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Abstract—Automated unit test generation has been extensively
studied in the literature in recent years. Previous studies on open
source systems have shown that test generation tools are quite
effective at detecting faults, but how effective and applicable are
they in an industrial application? In this paper, we investigate this
question using a life insurance and pension products calculator
engine owned by SEB Life & Pension Holding AB Riga Branch.

To study fault-finding effectiveness, we extracted 25 real faults
from the version history of this software project, and applied two
up-to-date unit test generation tools for Java, EVOSUITE and
RANDOOP, which implement search-based and feedback-directed
random test generation, respectively. Automatically generated
test suites detected up to 56.40% (EVOSUITE) and 38.00%
(RANDOOP) of these faults. The analysis of our results demon-
strates challenges that need to be addressed in order to improve
fault detection in test generation tools. In particular, classification
of the undetected faults shows that 97.62% of them depend on
either “specific primitive values” (50.00%) or the construction of
“complex state configuration of objects” (47.62%).

To study applicability, we surveyed the developers of the
application under test on their experience and opinions about
the test generation tools and the generated test cases. This leads
to insights on requirements for academic prototypes for successful
technology transfer from academic research to industrial practice,
such as a need to integrate with popular build tools, and to
improve the readability of the generated tests.

Keywords-Automated Tests Generation; Empirical Software
Engineering; Search-based Testing; Random Testing;

I. INTRODUCTION

Software testing is an essential part of software development
processes to assure the quality of software systems. Developers
typically underestimate the required testing effort, and therefore
developer-written tests are generally not comprehensive [6]. To
overcome the challenges of manual test generation, automatic
techniques and tools based on different approaches have been
introduced (e.g., [10], [16], [20]).

In order for developers to adopt these tools, it is important to
provide an understanding of their capabilities and the quality
of the tests they produce. A common way in the literature
to evaluate generated test suites is by measuring their code
coverage (e.g., [13]). However, code coverage as a measure of
test effectiveness has been challenged by several recent studies
(e.g., [17], [18]). Alternatives are to evaluate the ability of
tools to detect real faults (e.g., [14], [23]) or artificial faults

(e.g., mutation analysis [15]). Another shortcoming of empirical
studies on automated test generation tools is that they only
focus on open source projects. Evaluations on industrial systems
(e.g., [13]) are still rare, possibly because they require a level of
maturity of the underlying tools that is difficult to achieve for
research prototypes. Consequently, there is a need to provide
further evidence of the capabilities of automated unit test
generation on industrial systems.

The aim of this paper is to evaluate automated test generation
on a relatively complex, production ready financial application
known as LifeCalc, owned and developed internally by SEB
Life & Pension Holding AB Riga Branch. We selected a search-
based test generation tool (EVOSUITE [10]) and a random
test generation tool (RANDOOP [20]) for experimentation, and
provide the following concrete contributions in this paper:

• We describe the results of an experiment using 25 real
faults of the LifeCalc industrial application to assess the
effectiveness of automatically generated test suites in terms
of detecting real-world faults.

• We analyze the undetected faults in LifeCalc in order to
guide future research on automated test generation tools.

• We surveyed the developers of LifeCalc to get their
feedback about the generated unit tests.

• We provide general lessons learned from the application of
the automated unit test generation to industrial software.

Our experiments with the LifeCalc application reveal that
EVOSUITE detected 56.40% of the faults, and RANDOOP
38.00%. A closer investigation of the undetected faults shows
that 97.62% of them depend on either “specific primitive values”
(50.00%) or the construction of “complex state configuration of
objects” (47.62%), and this can guide future research towards
improved techniques for detecting such defects. Our interactions
with the developers of LifeCalc reveal several aspects of the
test generation research prototypes that inhibit a successful
technology transfer from academia to industry, which can guide
testing researchers to achieving impact in practice.

This paper is organized as follows. Section II presents
background. Section III states the experiment setup. Section IV
presents results. Section V discusses lessons learned. Section VI
reviews related work. Section VII concludes the paper.



II. AUTOMATED UNIT TEST GENERATION

In object-oriented programming, a unit test is a small,
executable piece of code that exercises a functionality of a
class under test. While there is a wide range of techniques to
automatically generate tests in general, the specific case of unit
test generation is mainly addressed by approaches based on
random generation of call sequences, search-based optimization
of call sequences, and symbolic approaches.

A. Random Testing

Random testing [4] is perhaps the most basic and straight
forward form of test generation [9], as it consists of invocation
of functions with random inputs. Guided random testing is a
refined approach that starts with random input data and then
uses some form of extra knowledge to produce further input
data. One of the main examples of this category is feedback-
directed random testing [21]. Feedback-directed random test
generation enhances random test generation by incorporating
feedback collected from executing test inputs that is used to
avoid generating duplicate and illegal input data. This technique
takes a set of classes as input and creates method sequences
incrementally. It iteratively executes new sequences and checks
them against general contracts. Sequences that violate the
contract are considered as failing tests, and sequences that
pose normal behavior are treated as regression tests.

B. Search-based Testing

Search Based Software Engineering is an approach that
transforms software engineering problems into optimization
problems [19], where the objective of the test generation
is implemented by a fitness function that guides the search.
Among the many meta-heuristic search techniques used for
test generation, Genetic Algorithms are perhaps the most
common [19]. In a Genetic Algorithm, randomly selected
candidate solutions are evolved by applying evolutionary
operators, such as mutation and crossover, resulting in new
offspring individuals, with better fitness values. An example
objective function for unit test generation is the whole test
suite’s code coverage [12].

C. Symbolic Testing

Symbolic approaches represent execution paths through a
program as constraints on the input values. A common approach
is Dynamic Symbolic Execution (e.g., [16]), where the paths of
a program are systematically explored by iteratively negating
one branch condition in a path constraint at a time, and using
a constraint solver to generate a new test input for that path.
Most approaches of this kind target generation of specific input
data and require manual construction of test drivers.

