
Recovering Fitness Gradients for Interprocedural Boolean Flags
in Search-Based Testing

Yun Lin
National University of Singapore

Singapore
dcsliny@nus.edu.sg

Jun Sun
Singapore Management University

Singapore
junsun@smu.edu.sg

Gordon Fraser
University of Passau

Germany
gordon.fraser@uni-passau.de

Ziheng Xiu
National University of Singapore

Singapore
e0140856@u.nus.edu

Ting Liu
Xi’an Jiaotong University

China
tingliu@mail.xjtu.edu.cn

Jin Song Dong
National University of Singapore

Singapore
dcsdjs@nus.edu.sg

ABSTRACT
In Search-based Software Testing (SBST), test generation is guided
by fitness functions that estimate how close a test case is to reach
an uncovered test goal (e.g., branch). A popular fitness function
estimates how close conditional statements are to evaluating to
true or false, i.e., the branch distance. However, when conditions
read Boolean variables (e.g., if(x && y)), the branch distance
provides no gradient for the search, since a Boolean can either be
true or false. This flag problem can be addressed by transforming
individual procedures such that Boolean flags are replaced with
numeric comparisons that provide better guidance for the search.
Unfortunately, defining a semantics-preserving transformation that
is applicable in an interprocedural case, where Boolean flags are
passed around as parameters and return values, is a daunting task.
Thus, it is not yet supported by modern test generators.

This work is based on the insight that fitness gradients can be
recovered by using runtime information: Given an uncovered inter-
procedural flag branch, our approach (1) calculates context-sensitive
branch distance for all control flows potentially returning the re-
quired flag in the called method, and (2) recursively aggregates
these distances into a continuous value. We implemented our ap-
proach on top of the EvoSuite framework for Java, and empirically
compared it with state-of-the-art testability transformations on
807 non-trivial methods suffering from interprocedural flag prob-
lems, sampled from 150 open source Java projects. Our experiment
demonstrates that our approach achieves higher coverage on the
subject methods with statistical significance and acceptable runtime
overheads.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Search-based software engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397358

KEYWORDS
search-based, testing, testability, program analysis
ACM Reference Format:
Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong.
2020. Recovering Fitness Gradients for Interprocedural Boolean Flags in
Search-Based Testing. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’20), July 18–22, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3395363.3397358

1 INTRODUCTION
Search-based software testing (SBST) transforms the problem of
generating test cases into an optimization problem, where tests are
iteratively evolved by effective meta-heuristic search algorithms. To
achieve this objective, the search algorithms are guided by fitness
functions that estimate how close tests are to achieving test ob-
jectives such as branch coverage. Although SBST has been shown
to be successful and effective in practice in many different do-
mains [11, 14, 20, 28, 30, 33, 35, 41, 53, 58], in particular unit test-
ing [26, 45], there is evidence that SBST does not achieve optimal
coverage [7, 25], which negatively impacts the fault detection po-
tential of generated test suites [47].

1 public int example(int a, int b){

2 int x = a + b;

3 if(Math.abs(x)==123){...}

4 boolean y = a > b && a < b + 10;

5 if(y==true){...} //flag problem

6 boolean z = f(a, b)

7 if(z==true){...} //interprocedural flag problem

8 }

Listing 1: Example method containing for a regular
flag problem and an interprocedural flag problem.

A primary challenge in SBST is defining an effective fitness func-
tion. Awidely used and effective fitness function employed bymany
well-known SBST tools is based on branch distance [40]. A branch-
ing node n in a program can be regarded as an operator comparing
two operands, op1 and op2. Given a test case t exercising one branch
of n, the branch distance from t to (covering) the other branch of n
is defined by the value difference of op1 and op2. For example, given
the example program in Listing 1, the branch distance from a test
case t →a=-3, b=0 to the true branch of the branching node at

440

https://doi.org/10.1145/3395363.3397358
https://doi.org/10.1145/3395363.3397358
https://doi.org/10.1145/3395363.3397358

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong

line 3 is 123− | − 3| = 120, i.e., the corresponding ‘fitness’ for t with
regard to the true branch is 120. The fitness function guides search
algorithms towards reaching coverage objectives; for example, an
optimal test case for the example branch is a=-100, b=-23 with a
branch distance of 0, i.e., it covers the branch.

