blocks,
unless there is an explicit branch in the target class that
leads to athrow statement. Consequently, EVOSUITE only
covers such statements by chance.

Note that other tools might have other problems. For
example, tools based on dynamic symbolic execution have
more problems related to object creation [24], [50].

2) Classes with file permission checks:File handling is
very common in Java classes, both in reading as well as in
writing mode. Branches do not necessarily depend on file
contents, but sometimes just depend on file existence or file
names. However, even though these example branches do

not depend on the file content, usually such branches are
followed by code that manipulates these files.

Another file permission we frequently observed is when
code tries to read custom property files. Even though grant-
ing read access to property files might not pose an immediate
danger, such files still need to exist and contain appropriate
content in order to allow testing.

Consequently, automatically setting up a suitable file
environment for testing classes is a major technical obstacle.

Besides the difficulty in covering branches, there is also
always the danger that code manipulating the filesystem can
cause unwanted effects; for example, whenever new files are
generated it is highly undesirable to let the genetic algorithm
pass random strings as filenames, as that way the filesystem
will be cluttered with files with random names – which is
something we observed for several classes in the SF100
benchmark when deactivating the custom security manager.

3) Classes with runtime permission checks:As in-
dicated in the previous section, a large share of the
runtime permission checks we observed were due to
code trying to set up a graphical user interface. To
do so, Java first tries to read the environment variable
DISPLAY, and then attempts to read a custom GUI toolkit
(e.g., jre/lib/amd64/xawt/libmawt.so). Further-
more, most GUI applications try to access files (e.g.,
.accessibility.properties). Java has its own class
of AWTPermission that are related to GUI events; as
loading of GUI toolkits was prohibited, we did not observe
any such permission checks.

We tried to see what happens when granting permis-
sions to load libraries. However, even with these permis-
sions the coverage does not increase, as it opens up a
range of other permissions that GUI programs require:
AWTPermissions to access the mouse pointer, a large
amount of thread manipulation, special exception handlers,
permissions to open windows, etc.

Besides GUI related runtime checks, there are other
common permissions that are undesirable during test gener-
ation, most prominent probably the permissionexitVM.0
which is required to shut down the running virtual machine.
Other instances of runtime permission checks include actions
on running threads (modifyThread, stopThread), loading of
libraries, queuing of printer jobs, or changing the security
manager – none of these actions are desirable during test
execution.

4) Classes with network permission checks:
Only few classes directly attempted to open sockets
(SocketPermission), although dependent classes or
parameters did this more frequently (in total for 6% of
all classes). NetPermissions were more frequent,
and the most common type of such network permission
that we observed was due to invalid URL generation
(specifyStreamHandler). This particular permission
does not immediately signify network access, but creation

of a URL for a resource to which the program would
normally not have access to (like file:/foo/fum/). It will
require further experimentation to determine how many of
these permissions were caused by the test generation itself
(e.g., random strings propagating to URL generation), and
how many were real attempts to access resources through
URLs. In general, our observations suggest that in many
cases theNetPermission checks are in fact very similar
to FilePermission checks, which would mean that I/O
remains the most important issue.

In general, the question of finding a perfect setting of
permissions for test execution is a research question on its
own, and it might be possible to increase coverage by being
more gratuitous with permissions for tests.

F. Threats to Validity

Threats tointernal validity come from how experiments
were carried out. We used the EVOSUITE tool for our ex-
periments, which is an advanced research prototype for Java
test data generation. Although EVOSUITE has been carefully
tested, it might have internal faults that compromised the
validity of the results. Furthermore, because EVOSUITE is
based on randomized algorithms, we repeated each experi-
ment on each class 10 times to take this randomness into
account. However, because our study was focused on ob-
taining insights on the challenges of applying test generation
tools in realistic settings, our research questions did notdeal
with comparisons of algorithms, and so statistical tests were
not required.

The main goal of this paper was to deal with thethreats
to external validitythat afflict current research in software
testing. The SF100 benchmark is a statistically sound
representative of open source projects, and our results are
also statistically valid for the other Java projects storedin
SourceForge. For example, even if we encountered high
kurtosis in the number of classes per project and branches
per class, median values are not particularly affected by
extreme outliers.