III. EXPERIMENT SETUP

In this section, we describe our experiment methodology.
The main objective of this study is to evaluate the effectiveness
of existing mature test generation tools, in terms of revealing
known real faults in an industrial application, and understanding
the existing barriers for practitioners when adopting these tools.

A. Research Questions

To achieve the mentioned goal, we have designed an
experiment to answer the following research questions:

RQ1: How effective are automatically generated unit tests in
terms of finding real faults? This question intends to assess the
capability of two test generation tools that are widely adopted
in academia, in terms of revealing real faults.

RQ2: What categories of faults are harder to detect using
the current automated test generation tools? This question
aims to categorize the faults that have not been detected by
any of the examined test generation tools.

RQ3: What major barriers do developers see when adopting
automatic test generation tools? This question tries to identify
some of the practitioner’s requirements which are not currently
supported by automatic test generation tools. (Due to resource
limitations we only consider EVOSUITE for RQ3)

B. Subject of Study

We have conducted our experiment on a life insurance and
pension products calculator engine known as LifeCalc, which
is a standalone software component owned by SEB Life &
Pension Holding AB Riga Branch. LifeCalc is written using the
Java technology stack. Its implementation started in early 2015
and it has been released to production in early 2016. LifeCalc’s
development team consists of 5 developers, 2 testers and 1
business analyst/project manager. LifeCalc is a medium-sized
application that consists of complex critical calculations with
plenty of business rules that are implemented using complex
conditions, which makes it challenging for test generation tools.
LifeCalc’s stacks comprise of front-end (client) and back-end
(core, services) modules with approximately 80,000 LOC.

LifeCalc is built in a nightly build using the Jenkins [2]
Continuous Integration (CI) build management system, and all
tests are executed during the nightly builds. Moreover, builds
are also triggered on demand if there are any critical bug
fixes that need to be deployed to production. In these cases,
there is a restricted subset of important tests which will be
executed to test the critical functionalities of the application.
The company’s developers provided us 25 faults from their
issue tracking system. They selected these faults randomly,
trying to include examples from different times throughout
the life cycle of the project. We studied the commits in the
version repository that contained the fix for the fault until we
understood them well enough to know how to replicate them
by writing manual unit tests. For each fault, we extracted the
faulty and fixed program versions, such that they differ by a
minimal change that demonstrates the isolated fault fix.

C. Fault Analysis

Based on the fault descriptions, we distinguish between the
following two types of faults in our dataset: 1) Specification-
based faults and 2) Exception-related faults. The first category
requires knowledge about the expected logic (specification)
vs. the existing implemented logic. This means that, in most



cases, a JUnit assertion is required to detect the fault in the
faulty version of the program. The second category consists
of faults that can be detected without knowing the exact logic
of the code. In other words, the unit test’s failure is due to an
unhandled exception thrown in the code under test, and not
about a failing assertion in the test.

In the rest of this section we explain these categories
with an anonymized code snippet example per category (the
anonymization is due to our agreement with SEB Life & Pension
Holding AB Riga Branch for publication).

1) Specification Faults: Among the collected 25 faults, we
identified five as specification faults because the expected
business logic was not implemented correctly. For instance,
the code snippet from LifeCalc-b23, shown below, is one of
the Specification Faults, in which the assigned developer was
retrieving tariff values yearly, whereas tariff values in the
properties file are defined on a monthly basis, and thus param1
needs to be multiplied by 12. One way to detect this fault is
to have an assertion in the generated tests on the fixed version
to check the value of param3.
1public double faultyMethod(int param1, int param2) {
2 ...
3 double param3 = 0.0;
4 //Faulty Statement
5 - param3 = Double.valueOf(PropertiesReader.getProperty("

mt.m[" + param1 + "]")) * Math.pow((1 + param2), -1);
6 //Fixed Statement
7 + param3 = Double.valueOf(PropertiesReader.getProperty("

mt.m[" + param1 * 12 + "]")) * Math.pow((1 + param2),
-1);

8 ...
9 return param3;
10}

Listing 1. Example of a specification fault in our study

2) Exception-related Faults: We identified 20 faults in this
category in our pool of 25 faults. We encountered several types
of common exceptions such as NullPointerException
(NPE) (thrown when an application attempts to call meth-
ods on a null object instance), ArithmeticException
(thrown when an exceptional arithmetic condition has occurred)
and NumberFormatException (thrown to indicate that
the application has attempted to convert a string with invalid
format to one of the numeric types). However, most of the
faults from this category were due to NPEs. The following code
snippet from LifeCalc-b18 shows one of the exception throwing
faults: An exception is thrown due to an invalid parameter
value (property key) of the getProperty method. Therefore,
PropertiesReader.getProperty(invalidKey) re-
turns a null value, which then causes the program to throw
a NPE on conversion of the String to a Double object.
1public void faultyMethod(ObjectX objx, String param1,

String param2) {
2 ...
3 if(param1.equalsIgnoreCase(Enum1.P_012.getValue())){
4 //Faulty Statement
5 Double rate = Double.valueOf(PropertiesReader.

getProperty("rate_" + param2 + "")) * objx.getObj().
getPaymentFrequency();

6 }
7 ...
8}

Listing 2. Example of an exception-related fault in our study

D. Automated Unit Test Generation Tools

As mentioned earlier, LifeCalc is written in Java, and
therefore we had to consider test generation tools for Java. For
the Java programming language, there are mature tools that can
generate JUnit test cases using random testing (e.g, RANDOOP)
and search-based testing (e.g., EVOSUITE). However, for
symbolic approaches, usually research prototypes in Java only
generate test data, and not JUnit test cases [8] (i.e., testers
have to manually write test drivers for those symbolic tools for
each single class). Therefore, we only selected tools from the
categories of random unit test generation and search-based
unit test generation. RANDOOP [20] and JCrasher [7] are
instances of random unit test generation tools. We decided
to use RANDOOP as it is one of the most used random test
generation tools in academia, and it is still being actively
maintained. EVOSUITE [10] and TestFul [5] are representative
of evolutionary test generation tools which apply search
techniques in order to optimize test suites based on various
coverage criteria. EVOSUITE was chosen as it is actively being
maintained and extended, and ranked first in recent SBST tool
competitions (e.g., see [11]).