An important problemwith this approach is the flag problem [13]:
A flag problem is present when the branching condition reads
boolean variables, e.g., y==true (line 5 in Listing 1). In such a case,
the branch distance is either 0 (e.g., when y=true) or 1 (e.g., when
y=false). As a result, it is no longer a quantitative measure on how
far a test case is from covering certain branch, and thus there is no
gradient in the fitness landscape that the search algorithm could
use to reach the objective of covering the branch. A commonly
proposed approach to address the flag problem is testability trans-
formation [10, 13, 29, 31, 34, 40]. The idea of testability transforma-
tion is to transform the intermediate representation of the source
code so that (1) the transformed code preserves the semantics and
(2) the boolean variables in branching conditions are replaced by
predicates reading non-boolean variables. For instance, the condi-
tion y==true at line 5 of Listing 1 is replaced with a>b && a<b+10
after the transformation. Flag removal approaches use different
strategies to transform different types of boolean flags [31]. For
example, Baresel et al. [10] and Binkley et al. [13] proposed different
flag removal approaches to resolve flags assigned in loops.

Existing work on flag removal only focuses on flags contained
inside individual procedures. However, if branching conditions are
based on method calls with boolean return-types, this problem be-
comes interprocedural. For example, consider Line 6 in Listing 1:
The flag z is assigned a boolean return value, and the branch dis-
tance for the if-condition in line 7 can only either be 0 or 1. The
interprocedural flag problem (IPF) is prevalent: In an empirical
study on all methods from 150 open source Java projects we found
that 11.8 % of them suffer from interprocedural flag problems (see
Section 4.2 for more details). There currently is no satisfactory so-
lution to the interprocedural flag problem. Although attempts have
been made at defining transformations to recursively rewrite all
boolean types in an object-oriented program [34], correct transfor-
mation rules that preserve semantics turn out to be too intricate
to be practical. Consequently, the interprocedural flags remain a
problem in SBST.

In this paper, we propose a lightweight recursive and context-
sensitive approach to address the interprocedural flag problem.
Unlike existing approaches based on testability transformation, our
approach addresses the problem only through code instrumentation
rather than transformation. Once we detect an uncovered program
branch suffering from the interprocedural flag problem, we stat-
ically analyze the control flow graph of the function producing
the boolean value and identify all potential program paths in the
function which may return the flag. Then, we instrument these pro-
gram paths so that we can dynamically calculate a fitness indicating
how far a test case is away from exercising each path towards the
required flag. Then, we aggregate these fitness values into a con-
tinuous value as the cumulative branch distance. Our approach is
context-sensitive as it distinguishes method calls from different call
sites or iterations of loops, and recursive as it handles cascading flag
method calls in branching conditions. We conduct our experiment
on 807 non-trivial Java methods with interprocedural flag problem,

1 Integer get(int[] keys, int value){

2 if(!checkPrecondition(keys, value))

3 return null;

4 for(int i=0; i<keys.length; i++)

5 if(checkValue(keys, i, value))

6 return keys[i];

7 return null;

8 }

Listing 2: Target method under test, containing two
interprocedural flags.

1 boolean checkPrecondition(int[] keys, int value) {

2 if(checkArrayRange(keys)

3 && checkValueRange(value))

4 return true;

5 return false;

6 }

7
8 boolean checkArrayRange(int[] keys) {

9 return keys.length < 10000;

10 }

11
12 boolean checkValueRange(int value) {

13 return Math.abs(value) < 10000;

14 }

Listing 3: Precondition checking code, which is called
by the target method and produces a boolean flag.

sampled from 150 open source Java projects. The experiment re-
sults demonstrate that our approach outperforms state-of-the-art
approach (51.1% v.s. 47.9% coverage within same time budget) with
statistical significance and acceptable runtime overheads.

In summary, this paper makes the following contributions:
• We propose a lightweight context-sensitive and recursive
approach to address the interprocedural flag problem.
• We present an implementation of our technique based on
EvoSuite [21], and the binaries and source code are made
available at [1].
• We empirically show the prevalence of interprocedural flag
problem in 150 open source Java projects. To the best of
our knowledge, we are the first to show how common the
interprocedural flag problem is in large-scale open source
projects.
• We conduct an experiment on 807 methods suffering inter-
procedural flag problems sampled from 150 Java projects,
showing the effectiveness of our approach.

The rest of the paper is structured as follows. Section 2 presents
a motivating example. Section 3 describes our approach in detail.
Section 4 evaluates the effectiveness of our approach. Section 5 re-
views related work. Section 6 discusses related issues and concludes
the paper.

2 MOTIVATING EXAMPLE
In this section, we motivate our approach using the example shown
in Listing 2, which is a simplified version of the OpenIntToField-
HashMap.get() method in the Apache Commons Math project [2].

The example function takes two input parameters, keys and
value, and returns the corresponding key from the array keys
if keys contains the computed key of value. It first checks the

441

Recovering Fitness Gradients for Interprocedural Boolean Flags ISSTA ’20, July 18–22, 2020, Virtual Event, USA

2

3 4

5

6

7

FT

F T

T

F

 get() [in Listing 2]

2

3

4

5

F
T

T
F 3

4

7

5

T F

FT

6

T

F

 checkPrecondition() [in Listing 3]

 checkValue() [in Listing 4]

 checkArrayRange() [in Listing3]

 checkValueRange() [in Listing 3]

Legend

Method

Branching
Node

T/FBranch

Call/ Return
Relation

Figure 1: Program Dependency Graph for the example method in Listing 2.