Our results might not extend to all open source projects,
as other repositories (e.g., Google Code)might contain
software with statistically different distribution properties
(e.g., number of classes per project, difficulty of the software
from the point of view of test data generation). Furthermore,
there might be a significant percentage of open source
projects that are not stored in any repository. Furthermore,
results on open source projects might not extend to software
that is developed in industry, as for example financial and
embedded systems might be under represented in open
source repositories. At any rate, considering the two million
subscribers of SourceForge, even if our results would be
valid only for SourceForge projects, still they would be
of practical value and important for a large number of
practitioners (both developers and final users).

IV. I MPLICATIONS FORSOFTWARE ENGINEERING

EXPERIMENTATION

In the previous section we described and analyzed a sound
empirical study in software testing. Given the insights from
this experiment, we now discuss the potential implications
of the choice of case studies. In other words, we can answer
the following research question:

RQ3: What are the consequences of choosing a small
case study in a biased way?

An analysis of the literature in test data generation has
shown, in SectionII , that a large portion of research body
has practically ignored the issues of test data generation
when the system under test interacts with its environment
(e.g., file systems and networks). But our empirical analysis
(Section III) has shown that90.7% of classes may lead
to interactions with their environment. When there are no
interactions with the environment (i.e., in the9.3% of cases),
a research prototype such as EVOSUITE can achieve an
average coverage as high as90% (see TableIV). On the
other hand, when we apply EVOSUITE on a statistically
valid sample of open source projects, the average coverage
is only 48%. Therefore, our analysis casts serious doubts
about the external validity of many empirical analyses that
reported successful results on only a small number of classes
with no interaction with their environment (e.g., container
classes are a typical example).

Does using a large and variegated case study solve this
problem of external validity? The answer is unfortunatelyno.
If we look at Figure1, we can see that there are 23 projects
for which EVOSUITE achieves on average a coverage higher
than80%. If we wanted to boast and promote our research
prototype EVOSUITE, we could have carried out an empir-
ical analysis with only those 23 projects. That would have
resulted in a variegated and large empirical analysis. In other
words, any case study, in which the selection of artifacts is
not justified and not done in systematic way, tells very little
about the actual performance of the analyzed techniques.

Our empirical analysis on the SF100 benchmark clearly
pointed out which are thereal main problems in test data
generation for object-oriented software. For a successful
technology transfer from academic research to industrial
practice, it will be essential that the research community will
solve all of these problems. Therefore, we can provide the
SF100 benchmark and pose this challenge to the research
community:

As a research community, can we develop novel techniques
that achieve on average at least 80% of branch coverage
on this SF100benchmark?

V. CONCLUSIONS

Experimentation in software engineering research inher-
ently suffers from a common threat to external validity,

caused by the choice of case studies for experimentation.

In this paper, we have presented the SF100 benchmark,
which is a statistically sound representative of open source
projects. It is composed of 100 Java projects that were
randomly selected from SourceForge, which, given that it
has more than 300 thousand projects and two millions
subscribers, is perhaps the most used open source project
repository on the web. The SF100 benchmark consists of
8784 classes, for a total of 291,639 bytecode branches. To
the best of our knowledge (see SectionII), this benchmark
does not only represent the largest case study in the literature
of test data generation for object-oriented software to date,
but most importantly it is the only one that is not negatively
affected by threats to external validity. External validity is
one of the main barriers for a successful transfer of research
results to software development practices.

On this statistically valid benchmark, we applied our
research prototype EVOSUITE. EVOSUITE is an advanced
research prototype that uses many of the most advanced
techniques from the literature on search-based software
testing. Our analysis shows that the large majority of classes
(i.e., 90.3%) may lead to execution of “unsafe” operations,
which can potentially harm the execution environment (e.g.,
by deleting files at random in the file systems). On classes
without unsafe operations, EVOSUITE achieves on average
an impressive 90% branch coverage, while on the entire
SF100 benchmark it “only” achieves 48% of coverage on
average. As most of the research body in the software
testing literature seems to ignore these issues (e.g., how to
safely write/read on file systems and open/close network
connections without negative side effects), our empirical
analysis is a valuable source of statistically valid information
to understand which are thereal problems that need to be
solved by the software testing research community.