1) RANDOOP: RANDOOP [20] is one of the most stable
random test generation tools, with easy to follow instructions
to get it up and running in short time. RANDOOP implements
feedback-directed random test generation, by generating se-
quences of method invocations for all the classes under test.
In other words, it builds test inputs incrementally, and then
the newly created test inputs extend previous ones. As soon
as these test inputs are created, they will be executed and the
results collected from these executions will be used to guide
the generation of new ones. RANDOOP can be used for both
fault-detection and regression testing. For regression testing,
the tests contain assertions that capture the current state. For
fault detection it checks various predefined or custom contracts,
and the violation of any of these contracts indicates an error in
the tested classes. RANDOOP requires the user to provide a list
of classes under test. For the experiments in this paper, we had
to manually identify a list of classes that are the dependencies
of the faulty class, for each of the 25 analyzed faults. We used
all the default settings, except for the stopping criterion, for
which we used two configurations: The default setting of 3
minutes, and an increased duration of 15 minutes.

2) EVOSUITE: EVOSUITE [10] is a search-based unit test
generation tool for Java that uses a genetic algorithm to evolve
a set of test cases with the intention of maximizing code
coverage. EVOSUITE initially generates random sets of test
cases and then uses evolutionary search operators such as
selection, mutation, and crossover to improve the generated
test cases. This evolution process is guided by a fitness
function calculated based on various coverage criteria [22].
EVOSUITE then performs optimizations with respect to the
defined coverage criteria on the test suite with the highest
coverage. Ultimately, it enforces sanitization checks to ensure
the generated tests are valid and executable. In our experiments,
we executed EVOSUITE on the faulty classes with the branch



coverage criterion as fitness function. We applied the same
stopping criteria (i.e., 3 and 15 minutes) as we used for
RANDOOP.

E. Test Generation Scenario

We generated the tests on the fixed versions so that the
automatically generated JUnit assertions are based on the
correct implementations. Generating tests on the fixed version
is useful in the context of regression testing, and allows us to
simulate whether the specification faults can be detected in such
a testing scenario. For exception-related faults we could have
also generated the tests directly on the faulty version, since
throwing of exceptions can be used as an automated oracle. In
other words, the current experiment design makes more sense
in the context of regression testing, where one needs to create
a regression test suite that passes in the current version, to
be used to guard from future faulty changes. However, as the
faulty and fixed versions differ only in terms of the fault fix and
the interfaces are identical, we expect that results on exception-
faults would be similar, if tests were generated directly on the
faulty version.

F. Experiment Procedure

The overall experiment procedure is as follows:
• First, we extracted both fixed and faulty versions of

LifeCalc based on the identified commit IDs provided
by SEB Life & Pension Holding AB Riga Branch.

• Then, for each fault, we generated test suites using both,
EVOSUITE and RANDOOP, on the fixed version.

• To determine whether a fault was found, we executed all
generated test cases on the corresponding LifeCalc faulty
version. These executions were done manually using the
Eclipse IDE. A test case is considered to detect the fault
if it fails on the faulty version. This failure can be due to
an exception in the executed classes or a JUnit assertion
failure in the tests.

• We used two different stopping criteria (search budget of
3 and 15 minutes), and repeated test generation 10 times
for each fault and stopping criterion.

• We collected all the statistics from the execution logs and
manually verified the validity of the failing test cases, in
order to avoid possible false positives [23].

In order to accommodate for the randomness of the test
generation tools, each tool was executed 10 times for each
fault. RQ1 uses two set ups for test generation budget (3 and
15 minutes), which will be discussed more in the next section.

The measure that we use to assess the effectiveness of the
test suites is the percentages of the runs (how many out of 10)
that detected the fault. We also aggregate these by averaging
over several versions (faults).

G. Survey Procedure

Our participants in the conducted survey were the five
developers of LifeCalc with different level of expertise, varying
from 1 to 8 years of working with Java technology stack, and
familiarity with the application code base. The participants

were provided with a survey package containing sets of
tasks to perform and their respective guidelines, as well as a
questionnaire to be answered (The survey package is available
online at https://github.com/moeinalmasi/sealab). The total
duration of the survey was 2 hours per developer.

Based on the analysis of our fault effectiveness experiment,
we gave our participants tasks such as executing the generated
tests, and trying to debug and locate a fault (we gave each
developer three faults of different level of difficulty, as
determined in the RQ2 analysis; see Section IV-B). In addition,
we asked them to write a manual test that covers the same faulty
code as a generated test to better understand how generated
tests relate to developer preferences. They were also provided
with comprehensive guidelines including all the necessary
commands to run and generate tests using EVOSUITE.

After performing these tasks, the developers answered a
questionnaire containing seven demographic questions, four
questions using Likert-scale to rate aspects of tools and
generated tests, and six free-text questions. See the discussion
in Section IV-C for details on the questions.

IV. EXPERIMENT RESULTS

In this section, we discuss the results of our experiments
and answer the research questions presented in Section III-A.

A. Effectiveness of Automatically Generated Unit Tests

RQ1: How effective are automatically generated unit tests
in terms of finding real faults?