1 boolean checkValue(int[] keys, int index, int val) {

2 int key = hashKey(val);

3 if((keys[index] == 0

4 || val >= Math.pow(2, index) + 100)

5 && keys[index] == key)

6 return true;

7 return false;

8 }

9
10 int hashKey(int key) {

11 final int h = key ^ ((key >>> 20) ^ (key >>> 12));

12 return h ^ (h >>> 7) ^ (h >>> 4) + 100;

13 }

Listing 4: Key comparison code, which is called by the
target method and produces a boolean flag.

legitimacy of the inputs (line 2 in Listing 2) and iteratively goes
through each element in keys to check whether the corresponding
key of value is contained in keys (line 4–6). It returns null if either
the inputs does not satisfy the precondition (line 3) or the key of
value is not contained in keys (line 7). The program contains two
method calls in line 2 and 5. The details of the invoked methods are
shown in Listing 3 and 4.

For readability, we show the program dependency graph in Fig-
ure 1, where each method is represented as a rectangle. Within a
rectangle, the control flow graph (CFG) of the method is shown
where each node is represented as a circle labelled with its source
code line number and the control flows between nodes are repre-
sented by lines labelled by branch value (i.e., true or false). Con-
necting the rectangles, the call relation is represented by dashed
lines. For simplicity, we skip the CFG of checkArrayRange() and
checkValueRange().

Automatically generating test cases for method get() to achieve
high branch coverage is non-trivial, in particular for the following
two branches:
• The branch ⟨2, 3⟩ in line 2 (i.e., the edge ⟨2, 3⟩, Listing 2).
• The branch ⟨5, 6⟩ in line 5 (i.e., the edge ⟨5, 6⟩, Listing 2).

Using random testing, the branch ⟨2, 3⟩ is hard to cover because
randomly generated test cases are most likely to violate the precon-
dition (see Listing 3)1. The second branch is hard to cover because
1Theoretically, the sampling space should range from 2−31 to 231 − 1. Nevertheless,
existing tools such as EvoSuite usually sample with bias towards a smaller range such
as [-1024, 1024].

the mapping rule from a value to its key is complicated (see line 2
in Listing 4) and thus it is hard to randomly generate a pair of “mag-
ical” key (in keys) and corresponding value under the guarding
conditions (see the condition in line 5 in Listing 4).

Testing method get() using SBST suffers from the interprocedu-
ral flag problem. For instance, the state-of-the-art SBST tool EvoSuite
is unable to generate tests with sufficient branch coverage. This is
because EvoSuite uses branch distance to quantitatively measure
how far a test suite is from the uncovered branches. In this exam-
ple, a human reader can observe that the test case t ←keys=[0],
value=999 is a “closer” candidate towards covering branch ⟨2, 3⟩
in Listing 2 than t ′ ←keys=[0], value=99. However, existing
branch distance (e.g., [40]) is defined based on the operands of
the branching nodes (e.g., in line 2, based on the returned boolean
values from checkPrecondition()). If the operands are boolean
variables, the branch distance will always be evaluated to 0 or 1
and thus do not provide a measurement on how close a test suite is
to cover certain branch.

The key to address such an interprocedural flag problem is to
aggregate the branch distances in the called methods into one
combined value to recover the “gradient” towards the uncovered
branch. The following three challenges make this a non-trivial
problem:
C1: The multiple paths problem. The called method may have
multiple program paths, each of which returns a boolean value. For
example, for covering the branch ⟨2, 3⟩ in method get(), we require
a test case to exercise line 5 in Listing 3. However, there are two
paths leading to node 5, i.e., path ⟨2, 5⟩ and path ⟨2, 3, 5⟩ in method
checkPrecondition(). Note, that exercising path ⟨2, 5⟩ requires
creating an array of length of 10,000, while exercising path ⟨2, 3, 5⟩
only requires generating a large value. Moreover, during test suite
optimization, the likelihood of exercising either path sometimes
varies from generation to generation (if we use a genetic algorithm).
Consequently, how can we take multiple paths into consideration
and aggregate their branch distances?
C2: The cascading interprocedural flag problem. The called
method may suffer from further interprocedural flag problems. We
can observe that methods with boolean return types are invoked at
line 2 and line 3 in Listing 3. In general, such interprocedural flag
problems may cascade for multiple layers (depending on the call

442

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong

graph depth) or infinitely many layers (e.g., recursive method calls).
How do we aggregate the branch distance then?
C3: The call and iteration context problem. The branch dis-
tance of a branching condition of a boolean method call is sensitive
to the call site and loop iteration context. For example, exercising
branch ⟨5, 6⟩ requires that checkValue() returns true (i.e., exercis-
ing line 6 in Listing 4). However, a test case may exercise different
paths during different iterations of the loop. For instance, the test
case t ←keys=[0, 1], value=0 calls checkValue() twice. The
first one exercises path ⟨3, 5, 7⟩ and the second one exercises path
⟨3, 4, 7⟩. How do we aggregate the branch distances of different
iterations?