With this paper, we challenge the research community to
develop novel testing techniques to achieve at least 80%
of branch coverage on this SF100 benchmark, because
it is a valid representative of open source projects, and
our EVOSUITE prototype only achieved 48% coverage on
average. To help the community in this regard, we provide
the SF100 benchmark. For more information on EVOSUITE

and the SF100 benchmark, please visit our website at:

http://www.evosuite.org/

Acknowledgments. This project has been funded by
Deutsche Forschungsgemeinschaft (DFG), grant Ze509/5-
1, and by a Google Focused Research Award on “Test
Amplification”. Andrea Arcuri is funded by the Norwegian
Research Council. We thank Jeremias Rößler for his help in
acquiring the SourceForge data, and Valentin Dallmeier and
Yana Mileva for feedback on earlier versions of this paper.

REFERENCES

[1] J. H. Andrews, A. Groce, M. Weston, and R. G. Xu. Random
test run length and effectiveness. InIEEE/ACM Int. Confer-
ence on Automated Software Engineering (ASE), pages 19–
28, 2008.

[2] J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li. Tool
support for randomized unit testing. InProceedings of the
1st International Workshop on Random Testing, RT ’06, pages
36–45, New York, NY, USA, 2006. ACM.

[3] J. H. Andrews, F. C. H. Li, and T. Menzies. Nighthawk: a two-
level genetic-random unit test data generator. InProceedings
of the 22nd IEEE/ACM Int. Conference on Automated Soft-
ware Engineering, ASE ’07, pages 144–153, New York, NY,
USA, 2007. ACM.

[4] J. H. Andrews, T. Menzies, and F. C. Li. Genetic algorithms
for randomized unit testing.IEEE Transactions on Software
Engineering (TSE), 37(1):80–94, 2011.

[5] A. Arcuri, M. Z. Iqbal, and L. Briand. Black-box system
testing of real-time embedded systems using random and
search-based testing. InIFIP International Conference on
Testing Software and Systems (ICTSS), pages 95–110, 2010.

[6] A. Arcuri, M. Z. Iqbal, and L. Briand. Formal analysis of the
effectiveness and predictability of random testing. InACM
Int. Symposium on Software Testing and Analysis (ISSTA),
pages 219–229, 2010.

[7] A. Arcuri and X. Yao. Search based software testing of object-
oriented containers. Information Sciences, 178(15):3075–
3095, 2008.

[8] L. Baresi, P. L. Lanzi, and M. Miraz. Testful: an evolutionary
test approach for java. InIEEE International Conference on
Software Testing, Verification and Validation (ICST), pages
185–194, 2010.

[9] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on java predicates. InProceedings of the 2002
ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA ’02, pages 123–133, New York, NY,
USA, 2002. ACM.

[10] F. Charreteur and A. Gotlieb. Constraint-based test input
generation for java bytecode. InProceedings of the 2010
IEEE 21st International Symposium on Software Reliability
Engineering, ISSRE ’10, pages 131–140, Washington, DC,
USA, 2010. IEEE Computer Society.

[11] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Artoo: adaptive
random testing for object-oriented software. InACM/IEEE
International Conference on Software Engineering (ICSE),
pages 71–80, 2008.

[12] I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer.
On the predictability of random tests for object-oriented
software. In IEEE International Conference on Software
Testing, Verification and Validation (ICST), pages 72–81,
2008.

[13] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java.Softw. Pract. Exper., 34:1025–1050,
September 2004.

[14] C. Csallner and Y. Smaragdakis. Check ’n’ crash: combining
static checking and testing. InProceedings of the 27th
international conference on Software engineering, ICSE ’05,
pages 422–431, New York, NY, USA, 2005. ACM.

[15] C. Csallner, Y. Smaragdakis, and T. Xie. DSD-Crasher: A
hybrid analysis tool for bug finding.ACM Trans. Softw. Eng.
Methodol., 17:8:1–8:37, May 2008.

[16] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D.
Ernst. An empirical comparison of automated generation and
classification techniques for object-oriented unit testing. In
IEEE/ACM Int. Conference on Automated Software Engineer-
ing (ASE), pages 59–68, 2006.

[17] J. W. Duran and S. C. Ntafos. An evaluation of random
testing. IEEE Transactions on Software Engineering (TSE),
10(4):438–444, 1984.