The results of test suite executions are summarized in Table I.
We first consider the 3 min. scenario: The first observation is
that both tools can find some of the faults, and are unsuccessful
at detecting the others. The average fault detection rate is
not particularly high (50.80% in EVOSUITE vs. 36.80% in
RANDOOP). However, the variation of effectiveness for different
faults, which we can see in Table I, is a more interesting
observation. There are cases (like LifeCalc-b4, LifeCalc-b7,
etc.) where none of the tools can detect the fault even in ten
executions. On the other hand, there are cases (like LifeCalc-b6,
LifeCalc-b15, LifeCalc-b18, etc.) where every single test suite
out of the 10 per tool can detect the fault.

Given the results, one follow up question is “Can we improve
the effectiveness of the tools by allocating more search budget
to them?”. To answer this question, we also ran the experiment
of RQ1 with the longer stopping criterion of 15 minutes. Note
that this experiment is not meant to be a thorough study on
the correlation between testing budget and effectiveness. The
goal is just to have an idea on what can one expect by adding
extra resources to these tools. A more thorough study would
be an interesting future work.

In total, 19 out of 25 faults were found. However, as the
tools are both based on randomized algorithms, these faults
were not found in all of the 10 runs. On average, RANDOOP
can find faults in 36.8% of the runs, whereas EVOSUITE in
50.8% of the runs. While increasing the search budget is useful



TABLE I
FAULT DETECTION RATE OF EVOSUITE AND RANDOOP FOR EACH FAULT

OVER 10 EXECUTIONS PER FAULT

Fault EVOSUITE (%) RANDOOP (%)
3 min 15 min 3 min 15 min

LifeCalc-b1 40 +0 0 +0
LifeCalc-b2 30 +10 10 +0
LifeCalc-b3 60 +0 30 -10
LifeCalc-b4 0 +0 0 +0
LifeCalc-b5 100 +0 90 +10
LifeCalc-b6 100 +0 100 +0
LifeCalc-b7 0 +0 0 +0
LifeCalc-b8 20 +10 0 +0
LifeCalc-b9 80 +0 40 +10
LifeCalc-b10 0 +0 0 +0
LifeCalc-b11 60 +0 10 -10
LifeCalc-b12 0 +0 0 +0
LifeCalc-b13 70 +30 90 +10
LifeCalc-b14 50 +10 0 +0
LifeCalc-b15 100 +0 100 +0
LifeCalc-b16 30 +20 0 +0
LifeCalc-b17 80 +20 90 +10
LifeCalc-b18 100 +0 100 +0
LifeCalc-b19 60 +20 70 +10
LifeCalc-b20 60 +0 20 -10
LifeCalc-b21 0 +0 0 +0
LifeCalc-b22 0 +0 0 +0
LifeCalc-b23 100 +0 70 +10
LifeCalc-b24 100 +0 100 +0
LifeCalc-b25 30 +20 0 +0

Average 50.80% +5.60% 36.80% +1.20%

for EVOSUITE (+5.6%), it had only a moderate effect on
RANDOOP (+1.2%).

RQ1: Existing tools can potentially detect most of the faults
(19 out of 25 were detected at least once). But there are
also some faults (6 out of 25) that are never found within

the explored search budgets.

Given the variations in the results per fault, it would be
interesting to see what kind of faults are easier to detect and
on which faults the tools have difficulties. Therefore, in RQ2
we explore this question.

B. Analysis of Faults Not Detected

RQ2: What categories of faults are harder to detect using
the current automated test generation tools?

As discussed in detail in the fault analysis section (Sec-
tion III-C), we categorized the faults into two types: 1) Specifi-
cation faults and 2) Exception-related faults. Table II shows the
percentages of faults that are detected in each category. The
results show that, as expected, the detection rate is higher with
15 minutes search budget. However, looking into the Exception-
related Faults we can see that there is quite a variation
between the effectiveness of test suites on different faults
(Detailed summary of all execution shows the fault category
for each faulty version of LifeCalc which is available online at
the following address: https://github.com/moeinalmasi/sealab).
Therefore, we next try to characterize the faults in the exception-
related faults category.

TABLE II
PERCENTAGE OF DETECTED FAULTS PER CATEGORY OVER ALL

EXECUTIONS USING EVOSUITE AND RANDOOP, + INDICATES THE FAULT
DETECTION RATE IS INCREASED

Fault Category EVOSUITE (%) RANDOOP (%)
3 min 15 min 3 min 15 min

Specification Faults 46 +4.00 34.00 +2.00
Exception-related Faults 52 +6.00 37.50 +1.00

TABLE III
FAULT DETECTION (%) VARIATION OVER 3 AND 15 MINUTES SEARCH
BUDGET IN DIFFERENT FAULT CATEGORIES, + INDICATES THAT FAULT

DETECTION RATE IS INCREASED WHILE - INDICATES THE FAULT DETECTION
RATE IS DECREASED

Category EVOSUITE (%) RANDOOP (%) Faults(#)
3 min 15 min 3 min 15 min

Easy 87.14 +10.00 91.43 +5.71 7
Hard 47.78 +5.55 12.22 -2.22 9
Challenging 0.00 0.00 0.00 0.00 4

We look at the faults in this category in three subclasses: 1)
Easy Faults (that are detected by both tools in at least 80% of
times, with 3 and/or 15 minutes stopping criterion), 2) Hard
Faults (that are detected at least once by one tool and are not
“easy faults”), and 3) Challenging Faults (that are never detected
by either tools). The next subsections describe these faults with
anonymized code examples from the industrial system.