Note that the above problems may co-occur and happen in a
cascading way. For example, there may be a chain of boolean-typed
method calls; each called method may be invoked in a loop; and
each method may have multiple paths to return a boolean value. In
this work, we propose a recursive and context-sensitive approach
to address the above problems systematically.

3 APPROACH
3.1 Definitions
We first define the terminology. We call the method under test
the target method, denoted asmt . We refer to a methodm as a
called method if m is called directly in the target method mt or
indirectly through a called method. A called methodm is called a
flag method if there exists a condition c of a branching node in
the target methodmt which directly or indirectly depends on the
value returned bym. In addition, we call that boolean value used
in the condition c an interprocedural flag and the branch to be
covered an interprocedural flag branch. For example, method
checkPrecondition() in Listing 2 is a flag method of the target
method get(). Given a test case t ←keys=[0, 1], value=-20,
there are two uncovered interprocedural flag branches in get()
method, i.e., branch ⟨2, 3⟩ and branch ⟨5, 6⟩. The corresponding
interprocedural flags are the values returned by method checkPre-
condition() and by method checkValue().

Furthermore, given an interprocedural flag branch b which de-
pends on a flag methodm, there may be multiple program paths
inm which return a boolean value such that b is covered. We call
such program paths inm as the required paths for covering b. We
call the last branch in a required path as the required branch. For
example, for branch ⟨2, 3⟩ in Listing 2, the path ⟨2, 3, 4⟩ in Listing 3
is a required path, and the branch ⟨3, 4⟩ is a required branch.

3.2 Overview
The goal of our approach is to recover the missing quantitative
measurement on how far a test case is from covering a branch due
to the interprocedural flag problem. Our rationale is that, given
an interprocedural flag branch, we collect and aggregate the branch
distances of the required paths in the called flag methods so that we
can have one quantitative measurement. Figure 2 shows an overview
of our approach, where each ellipse represents a process and each
rounded rectangle represents an artifact. Grey rectangles represent
input and output while grey processes represent our key contribu-
tions. Our approach takes as input a target method and a test case

Called Flag
Methods

Target Method/
Test Case

Instrumented Code

1. Program
Dependency Graph

Construction

2. Context Sensitive
Instrumentation

Continuous Values for
Interprocedural Flags

4. CFG Analysis
Propagation

Context Sensitive
Branch Distances

3. Compute Context
Sensitive Branch

Distance

Program
Dependency Graph

(Input) (Output)

Figure 2: Approach Overview

(which can be generated automatically) and generates quantitative
branch distance for evaluating how far the test case is from every
interprocedural flag. Given the target method, we first construct
its program dependency graph (e.g., the one in Fig. 1) so that we
identify all the called methods and their control flow graphs (Step
1). Next, we instrument the target method and its called methods
in order to obtain the required branch distances at runtime. Note
that the instrumentation is sensitive to call context and iteration
context (Step 2). Then, we run the test case for the target method
and collect branch distances based on the required paths for every
interprecedural flag (Step 3). Finally, we recursively analyze the
CFG of the relevant called methods to aggregate the branch dis-
tances based on the required paths to a branch distance for every
interprocedural flag in the target method (Step 4).

As mentioned in Section 2, our approach must address three chal-
lenges, i.e., themultiple path problem, the cascading interprocedural
flag problem, and the call and iteration context problem. Next, we
introduce (1) how we distinguish different call/iteration context,
(2) how we aggregate branch distances in called flag methods, and
finalize the section with (3) the overall fitness calculation algorithm.

3.3 Context Sensitive Branch Distance
In the following, we first introduce how branch distance are com-
puted at runtime in classical approaches with context-insensitive
branch distance, and how our approach addresses their limitations.