[18] G. Fraser and A. Arcuri. Evolutionary generation of whole
test suites. InInternational Conference On Quality Software
(QSIC), pages 31–40, Los Alamitos, CA, USA, 2011. IEEE
Computer Society.

[19] G. Fraser and A. Arcuri. Evosuite: Automatic test suite
generation for object-oriented software. InACM Symposium
on the Foundations of Software Engineering (FSE), 2011.

[20] G. Fraser and A. Zeller. Mutation-driven generation of unit
tests and oracles.IEEE Transactions on Software Engineer-
ing, 99(PrePrints), 2011.

[21] J. Galeotti, N. Rosner, C. Ĺopez Pombo, and M. Frias. Anal-
ysis of invariants for efficient bounded verification. InACM
Int. Symposium on Software Testing and Analysis (ISSTA),
pages 25–36, 2010.

[22] H. Hemmati, A. Arcuri, and L. Briand. Empirical investi-
gation of the effects of test suite properties on similarity-
based test case selection. InIEEE International Conference
on Software Testing, Verification and Validation (ICST), pages
327–336, 2011.

[23] K. Inkumsah and T. Xie. Improving structural testing of
object-oriented programs via integrating evolutionary testing
and symbolic execution. InIEEE/ACM Int. Conference
on Automated Software Engineering (ASE), pages 297–306,
2008.

[24] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. Ocat: object
capture-based automated testing. InProceedings of the 19th
International Symposium on Software Testing and Analysis,
ISSTA ’10, pages 159–170, New York, NY, USA, 2010.
ACM.

[25] V. G. Karthick Jayaraman, David Harvison and A. Kiezun.
jfuzz: A concolic whitebox fuzzer for Java. InProceedings
of NASA Formal Methods Workshop (NFM 2009), 2009.

[26] J. Malburg and G. Fraser. Combining search-based and
constraint-based testing. InIEEE/ACM Int. Conference on
Automated Software Engineering (ASE), 2011.

[27] D. Marinov and S. Khurshid. Testera: A novel framework
for testing java programs. InIEEE/ACM Int. Conference on
Automated Software Engineering (ASE), 2001.

[28] P. McMinn. Search-based software test data generation:
A survey. Software Testing, Verification and Reliability,
14(2):105–156, 2004.

[29] C. Oriat. Jartege: A Tool for Random Generation of Unit
Tests for Java Classes. InQuality of Software Architectures
and Software Quality, volume 3712/2005 ofLecture Notes
in Computer Science, pages 242–256, Heidelberg, 2005.
Springer Berlin.

[30] C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. InECOOP 2005 — Object-

Oriented Programming, 19th European Conference, pages
504–527, Glasgow, Scotland, July 27–29, 2005.

[31] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-
directed random test generation. InACM/IEEE International
Conference on Software Engineering (ICSE), pages 75–84,
2007.

[32] C. S. P̌ašareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. Lowry, S. Person, and M. Pape. Combining unit-
level symbolic execution and system-level concrete execution
for testing nasa software. InProceedings of the 2008 Int.
Symposium on Software Testing and Analysis, ISSTA ’08,
pages 15–26, New York, NY, USA, 2008. ACM.

[33] J. C. B. Ribeiro, M. A. Zenha-Rela, and F. F. de Vega. Test
case evaluation and input domain reduction strategies for the
evolutionary testing of object-oriented software.Information
and Software Technology, 51(11):1534–1548, 2009.

[34] J. C. B. Ribeiro, M. A. Zenha-Rela, and F. F. de Vega. En-
abling object reuse on genetic programming-based approaches
to object-oriented evolutionary testing. InProceedings of the
European Conference on Genetic Programming (EuroGP),
pages 220–231, 2010.

[35] K. Sen and G. Agha. Cute and jcute: Concolic unit testing and
explicit path model-checking tools. In T. Ball and R. Jones,
editors,Computer Aided Verification, volume 4144 ofLecture
Notes in Computer Science, pages 419–423. Springer Berlin
/ Heidelberg, 2006.

[36] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. InESEC/FSE-13: Proceedings
of the 10th European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 263–272. ACM,
2005.

[37] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Mari-
nov. Testing container classes: Random or systematic? In
Fundamental Approaches to Software Engineering (FASE),
2011.