1) Easy Faults: In the Easy Fault category, the faulty
statement does not require satisfying a complex condition
prior to its execution. In other words, those are faults that
do not require specific input data and they do not depend on
complex conditions. For instance, the following code snippet
represents a simple NullPointerException (NPE) in
LifeCalc-b5:
1 ...
2 if(!StringUtils.isEmpty(objx.getObj().getLocale)){
3 //Faulty Statement
4 Double interest = Double.valueOf(PropertiesReader.

getProperty("interest.rate.A_" + objx.getObj().
getLocale() + ""));

5 }
6 ...
7}

Detecting this fault requires the invocation of faultyMethod
with an ObjectX instance that has a non-empty locale attribute
String with invalid value. As the invalid property key
interest.rate.A_InvalidKey would be missing in the
property file, there will be a NPE when converting a null
String to Double object.

Table III shows the same results of Table I (for the exception-
related faults only) grouped by the fault difficulty categories.
Of the Easy Faults 87.14% were detected by EVOSUITE and
91.43% by RANDOOP.

Overall, in this category, EVOSUITE found the fault in 61
out of 70 cases, while RANDOOP performed slightly better by
detecting faults in 64 out 70 times. The following is an excerpt
of a test case generated by EVOSUITE for an easy fault:



1public void test17() throws Throwable {
2 ...
3 FaultyClass faultyClass0 = new FaultyClass();
4 ObjectX objx = new ObjectX();
5 Object obj0 = new Object();
6 obj0.setProdCode("012_200");
7 obj0.setCoverSumLife(12);
8 obj0.setLocale("012_200");
9 objx.setObj(obj0);
10 faultyClass0.faultyMethod(objx);
11 ...
12}

In this specific example, the cases where the fault had not
been detected was due to the fact that a locale object was
not initialized. Since there is a simple null check condition
prior to the faulty statement, the faulty statement was not
covered. RANDOOP generated, on average, around 14,500 test
methods on each run for this particular fault (LifeCalc-b5)
while EVOSUITE generated 18 test methods. Although most of
the methods generated by RANDOOP do not cover this fault,
there is at least one method that covers this fault. The following
is a sample test generated by RANDOOP that detected the fault:
1public void test4() throws Throwable {
2 ...
3 FaultyClass var0 = new FaultyClass();
4 Objectx var1 = new Objectx();
5 Object var2 = new Object();
6 var2.setLocale("hi");
7 var1.setObj(var2);
8 var0.faultyMethod(var1);
9 ...
10}

2) Hard Faults: This category describes faults that are either
surrounded by conditions which require specific primitive
values, or the faulty statement itself requires specific input
data. The mentioned primitive values are not only explicit
inputs of the tests, but also attributes of objects passed to the
tests. The following code snippet shows a fault from the Hard
Fault category.
8 ...
9 List<Double> list = new ArrayList<Double>();
10 if (param3.equalsIgnoreCase(Enum1.POSITIVE.getValue())) {
11 for (int i = 1; i <= param1 * 12; i++) {
12 if (param4.equalsIgnoreCase(Enum2.LOW.getValue())) {
13 // Faulty statement
14 list.add(i,Math.pow((1+Double.valueOf(

PropertyReader.getProperty("inv_min"))),(Double.valueOf
(1)/Double.valueOf(12)))-1);

15 }
16 }
17 }
18 ...
19}

The faulty method contains an NPE in LifeCalc-b8. To detect
the fault using the generated tests, it needs to satisfy two
conditions (lines #4 and #6) that require a specific string input.
Note that the two nested if conditions require test inputs that can
be extracted from enum values. Line #8 is the faulty statement
in which the property value of inv_min is an invalid key in
the properties file. This type of faults may occur due to two
reasons: 1. the program tries to get a value of an invalid key
in the properties file (the code is faulty). 2. The valid property
key is missing in the properties file (fault in the properties file).
The second case happens because the business analysts are able
to change the property file values directly, and previously there

was no sanitization check in place to validate the properties
files. Therefore, due to human error, there could be properties
with no or wrong values.

The Hard Faults category is where search-based approaches
have the most advantages (47.78% for EVOSUITE vs. 12.23%
of RANDOOP), because they can focus on generating corner
cases. EVOSUITE found Hard Faults in 43 out of 90 executions
while RANDOOP only detected such faults in 11 out of 90
executions. The following is an example of a test method
generated by EVOSUITE for LifeCalc-b8 which is a Hard
Fault. The generated input data is able to satisfy both conditions
and detects the fault. In the process of test data generation,
EVOSUITE has extracted the required input data to satisfy both
conditions in line #4 and #6 in the above listing from the
values existed in the enum.
1public void test2() throws Throwable {
2 ...
3 FaultyClass faultyClass0 = new FaultyClass();
4 faultyClass0.faultyMethod(10,4,"positive","low");
5 ...
6}

On the other hand, RANDOOP generated approximately
12,500 test methods on average per execution and none of
the generated test methods were able to satisfy the conditions,
mainly because they did not provide the required test data. The
following is an example of a test generated by RANDOOP:
1public void test352() throws Throwable {
2 ...
3 FaultyClass var0 = new FaultyClass();
4 java.util.List var1 = var0.faultyMethod(1,2147483,"

20160419_7232","c$$u#");
5 ...
6}

3) Challenging Faults: The third category of faults we call
Challenging Faults. In this type of fault, the faulty statement
is usually surrounded by complex conditions that requires
constructing complex objects that are populated with specific
values. For instance, in the following example, line #11 is the
faulty statement in which getPaymentFrequency() can
have the potential value of 0 which causes an arithmetic fault
of a division by zero. The root-cause of this fault has to do
with a new scheme for payment frequency that was denoted
by value zero.