BranchDistance. Suppose that the target methodmt has a branch-
ing node n. Assume that a test case t ofmt exercises n precisely
once. The branch distance of a branch b of n with regard to t is
written as distance(b, t) where the condition in b is to be satisfied
in order to exercise branch b. Let us denote b .c as the condition in
b, function distance(b, t) is defined as follows [40]:

443

Recovering Fitness Gradients for Interprocedural Boolean Flags ISSTA ’20, July 18–22, 2020, Virtual Event, USA

1 boolean example(int x) {

2 if(isFlag(x)) x++;

3 if(isFlag(Math.pow(2, x)) return true;

4 return false;

5 }

6
7 boolean isFlag(int x){

8 if (x < 1)

9 return true;

10 return false;

11 }

Listing 5: Example for Context Sensitive Branch
Distance

distance(b, t) =



0 if b .c evaluates to true
K else if b .c is false
| a − b | +K else if b .c is a==b
K else if b .c is a!=b
a − b + K else if b .c is a<b
a − b + K else if b .c is a<=b
b − a + K else if b .c is a>=b
b − a + K else if b .c is a>b

where K is a positive constant value which is the minimum value
of all possible branch distances. In EvoSuite, K is set to be 1. Note
that the branch distance is always a non-negative value. For in-
stance, given the test case t ′ →a=-20, b=-3, the branch distance
for the branch at line 3 in Listing 1 (i.e., Math.abs(a+b)==123) is
| | − 20 − 3| − 123| + K=100 + K for the then-branch and 0 for the
else-branch.

Normalized Branch Distance. If the test t does not cover the
branching node n of the branch b, let np be the nearest branching
node which is covered by t such that n control-depends on np , a
normalized branch distance is used to quantify how far t is from
covering b, as follows.

distancen (b, t) = approach_level + norm(distancenp (b ′, t)). (1)

where approach_level measures the number of branching node
from node np to node n along the program path; norm is a func-
tion which normalizes the distance to a value between 0 and 1;
and distancenp (b ′, t) is the branch distance defined above for the
branch from np to n (i.e., b ′ in Equation 1). The normalization func-
tion may be implemented differently in different SBST approaches.
One candidate implementation is norm(x) = x

1+x [8]. For exam-
ple, the test case t→keys=[], b=Integer.MAX_VALUE exercises
branch ⟨2, 3⟩ in get() method in Fig. 1. Thus, the approach level
for branching node 5 in get() is 2 and distance2(b, t) is 1, thus the
overall distance5(⟨2, 3⟩, t) = 2 + 1

1+1 = 2.5.

Context Insensitive Branch Distance. A test, t , can exercise a
branch, b, multiple times under different contexts. This can happen
when the branching node of b is either (1) a loop node exercised
for multiple iterations or (2) the method defining b is called in
multiple sites. Listing 5 shows the example. The branching node at
line 8 is executed twice given any test case for method example().
Assume that the branching node of a branch, b, is exercisedm times
during the execution of t . Let us use distance(b, t)i for denoting the
branch distance calculated for the ith time b’s branching node is

Table 1: Sensitive Branch Distances for Iterations

Iter Passed Conditions
App
Level

Branch
Distance Res

1 <3, 5>: key[index]==0 &&
<5, 7>: ! (keys[index]==key) 0 100/101=0.99 0.99

2 <3, 4>: !(key[index]==0) 1 1/2=0.5 1.5
<3, 4>: !(key[index]==0) &&
<4, 7>: !(val>=Math.pow(2, index)+100) 1 101/102=0.99 1.99

exercised. Existing state-of-the-art SBST tools like EvoSuite compute
the branch distance of a branch b as follows:

distance(b, t) = min{distance(b, t)i }. (2)

Note that, i ∈ [1,m] in Equation 2. With Equation 2, classical search
algorithm records the minimum branch distance of a branch in the
execution of t . While efficient in general, the information loss (by
keeping only the minimum branch distance) incurs two limitations,
which impairs the analysis of interprocedural flag problem.

Limitation 1: Aggregation Confusion. When an interprocedu-
ral flag problem happens (i.e., the classical algorithm is trapped to
exercise an interprocedural flag branch), our rationale is to aggre-
gate the branch distances in the called flag method to recover the
gradient on the flag branch. However, if the flag method is called
in different call sites of the target method, there could be more than
two branch distances collected for a single branch, thus taking the
minimum branch distance as in Equation 2 will convey misleading
branch distance for at least one flag branch. Even worse, it may
cause contradictory analysis result. For example, in Listing 5, if we
are to cover the branches in line 2 (i.e., isFlag(x)) and line 3 (i.e.,
isFlag(Math.pow(2, x))), we should analyze the branch distance
for the branch in line 8 (i.e., x<1). Intuitively, the gradient of branch
distance in this case can be recovered by simply using the branch
distance in line 8. However, a test case t ←x=0 causes a problem
of confusing distance. The condition of first interprocedural flag
branch (line 2) is evaluated to be true while that of the second is
evaluated to be false. When we are to aggregate the branch dis-
tance in the true branch in line 8 (i.e., x < 1) back to the second
interprocedural flag, Equation 2 shows that the branch distance is
0. The reason is that the branch is line 8 has been exercised, thus
the minimum distance is 0. The result is contradictory to the fact
that the second interprocedural flag has not yet been evaluated to
true on t ←x=0.

