
EXSYST: Search-based GUI Testing

Florian Gross
Saarland University

Saarbrücken, Germany
Email: fgross@cs.uni-saarland.de

Gordon Fraser
Saarland University

Saarbrücken, Germany
Email: fraser@cs.uni-saarland.de

Andreas Zeller
Saarland University

Saarbrücken, Germany
Email: zeller@cs.uni-saarland.de

Abstract—Test generation tools commonly aim to cover
structural artefacts of software, such as the source code or
the user interface. However, focusing only on source code can
lead to unrealistic or irrelevant test cases, while exploring a
user interface often misses much of the underlying program
behavior. Our EXSYST prototype takes a new approach
by exploring user interfaces while aiming to maximize code
coverage, thus combining the best of both worlds. Experiments
show that such an approach can achieve high code coverage
matching and exceeding the code coverage of traditional unit-
based test generators; yet, by construction every test case is
realistic and relevant, and every detected failure can be shown
to be caused by a real sequence of input events.

Keywords-test case generation; system testing; GUI testing;
test coverage

I. INTRODUCTION

State of the art test generation tools can produce unit
tests that achieve high code coverage, for example by using
search [5] or constraint solvers [3]. However, such tools have
a number of shortcomings that limit their widespread use.
First, these tools produce executions and not test cases, as
they are missing the essential test oracles that decide on
whether an execution revealed a defect. The second problem
is that generated test cases may be nonsensical—that is,
represent executions that would never occur in reality. The
reason for this is that often assumptions are not made explicit
by the programmer. Even though this could be amended,
for example in terms of preconditions, it is unlikely that
programmers will protect their code against all possible
automatic misuse. Such nonsensical executions not only
add to the difficulty of the oracle problem, but may reveal
false failures that cannot happen in real usage. In a recent
study [4] on five applications, we found that all of the
181 failing generated unit tests were false failures—that is,
failures which were created through violations of implicit
preconditions, but which could never take place in the actual
application.

To address the issue of false failures, our EXSYST pro-
totype leverages system interfaces such as GUIs as filters
against nonsensical input—interfaces at which the program
must cope with every conceivable input, and at which every
failure is a true failure. While GUI testing has been around
for a long time (typically with a focus of covering all GUI
elements and states), EXSYST specifically aims for achieving

Figure 1. Screenshot of EXSYST in action, showing the current state of
execution and the achieved branch coverage for the target application.

the same high code coverage as unit test generators. For this
purpose, it applies a search-based approach; that is, it sys-
tematically generates user interface events while observing
which events correspond to which behavior in the code.

II. SEARCH-BASED SYSTEM TESTING

EXSYST uses a genetic algorithm to evolve a population
of GUI test suites with the goal of achieving maximum
possible coverage. To achieve this, it combines the genetic
algorithms from our EVOSUITE test generation tool [2] with
a new problem representation layer suitable to handle GUI
interactions.

A genetic algorithm is a meta-heuristic search technique
which tries to imitate the natural process of evolution. A
population of candidate solutions is evolved using search
operators such as selection, crossover, and mutation, grad-
ually improving the fitness value of the individuals, until a
solution has been found or the search is stopped by other
means. In EXSYST, an individual of this search is a set of
GUI interaction sequences (test suites). Crossover creates
offspring test suites by exchanging sequences between the
two parent test suites. Mutation of test suites results in muta-
tion of individual sequences with a probability related to the
number of sequences in a test suite: Mutation of interaction

sequences adds, removes, or changes individual interactions.
The individuals of the initial population are generated from
targeted random walks on the GUI. The fitness of a test suite
is measured through its branch coverage on the underlying
code, and is calculated as the sum of normalized branch
distances [2], where the branch distance is an estimate of
how close the predicate guarding a particular branch was to
evaluating to this branch.

To guide the exploration and the search operators, a model
of the user interface is created and evolved alongside the
test cases. This UI model represents our knowledge of the
behavior of the application under test. The information is
contained in a non-deterministic state machine that we create
from observing actual executions of the application under
test. By construction, this model only describes a subset
of possible application behavior, namely behavior we have
already observed.

The states of this model represent components and actions
available at a point of time in application interaction (i.e.,
windows that are visible, enabled, and not obscured by
modality), as well as all of their respective interactable
components (i.e., visible, enabled). Transitions are defined to
represent the execution of actions, such as entering text into
text fields, clicking buttons, opening menus, etc. An action
sequence is a sequence of such actions, corresponding to
a path through the automaton. If the action has not been
executed so far, its transition leads to the unknown state
s?. As we generate new test cases, the model is updated
with information from new observations of the application
behavior. If an action takes us to a new state, the new state
is added to the model, and a transition for the action, taking
us from the old state to the new state will be added. If there
previously was a transition to the unknown state, then it is
removed.