20 ...
21 List<DateTime> list = new ArrayList<DateTime>();
22 Double a = 0.0;
23 list.add(0, new DateTime());
24 list.add(1, a);
25 for (int i = 2; i <= Months.monthsBetween(a,b).getMonths

(); i++) {
26 if(objectx.getCalcCoverList().get("CoverCode").

getPromilUWDate().isAfter(b) && objectx.getProdCode().
equalsIgnoreCase("ProductCode") && i==2){

27 list.add(i, list.get(i - 1).plusMonths(1));
28 // Faulty statement
29 a = (Days.daysBetween(a, list.get(i)).getDays() + 1)

/ objectx.getPaymentFrequency();
30 }
31 }
32 ...
33}

Basically, the execution of the faulty statement requires
satisfying a complex condition (line #8), which in turn requires



specific data. It is considered complex since a randomly
initialized map is unlikely to contain such specific keys and
values. Once the outer condition has been satisfied, the faulty
statement also demands a specific data which in this case,
getPaymentFrequency(), is zero.

Based on our definition, the Challenging Faults are difficult
for both tools, and were not detected at all. The following is a
sample test case generated by EVOSUITE for LifeCalc-b4. It
constructed an empty object and set some of the basic attributes
(i.e., setProdCode()) properly, but it failed to initialize
and set a relatively complex List, getCalcCoverList(),
which is a map containing object Cover:

1public void test10() throws Throwable {
2 ...
3 FaultyClass faultyClass0 = new FaultyClass();
4 LocalTime localTime0 = LocalTime.now();
5 DateTime dateTime0 = localTime0.toDateTimeToday();
6 LocalTime localTime1 = localTime0.plusHours(27);
7 DateTime dateTime1 = localTime1.toDateTimeToday();
8 ObjectX objx = new ObjectX();
9 objx.setProdCode("017_200");
10 faultyClass0.faultyMethod(objx, dateTime0, dateTime1);
11 ...
12}

RANDOOP also partially constructed the
input data, but because var1 creates a new
ObjectX, both var1.getCoverEndDate() and
var1.getBirthDateInsured() return null. Given
that var5 and var6 are null, the fault is not covered:

1public void test474() throws Throwable {
2 FaultyClass var0 = new FaultyClass();
3 ObjectX var1 = new ObjectX();
4 DateTime var5 = var1.getCoverEndDate();
5 DateTime var6 = var1.getBirthDateInsured();
6 var1.setDiscount((java.lang.Double)10.0d);
7 var0.faultyMethod(var1, var5, var6);
8 ...
9}

In order to detect faults from the mentioned categories, tools
are required to improve their coverage and propagation, which
means not only the faulty code needs to be covered, but also
it has to be executed with a set of specific values in order to
fail. We will discuss this in more detail in Section V-B.

Finally, we look at the results per category when we add
extra test generation budget to the tools. Table III shows the
new results in +/- percentages. Increasing the search budget did
not facilitate the detection of Challenging Faults. On the other
hand, detection of Easy Faults increased by at least 5.71%,
which can be due to the fact that Easy Faults are detected if
the faulty statement is covered, even without requiring any
specific input data or construction of complex object.

RQ2: Faults whose triggering requires generating input
object data with complex states are hard to detect.

Up to 56% of the faults have been detected by the test
generation tools, but those are mostly Easy Faults. We would
like to understand the developer’s point of view about the
generated tests, specifically about the tests which failed to
detect any fault. Therefore, to answer RQ3 we conducted a
survey with the developers of LifeCalc.

Fig. 1. Likert chart for the answers provided by the developers for questions in
RQ3 that demonstrates the difficulty of the tasks from their point of view. (The
survey package is available online at https://github.com/moeinalmasi/sealab)

C. Understanding Pitfalls of Test Generation Tools

RQ3: What major barriers do developers see when adopting
automatic test generation tools?

The main goal of surveying LifeCalc’s developers is to assess
the applicability of test generation tools and automatically
generated unit tests. We gave our participants certain tasks and
asked them to answer the following questions (see Section III-G
for more details):

1) How difficult was it for you to set up EVOSUITE, execute
the test suite, resolve dependencies and read the generated
tests? They rated all of above tasks relatively easy except for
the readability of the generated tests. In terms of building and
resolving dependencies, EVOSUITE uses Maven [1] which
they found really useful by saying “... maven is definitely a plus
point”. Figure 1 reveals some concerns about the readability
of the generated tests. As one of the developers said “... it is
hard to follow some of the generated tests”.

The developers next had to read the bug report and re-execute
the unit tests again, and try to debug and locate the bug using
the given set of unit tests. Then, we asked them to answer the
following question:

2) How can the generated tests be improved? In general, the
developers did not like the generated assertions, as they said “...
poor assertions, sometimes there is an assertion and sometimes
there is not? The assertions are mostly checking for simple
stuff like list size and so on.”. In addition, they also did not like
the generated input data. They described the generated data as

“ ... set of extreme value test data with a correct datatype. They
are not meaningful but complying with the method signature
datatype”. Some of the generated tests are readable but they
are covering easy faults based on our fault categorization. On
scale of 1 to 5, 1 being not helpful at all and 5 being very
helpful, the developers rated the generated tests as sightly (4
developers) to moderately (1 developer) helpful.

We then asked them to manually write unit tests that cover
the same code as the given generated tests (the rationale is
that the following responses would not be purely subjective,
and also this would help us to have a proper understanding of



the tests) and answer the following questions:
3) Describe what you like better about manually written

tests than generated tests? Developers prefer the test data (e.g.,
primitive values) used in the manually written tests. In addition,
in manually written tests, the assertions are meaningful and
useful unlike the generated ones.

4) Would you keep the generated unit tests? They mostly
answered no to this question. They specified that generated
tests are not as good as manually written tests in terms of test
data. In addition, either there is no assertion or if there is, it is
not validating useful data. However, it can easily be modified
to become a useful assertion. Finally, we wanted to find out
their overall opinion about the automatic test generation and
identify the advantages and the pitfalls from their point of view
by answering the below questions:

5) Given your current infrastructure setup, how would
you like to have automated unit test generation framework
integrated? They emphasized that it is important to integrate
these tools into their development and continuous integration
(CI) environments. They said “ ... supporting Jenkins is a
must”. In this case, EVOSUITE provides plugins for both CI
tools (Jenkins) and development tools (IntelliJ and Eclipse).