Limitation 2: Local Optima Effect. Even if the call site of a flag
method is unique in target method, taking the minimum branch dis-
tance may cause the search process to be stuck in a local optimum.
When the flag method is called within a loop, each loop iteration
derives a branch distance for the required branch in the called
flag method. Evolving the test case with regard to only minimum
branch distance pays a price of losing other optimizing opportuni-
ties. Taking example of the interprocedural flag branch b = ⟨5, 6⟩
in Listing 4, the test case t ←keys=[0,1], value=0 for get()
method call the checkValue() method twice (i.e., 2 iterations). For
readability, we show the call graph in Figure 3, we show the target
branch in get()method and the required branch in checkValue()

444

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong

2

3 4

5

6

7

FT

F T

T

F

 get() [in Listing 2]

3

4

7

5

T F

FT

6

T

F

 checkValue() [in Listing 4]

Figure 3: Local Optima Example

in red. The first iteration exercises the branches ⟨3, 5⟩ and ⟨5, 7⟩ in
Listing 4 (yellow path in Figure 3), and the branch distance for b is
0.99. The second iteration exercises the branches ⟨3, 4⟩ and ⟨4, 7⟩
in Listing 4 (blue path in Figure 3). Table 1 shows the branching
condition evaluated in each iteration and the value of branch dis-
tances. Note that, there are two branch distances for the uncovered
branch ⟨5, 6⟩, as the path ⟨3, 4, 7⟩ can be diverted from either node
3 or node 4. Their branch distances are 1.5 and 1.99 respectively.

According to Equation 2, state-of-the-art approach uses the
branch distance in the first iteration (i.e., 0.99) as the branch dis-
tance for branch ⟨5, 6⟩. Intuitively, it favors diverting from yellow
path over blue path to the target (red) branch. However, in this
case, diverting from blue path is more feasible than from yellow
path. The condition keys[index]==key (on branch ⟨5, 6⟩) is ex-
tremely hard to satisfy when keys[index]==0 (on branch ⟨3, 5⟩) as
the hash result key is usually a non-zero value (line 2 in Listing 4).
In contrast, the path condition value>=Math.pow(2,index) ∧
keys[index]==key (on branches ⟨4, 5⟩, ⟨5, 6⟩) is much easier to sat-
isfy. For example, we can repetitively mutate the value of value and
keys[index]. Nevertheless, given that we keep distance(⟨5, 6⟩, t)1
as the branch distance, the branch distance is insensitive to changes
of value and keys[index]. In this regard, the search algorithm
will soon be stuck in local optima, leaving the fitness guidance
ineffective.

Solution. Our remedy is to maintain the branch distance for a
branch each time the branch is executed under different contexts
and aggregate the branch distances (see details in Section 3.5). Fig-
ure 4 shows the meta-model for our instrumentation for distinguish-
ing branch distance under various contexts. Each interprocedural
flag branch has multiple required branches (see definition in Sec-
tion 3.1). Each required branch has multiple iteration contexts, each
of which is associated with a branch distance. An iteration context
consists of a call context and the runtime execution trace towards
the required branch. A call context is a call stack, each of its ele-
ment describes what method is called and the position (or specific
instruction) to trigger the call. Moreover, we keep the runtime exe-
cution trace towards the required branch in the top call in the call
stack so that we can further distinguish branch distance for various
iterations by the execution trace in the call frame.

For example, given the test case t ←keys=[0, 1], value=0, we
obtain a branch distance for the branch ⟨4, 5⟩ for each iteration. Both

Required
Branch

Call Context

Call Site

Frame Execution
Trace

1

1

*

1 *

1

Iteration
Context

1

1

Interprocedural
Flag Branch

*1 *

Figure 4: Meta Model for Branch Distance

distances share the same call context, i.e., checkValue()∼get(). In
addition, we distinguish their iteration contexts as the first iteration
has branch trace in get() as ⟨2, 4, 5⟩ while the second iteration has
branch trace as ⟨2, 4, 5, 4, 5⟩.

3.4 Graph Walking Algorithm
Given a test case and an uncovered interprocedural flag branch, we
calculate its interprocedural branch distance by statically walking
through the program dependency graph, starting from the interpro-
cedural flag branch and ending by every of its required branch. For
each required branch b, we compare the static walking trajectory
(on program dependency graph) reaching b and all its iteration
contexts to select valid branch distances. Then, we recursively
apply two-stage aggregation to derive an interprocedural branch
distance. In general, we first aggregate the branch distance for each
required branch. Then we aggregate the interprocedural branch
distance from aggregated distance of multiple required branches.
The process is recursive because the required branch may still be an
interprocedural flag branch. By this means, our approach first iden-
tifies the relevant branches (and their branch distance) by walking
towards each required branch, and aggregate the branch distances
by walking back towards the target interprocedural branch. Algo-
rithm 1 and 2 show the details.