The UI model serves several purposes:
• When inserting new interactions into an interaction

sequence, we can give preference to unexplored parts
of the GUI.

• Mutating an interaction sequence might result in an
invalid sequence that cannot be executed. If this is the
case, then we use the UI model to repair the sequence.

New Contact ApplyNew Category

s0

s?

Click Click

New Contact ApplyNew Category
s1

First Name

ClickClickClick Enter Text

Click

Figure 2. Example UI model: States represent active GUI elements, and
transitions represent interactions; interactions not observed so far lead to a
special unknown state s?.

III. SYSTEM TESTING WITH EXSYST

EXSYST is a system test generator for interactive Java
programs, and operates the program under test through
its graphical user interface. It does so by synthesizing
input actions, such as entering text or mouse clicks. The
distinguishing feature of EXSYST is that it aims to maximize
coverage: via search-based techniques, it strives to generate
input sequences such that as much code of the program
under test as possible is covered.

All it takes to use EXSYST is a computer with CPU
cycles to burn. After invoking EXSYST with the program
under test, it autonomously generates input sequences in an
invisible virtual GUI, reporting any application failures as
encountered. (For diagnostic and demonstration purposes,
the GUI interaction can also be made visible.) Since every
failure is tied to a real sequence of input events, every
failure is real—it is characterized by a small number of user
interactions that are easy to understand and to reproduce.

We ran EXSYST on five test subjects, the details of which
are listed in Table I. On each of the five test subjects, we
would run the respective tool for 15 minutes1. For these
experiments, Table I lists:

1) the number of tests executed,
2) the number of failures encountered,
3) the instruction coverage achieved.
Applying EXSYST on the five study subjects listed in

Table I, EXSYST generated a total of 6,373 tests (Table II),
out of which 248 failed. These failures were caused by a
total of six errors, all of which are true failures and can be
recreated through a short sequence of user events:

1) Addressbook. When no contact is selected in the
address book, the application disables all the input
fields in the bottom pane. However, it does not disable
the “Apply” button. Pressing this button (for instance,
right after application start) then results in an uncaught
NullPointerException.

2) Calculator. The Calculator application (Figure 3)
raises a NumberFormatExceptions when apply-
ing any of its numerical operations to an interme-
diate result consisting of more than three digits.

1All times measured on a server machine with 8x 2.93 GHz Intel i7-870
Lynnfield CPU cores, and 16 GB RAM, running Linux kernel 2.6.38-11.
As all approaches are driven by random generators, results reported are
averages over three runs conducted.

Table I
STUDY SUBJECTS

Name Source #Lines #Classes
Addressbook [6] 1,334 41
Calculator [6] 409 17
TerpPresent [7] 54,394 361
TerpSpreadSheet [7] 20,130 161
TerpWord [7] 10,149 58

Table II
TESTS GENERATED

Subject Tests Failures Coverage
Addressbook 2,682 127 87.7%
Calculator 2,852 42 92.0%
TerpPresent 117 9 25.3%
TerpSpreadSheet 273 29 48.5%
TerpWord 449 41 53.9%
Total 6,373 248 61.5%

7 8 9

4 5 6

1 2 3

0 .

C

-

*

+

/

=

Calculator

1,000

Figure 3. The Calculator application formats numbers with thousands
separators, but can not parse such numbers produced by itself.

This is due to Calculator rendering number in the
NumberFormat of the English locale for formatting
numbers (which uses thousands separators), and feed-
ing these formatted strings into the BigDecimal()
constructor, which does not support thousands sep-
arators. One input sequence leading to this problem
is “500 * 2 + 1 =”; Figure 3 shows the application
state before the failure. The application subsequently
becomes unusable until it is returned to a sane state
by pressing the “Clear” button.

3) TerpPresent. TerpPresent, a simple presentation pro-
gram (Figure 4), uses a multi-document interface with
a shared menu at the top. When the last presenta-
tion (in the blue area) is closed, menu entries per-
taining to the document erroneously remain enabled.
For instance, invoking Shape/Group without an open
document results in an application failure (Uncaught
NullPointerException).

4) TerpPresent again. A similar failure is related to ob-
ject selection. By using “Select/Invert” twice when no
shape was selected before, we arrive in an inconsistent
application state: When we now use “Edit/Delete”,
the application assumes there still is a shape selected
when no shape remains. “Edit/Copy” then leads to
an uncaught NullPointerException. One input
sequence demonstrating this problem is to create a new
shape of some kind and then invoke “Select/Invert,
Select/Invert, Edit/Delete, Edit/Copy”.

Figure 4. The TerpPresent application in an inconsistent state: No
document windows are open, yet functionality to interact with documents
remains enabled.

5) and 6) More failures. EXSYST also was able to detect
two issues related to opening and saving files with
unspecified format and/or extension.