[38] A. J. Simons. JWalk: a tool for lazy, systematic testing
of java classes by design introspection and user interaction.
Automated Software Engg., 14:369–418, December 2007.

[39] M. Staats and C. Pasareanu. Parallel symbolic execution for
structural test generation. InACM Int. Symposium on Software
Testing and Analysis (ISSTA), pages 183–194, 2010.

[40] K. Taneja and T. Xie. Diffgen: Automated regression unit-
test generation. InProceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineer-
ing, ASE ’08, pages 407–410, Washington, DC, USA, 2008.
IEEE Computer Society.

[41] S. Thummalapenta, J. de Halleux, N. Tillmann, and
S. Wadsworth. Dygen: automatic generation of high-coverage
tests via mining gigabytes of dynamic traces. InProceedings
of the 4th international conference on Tests and proofs,
TAP’10, pages 77–93, Berlin, Heidelberg, 2010. Springer-
Verlag.

[42] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
W. Schulte. MSeqGen: object-oriented unit-test generation via
mining source code. InProceedings of the 7th Joint Meeting
of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE ’09, pages 193–202, New York, NY,
USA, 2009. ACM.

[43] N. Tillmann and W. Schulte. Parameterized unit tests. In
Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 253–262, New York, NY, USA, 2005.
ACM.

[44] P. Tonella. Evolutionary testing of classes. InACM Int.
Symposium on Software Testing and Analysis (ISSTA), pages
119–128, 2004.

[45] W. Visser, C. S. Pasareanu, and R. Pelànek. Test input
generation for java containers using state matching. InACM
Int. Symposium on Software Testing and Analysis (ISSTA),
pages 37–48, 2006.

[46] W. Visser, C. S. P̌ašareanu, and S. Khurshid. Test input
generation with java pathfinder. InProceedings of the 2004
ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA ’04, pages 97–107, New York, NY, USA,
2004. ACM.

[47] W. Visser, C. S. P̌ašareanu, and R. Pelánek. Test input gener-
ation for java containers using state matching. InProceedings
of the 2006 International Symposium on Software Testing and
Analysis, ISSTA ’06, pages 37–48, New York, NY, USA,
2006. ACM.

[48] T. Vos, A. Baars, F. Lindlar, P. Kruse, A. Windisch, and
J. Wegener. Industrial Scaled Automated Structural Testing
with the Evolutionary Testing Tool. InIEEE International
Conference on Software Testing, Verification and Validation
(ICST), pages 175–184, 2010.

[49] S. Wappler and J. Wegener. Evolutionary unit testing of
object-oriented software using strongly-typed genetic pro-
gramming. InGenetic and Evolutionary Computation Con-
ference (GECCO), pages 1925–1932, 2006.

[50] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Precise
identification of problems for structural test generation. In
Proceeding of the 33rd international conference on Software
engineering, ICSE ’11, pages 611–620, New York, NY, USA,
2011. ACM.

[51] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. InIEEE/ACM
Int. Conference on Automated Software Engineering (ASE),
pages 196–205, 2004.

[52] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. InProceedings of the 11th Int. Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 365–381, 2005.

[53] T. Xie and D. Notkin. Tool-assisted unit-test generation
and selection based on operational abstractions.Automated
Software Engg., 13:345–371, July 2006.

[54] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, and
H. Mei. Test generation via dynamic symbolic execution for
mutation testing. InProceedings of the 2010 IEEE Interna-
tional Conference on Software Maintenance, ICSM ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[55] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined
static and dynamic automated test generation. InISSTA
2011, Proceedings of the 2011 International Symposium on
Software Testing and Analysis, Toronto, Canada, July 19–21,
2011.

	I Introduction
	II Software Engineering Experimentation
	III A Statistically Sound Experiment
	III-A Objectives
	III-B The EvoSuite Tool for Search-based Test Generation
	III-C Case Study Selection
	III-D Results
	III-E Manual Inspection
	III-E1 Classes without permission problems
	III-E2 Classes with file permission checks
	III-E3 Classes with runtime permission checks
	III-E4 Classes with network permission checks

	III-F Threats to Validity

	IV Implications for Software Engineering Experimentation
	V Conclusions
	References