Overall Computation. Algorithm 1 takes as input an interproce-
dural flag branch bi f , its static walking call contextwcc , and a table
of context-sensitive branch distances collected by running a test
case, rct (see Figure 4). It outputs an aggregated branch distance.
The walking call context wcc is initialized as the target method.
It grows each time we proceed to analyze a new called interpro-
cedural flag method. The runtime context table rct maintains the
context-sensitive branch distance for all the branches during the
execution of test case.

When analyzing an uncovered interprocedural flag branch, we
first parse the CFG of the flag method and identify all required
branches (line 1). Then, we retrieve all the runtime execution traces
towards those required branches under such a call context (line
2). As showed in Figure 4, a runtime execution trace consists of a
sequence of branches in the CFG of the flag method. Technically, we
maintain a map, mapping from a trace towards a required branch to
a branch distance. Then, for each required flag branch, we compute
its aggregated distance from all its execution traces (line 6–9). We
will explain its details (i.e.,branch_f itnessr () method) in Section 3.5.

445

Recovering Fitness Gradients for Interprocedural Boolean Flags ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Algorithm 1: Calculate Fitness for Interprocedural Flag
Branch (branch_f itnessi f)
Input :an interprocedural flag branch bi f , walking call contextwcc ,

runtime context table rct
Output :an aggregated branch distance f itness

1 branch_setr ←
identif y_r equired_branches(bi f .called_cf д);

2 id_map ← rct .f ind (bi f , wcc) ; // return a map from iteration

to a branch distance.

3 f itness_set ← ∅;
4 for br ∈ branch_setr do
5 f itness_setiter ← ∅;
6 for trace ∈ id_map .keys do
7 f itnessiter ← branch_f itnessr (br , wcc , trace , rct);
8 f itness_setiter ← f itness_setiter ∪ {f itnessiter };
9 f itness ← aggregate f itness_setiter using Equation 3;

10 f itness_set ← f itness ;

11 f itnessaдд ← aggregate f itness_set using Equation 3;
12 return normalize(f itnessaдд);

Afterwards, we can further compute an overall branch distance
from aggregated branch distance of all the required branches (line
4–11). We will elaborate the aggregation details (e.g., Equation 3)
in Section 3.5. Finally, we return the normalized fitness value.

For example, if we are to compute the interprocedural flag branch
distance for branch ⟨5, 6⟩ in get()method in Listing 2, with the test
case t ←keys=[0, 1], value=0, Algorithm 1 first identifies that
the required branch is branch ⟨5, 6⟩ in checkValue() method. In
addition, there are two iterations to call the checkValue()method.
The corresponding branch traces are ⟨2, 4, 5⟩ and ⟨2, 4, 5, 4, 5⟩ in
get() method respectively. Under the call context of get():5 2,
for each required branch we maintain a map from branch trace
to branch distance. For example, for the required branch ⟨3, 6⟩ in
checkValue() method, we maintain a map such as ⟨⟨2, 4, 5⟩=0.99,
⟨2, 4, 5, 4, 5⟩=1.99⟩. Then, we aggregate those branch distance ac-
cordingly. The details are as follows.

Computation for Required Branch. Algorithm 2 shows how
we calculate branch distance for individual required flag branch.
It handles various scenarios for calculating the branch distance,
including when to aggregate the branch distance, and when to
recursively call Algorithm 1 (i.e., f itnessi f () in line 3 and 6 in
Algorithm 2).

In general, Algorithm 2 handles three scenarios: (1) when the
required branch is exercised (e.g., isFlag(int x){return is-
Flag2(x);}, in this case, we return the branch distance from revers-
ing result of isFlag2()); (2) when the required branch is, again, an
interprocedural flag branch br but not exercised (line 6), in this case,
we return the branch distance from generating the same flag with
br ; and (3) when the required branch has some non-flag branch
distance (line 9). For the first and second scenarios, we update the
call context and recursively call Algorithm 1. For the third scenario,
we compute the branch distance from runtime context table as
classical approach and recover the gradient.

2Here, we use line number 5 as the call site. Nevertheless, we use the bytecode instruc-
tion index in our implementation.

Algorithm 2: Calculate Fitness for Required Branch
(branch_f itnessr)
Input :a required flag branch br , walking call contextwcc , iteration

trace , runtime context table rct
Output :fitness f

// the branch requires reversing the output of an exercised

interprocedural flag method.