All these six issues are real failures which need to be
fixed in the application code. In principle, all of them could
also be discovered by a unit-testing tool like Randoop—but
as we showed in our evaluation, they would likely get lost
between hundreds of false alarms [4].

While testing through the GUI gets rid of false failures,
would a search-based approach as in EXSYST still be able
to achieve high coverage? The rightmost column of Table II
lists the coverage achieved—on average, 61.5%, a signif-
icantly higher coverage than the 40.9% of Randoop [4].
Using EXSYST, one can thus expect to obtain the same
high coverage as unit-based tests; yet, every failure is a true
failure characterized by a short sequence of input events.

IV. RELATED WORK

Recent code-based techniques such as random testing [9],
dynamic symbolic execution [3], or search-based testing [5]
can achieve high code coverage, yet suffer from problems
of nonsensical test cases. EXSYST overcomes this problem
by testing through the user interface, rather than at the
API level. This, of course, requires the availability of a
suitable user interface. Usually, automated techniques to
derive test cases for graphical user interfaces (GUIs) first
derive graph models that approximate the possible sequences
of events of the GUI [8], and then use such models to
derive representative test sets [10]. Mostly, these GUI test
generation approaches consider only the GUI, thus allowing
no direct conclusions about the relation of GUI tests and
the tested program code. A notable exception is the work
of Bauersfeld et al. [1], who attempt to link GUI tests with
the code by optimizing individual test cases to achieve a
maximum size of the call tree. In contrast, EXSYST explicitly
tries to maximize the code coverage, while at the same time

it aims to produce small test suites to reduce the oracle
problem.

V. CONCLUSIONS

Automated testing has made spectacular progresses in the
past decade—progresses that make its remaining shortcom-
ings the more painful. By testing through the user interface,
EXSYST avoids false failures as they could be provoked
by generated unit tests; at the same time, it achieves the
same high coverage as these tools. EXSYST requires nothing
but spare computer cycles and is straight-forward to use;
Failures are reported in terms of user interaction and thus
easy to understand. We recommend search-based system
testing as a strong alternative to generated unit tests.

We are currently integrating EXSYST into the EVOSUITE

test generation framework. Live demos of EVOSUITE as well
as additional data on the experiments described in this paper
are available at http://www.evosuite.org/

ACKNOWLEDGMENTS

This work is supported by a Google Focused Research
Award “Test Amplification”, by Deutsche Forschungsge-
meinschaft, grant Ze509/5-1 “Seeding Bugs to Find Bugs”,
and by an ERC Advanced Grant “Specification Mining and
Testing”. We thank Atif Memon for supporting this work
with his assistance in setting up the GUITAR experiments,
and for making his tool and test subjects available.

REFERENCES

[1] S. Bauersfeld, S. Wappler, and J. Wegener. A metaheuristic
approach to test sequence generation for applications with a
GUI. In M. Cohen and M. O Cinneide, editors, Search Based
Software Engineering, volume 6956 of Lecture Notes in Com-
puter Science, pages 173–187. Springer Berlin / Heidelberg,
2011.

[2] G. Fraser and A. Arcuri. Evolutionary generation of whole
test suites. In International Conference On Quality Software
(QSIC), pages 31–40, Los Alamitos, CA, USA, 2011. IEEE
Computer Society.

[3] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 213–223, New York, NY,
USA, 2005. ACM.

[4] F. Gross, G. Fraser, and A. Zeller. Exploring realistic
program behavior. Technical report, Saarland University,
2011. Submitted to ICSE 2012 technical track.

[5] P. McMinn. Search-based software test data generation:
a survey: Research articles. Software Testing Verification
Reliability, 14(2):105–156, 2004.

[6] R. Medina and P. Pratmarty. UISpec4J — Java/Swing GUI
testing library. http://www.uispec4j.org/.

[7] A. Memon. Dart: A framework for regression testing night-
ly/daily builds of GUI applications. In In Proc. of ICSM,
pages 410–419. BibTeX, 2003.

[8] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for testing.
In Proceedings of The 10th Working Conference on Reverse
Engineering, Nov. 2003.

[9] C. Pacheco and M. D. Ernst. Randoop: feedback-directed ran-
dom testing for Java. In OOPSLA ’07: Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming
systems and applications companion, pages 815–816, New
York, NY, USA, 2007. ACM.

[10] X. Yuan and A. M. Memon. Using GUI run-time state
as feedback to generate test cases. In Proceedings of the
29th international conference on Software Engineering, ICSE
’07, pages 396–405, Washington, DC, USA, 2007. IEEE
Computer Society.

http://www.evosuite.org/

	I Introduction
	II Search-based System Testing
	III System Testing with Exsyst
	IV Related Work
	V Conclusions
	References