6) What are the major barriers from your point of view in
adopting automatic test generation tools? Aside from assertions
and test data that we mentioned earlier on, they also reported
several other issues, like inability of test generation tools
to support well-known, widely-used Java framework (e.g.,
Spring) and core components such as dependency injection.
This highlights the importance of supporting major tools and
frameworks.

RQ3: Assertions and readability of generated tests need to
be improved. To be embraced by developers, test generation
tools need to support the major development frameworks.

V. LESSONS LEARNED

Throughout this section, we discuss the challenges we faced
in terms of tools setup and interaction with the developers, and
suggest technical improvements that can be addressed by the
test generation tools.

A. Tool Set up Challenges

One of the major challenges we faced during this experi-
ment was setting up each LifeCalc version with its required
dependencies and ensuring its successful compilation. We had
to make sure all environmental dependencies, some of which
contained sensitive information, are mocked and available to
LifeCalc.

As for experiments we used the command line versions of
RANDOOP and EVOSUITE, we had to derive the right classpaths
of the system under test. Given that one application might have
dependencies to many third party libraries, the manual resolving
of dependencies was an error prone task. Basically we had to
check the tools’ logs to determine which library is still missing.
Then we would add those libraries to the classpath to get a
proper execution. For instance LifeCalc-b3 was dependent on

Apache Commons Lang, and when this library was missing
on classpath, EVOSUITE would silently generate empty test
suites. After disabling minimization (-Dminimize=false) and
enabling the debug (-Dlog.level=debug) mode in EVOSUITE,
we managed to identify the missing libraries and re-executed
all the experiments for this particular fault.

However, in retrospective, as the target application was built
with Maven, we could have used some of its EVOSUITE’s
plugins to derive the right classpaths and properly setup all the
needed dependencies. Note that EVOSUITE does have a plugin
for Maven, but it is not suitable for the type of experiments
we ran in this paper. Generally, the documentation of these
test data generation tools could be extended to explain how to
use the command line versions on existing projects compiled
with build tools like Maven, Ant and Gradle.

Insight 1: The use of unit test generation tools on the
command line requires detailed understanding of the build
infrastructure, and tool documentations are currently not

helpful in achieving a correct setup.

B. Suggested Improvements
Based on the results of our experiment, the following are

potential improvements for the test generation tools:
Construction of complex objects: Since for most of the
Challenging Faults the generated test cases failed to satisfy
the outer condition, due to incapability in constructing and
populating complex objects, one priority for tool builders should
be to improve the construction and population of complex
objects.

Insight 2: 100% of the challenging faults remained
undetected as none of the tools were able to construct and
populate objects with complex structure. More research on

how to solve this problem is required.

Generating specific input: In most of the Hard Faults the faulty
statements are not covered as there is a conditional statement
prior to them that requires specific primitive data. There are
some cases where the faulty statement was covered, but only a
very specific set of primitive data would trigger the failure. For
example, in the code snippet highlighted in the Listing IV-B3
line #11, the faulty statement should not only be covered, but
getPaymentFrequency() also needs to be 0 in order to
throw a java.lang.ArithmeticException. One good
example of improving value generation is implemented within
EVOSUITE by extracting enum values as a set of required
input data.

Insight 3: Only 47.78% (EVOSUITE) and 12.22%
(RANDOOP) of hard faults which require specific primitive
values have been detected, even if the faulty statements are
executed. Covering code is not enough: further criteria to

optimize should be designed to help these tools in
generating this kind of input values.

Extension of assertions: We encountered cases such as
LifeCalc-b21, specified below, where the fault could have been
detected by the generated test case with a better assertion.



1...
2for (int i = 2; i <= Months.monthsBetween(param1, param2).

getMonths(); i++) {
3 // Faulty Statement
4 list.add(i, list.get(i - 1));
5 // Fixed Statement
6 list.add(i, list.get(i - 1).plusMonths(1));
7}
8...

To detect this fault, tests need to check the content of the
list. However, generated assertions tend to only consider direct
observer methods of the objects in the test (e.g., isEmpty(),
size()), and thus only check for the list size.

Insight 4: At least 50% (EVOSUITE) and 64% (RANDOOP)
of the specification faults could have been detected with
more appropriate assertions. More research in effective

assertion generation would hence be useful.

C. Developer Feedback
We demonstrated the tools and the results of our study to the

LifeCalc developers. They were interested about the possibility
of integrating automated test generation tools with continuous
integration tools such as Travis and Jenkins. This is currently
in its early implementation stage, as tools like EVOSUITE have
provided beta versions of a Jenkins plugin.

Insight 5: Developers in industry expect automated test
generation tools to integrate with standard continuous

integration tools. For an effective technology transfer from
academic research to industrial practice, building plugins for

these tools would be useful.
The other comments of the developers were related to the

readability of the generated tests, and difficulties in navigating
through the generated test suites.

Insight 6: Developers in industry are concerned about the
readability of generated unit tests, the generated input data,
and the generated assertions. These are topics that would

warrant further research.
Given that test readability is a concern for developers, smaller

automatically generated test suites may be more preferred to
read and analyze. Table IV reports the size of test suites based
on the total number of generated test methods. As expected
from a random testing-based tool, RANDOOP has generated
up to approximately 53,000 test methods (LifeCalc-b1) while
EVOSUITE’s test suite size did not exceed 32 test methods.
EVOSUITE performs a minimization to ensure that redundant
tests are excluded. It would be more practical if test generation
tools filter all redundant tests throughout the process, and it
would be beneficial to prioritize the generated tests in a way
to detect faults earlier, specially in cases where the generated
test suite is huge. This way, the test execution could have
stopped sooner, for cases where the fault is detected, and the
test execution resources would be optimized. This point may
be more important for RANDOOP that tends to generated larger
test suites. Moreover, recent extensions of EVOSUITE and
RANDOOP to support popular build management frameworks,
such as Maven and Gradle, suggest that tool development is
heading in the right direction.

TABLE IV
TOTAL GENERATED TEST METHODS FOR ALL FAULTS PER EXECUTION

SETUP (3 AND 15 MINUTES) FOR BOTH EVOSUITE AND RANDOOP

Fault EVOSUITE RANDOOP
3 min 15 min 3 min 15 min

LifeCalc-b1 2 3 31371 52636
LifeCalc-b2 4 4 1294 3579
LifeCalc-b3 4 4 2977 3965
LifeCalc-b4 15 15 20019 27150
LifeCalc-b5 18 32 14502 17899
LifeCalc-b6 4 4 13893 17643
LifeCalc-b7 6 6 3122 5992
LifeCalc-b8 7 14 12630 15767
LifeCalc-b9 4 4 6893 9092
LifeCalc-b10 2 2 18488 23119
LifeCalc-b11 8 9 2121 6655
LifeCalc-b12 12 12 3022 6987
LifeCalc-b13 21 22 9876 12876
LifeCalc-b14 3 3 5433 7652
LifeCalc-b15 8 10 1232 3989
LifeCalc-b16 2 2 2457 4998
LifeCalc-b17 5 7 11542 13432
LifeCalc-b18 10 17 15432 17878
LifeCalc-b19 3 3 5679 8553
LifeCalc-b20 14 14 4390 7658
LifeCalc-b21 8 14 8992 11234
LifeCalc-b22 7 10 11675 21245
LifeCalc-b23 16 24 1959 3009
LifeCalc-b24 13 19 2832 6721
LifeCalc-b25 6 11 9772 14289

D. Threats to Validity

In our experiment, we only considered two major test
generation tools representing search-based and random testing
approaches. However, tools based on dynamic symbolic execu-
tion or any other approaches might be more suitable in the case
where there is a complex condition need to be satisfied. For
each of the selected tools, EVOSUITE and RANDOOP, we have
used their latest version with default settings. The tools might
perform better if some of the settings are fine tuned. Since
we had a limited number of known faults, in order to mitigate
internal validity threat, we managed to analyze all the fault
detection results to ensure that they are failed with the same
reason as the manually written test cases, by going through
the produced error logs. However, given the limited number of
faults in the experiments, we might have some external validity
threats, which we tried to mitigate by asking developers to
provide the faults rather than choosing the faults ourselves.

The categorization of the undetected defects was manual,
by taking into account the execution results with certain level
of subjectivity in the process. We reduced that by having
multiple people with different level of expertise going through
the categorization independently to mitigate this risk.

We had only five participants in the survey but all of them
are professional developers with certain level of familiarity
with system under test. In addition, our participants didn’t have
prior knowledge with automated unit test generation but they
were provided with a guideline on how to setup, execute and
generate tests for EVOSUITE.



VI. RELATED WORK

Recently, researchers have shown an increased interest in
automated software testing. There are a number of studies
in which tools and techniques are being evaluated in terms
of coverage. For example, Fraser and Arcuri [13] evaluated
EVOSUITE on 110 open-source projects. Besides decent levels
of achieved coverage, they reported challenges they had due
to practical limitations such as environmental dependencies,
which Arcuri et. al. [3] later addressed. This work was relevant
in our experiments as we had a set of faulty classes with
environmental dependencies, such as the file system. Xiao et.
al. [24] identified complex domain object creation as one of
the main challenges in unit test generation, which we also
encountered throughout our experiment (see discussion on
“challenging faults” in Section IV-B3).

The work of Shamshiri et. al. [23] is perhaps the most
related one to what is presented in this paper. Shamshiri et
al. evaluated the effectiveness of automated test generation
tools (e.g., RANDOOP and EVOSUITE), but in contrast to our
work they used open source projects (the Defect4J benchmark).
Quantitatively, the number of faults detected on these open
source software is comparable with what is reported in this
paper for our industrial case study: Shamshiri et. al. report
a fault detection rate of 55.7%, which is comparable to our
conducted experiment, in which the test generation tools found
up to 56.4% of the real faults. In addition, our paper also has
an additional qualitative study (the survey).

VII. CONCLUSIONS

In this paper, we performed a systematic study to determine
the effectiveness of automatically generated test suites in terms
of revealing real industrial faults. We used two of the most
common test generation tools in academia, EVOSUITE and
RANDOOP. We evaluated them on a life insurance and pension
products calculator engine developed by SEB Life & Pension
Holding AB Riga Branch. Our experiment results demonstrate
that test generation tools detected up to 56.40% (EVOSUITE)
and 38.00% (RANDOOP) of faults in all executions.

Our fault categorization shows that at least 41% of the
undetected faults are on Hard Faults (they remained undetected
due to the tests not being able to satisfy specific primitive
values required by the faulty methods) and Challenging Faults
(test generation tools were not able to detect the faults due
to the incapability of constructing complex objects as input
data). Increasing the search budget had minimal impact on
fault detection rate in case of Hard Faults, but it increased the
fault detection rate by at least 5.71% for Easy Faults.

We have investigated the challenges that need to be addressed
by test generation tools in order to be adapted by practitioners
by conducting a survey with developers. Based on the survey
result and our analysis, the tools are not yet there to be used by
industry but certainly they are on the right track. We analyzed
the undetected faults in order to find out the areas which test
generation tools can be improved and hopefully our concrete
insights will lead the future research to address these challenges.
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