1 if br is interprocedural flag branch && br is exercised then
2 wcc ← wcc .append (br .callsite);
3 return branch_f itnessi f (¬br , wcc , rct);

// the branch requires exercising an interprocedural flag method.

4 if br is interprocedural flag && br is not exercised then
5 wcc ← wcc .append (br .callsite);
6 f it ← branch_f itnessi f (br , wcc , rct);
7 else
8 id_mapr ← rct .f ind (br , wcc);
9 f it ← id_mapr .дet (trace);

10 return f it ;

3.5 Aggregating Branch Distance
We design the aggregation of multiple branch distance based on the
rationale that we still favor the smallest distance, but the aggregated
branch distance should also be sensitive to changes of other branch
distance. With that property, we can avoid the second limitation of
Equation 2, i.e., stuck in local optima.

Let t be a test case and b be a branch with k branch distance, Let
the ith branch distance be distance(b, t)i (i > 0), we aggregate the
branch distance as follows:

distance(b, t) = k∑k
i=1

1
distance(b,t)i

(3)

Equation 3 has the following properties:
• distance(b, t) is equal to 0 if ∃i ∈ [1,k] so that distance(b, t)i
is 0.
• distance(b, t)⇝ 0 if ∃i ∈ [1,k] so that distance(b, t)i ⇝ 0.

The notation a⇝ b stands for a is approaching the value of b. For
the second property, we have that:

∂distance(b, t)
∂distance(b, t)i

= k · (
k∑
i=1

1
distance(b, t)i

)−2·

distance(b, t)−2i

(4)

It means that, once ∃i so that distance(b, t)i is the smallest distance,
the derivative of distance(b, t) over distance(b, t)i decreases fastest
so that we can favor it to decrease to 0. By this means, we achieve
the goal of favoring the smallest branch distance.

On the other hand, all the other branch distances are considered
so that we can avoid being stuck in a local optima. For example, for
branch ⟨5, 6⟩ in Listing 4 (or Rectangle checkValue() in Fig. 1), the
test case t ←keys=[0, 1], value=0 has distance(⟨5, 6⟩)1 = 0.99
while distance(⟨5, 6⟩)2 = 1.5. Therefore, when distance(⟨5, 6⟩)1
stuck on local optima, the fitness is still sensitive todistance(⟨5, 6⟩)2
and gradually evolves to a test case covering the target branch.

Last but not least, the numerator k is used to avoid test cases
incurring a large number of iterations. Note that, if we let numerator
be 1, the more loop iterations a test case incurs, the larger the
denominator. As a result, the search algorithm will favor those test

446

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong

cases incurring large number iterations. This phenomenon causes
two drawbacks: (1) the number of iterations is usually irrelevant to
exercise an uncovered branch; and (2) the test cases incurring many
iterations have larger runtime overhead for the search process. In
this regard, we add k as a penalizing factor to mitigate the problem.

4 EVALUATION
We build our proof-of-concept tool Evoif (EvoSuite on Interproce-
dural Flag) based on EvoSuite [21]. In the implementation of Evoif ,
we enhance EvoSuite’s instrumentation to support our meta model
in Figure 4 and extend a new test case fitness function fbranch
based on EvoSuite framework. The tool and its source code, as well
as all the experimental data, are accessible at [1]. In this section,
we aim to answer the following research questions:

• RQ1: How prevalent is the interprocedural flag problem in
practice?
• RQ2: Does Evoif improve the testing performance on code
suffering from interprocedural flag problems compared to
the state-of-the-art approach?
• RQ3: Does Evoif incur acceptable overhead when code un-
der test does not suffer from interprocedural flag problems?

4.1 Experiment Setup
4.1.1 Benchmark Tool. We choose EvoSuite [21] as our bench-
mark tool. EvoSuite supports various testability transformations,
including transforming common methods in the Java String and
Collection classes. For example, EvoSuite can transform the Str-
ing.equals()method into one returning an int (based on the edit
distance) to address the flag problem. It also supports a number of
useful heuristics to cover challenging branches [21, 23].

4.1.2 Subject Methods. For this experiment, we use 807 methods
suffering from interprocedural flag methods from 150 projects. The
150 projects consist of standard SF100 data set [22] and 50 extra
complemented projects (we will discuss why we complement 50
projects later). Our selection (or method filtering) heuristics are
fixed and the selection of those methods is replicable in our ex-
periment. The heuristics are designed for EvoSuite’s limitation of
class instrumentality and mutation capability. As for class instru-
mentality, current EvoSuite implementation cannot allow us to
instrument JDK library classes. As a result, we miss the branch dis-
tance in some called flag method such as the equals() method in
java.lang.Object. As for mutation capability, EvoSuite has limita-
tion to instantiate legitimate complex parameter object (including
abstract class and interface), e.g., java.sql.Resultset. As a re-
sult, the EvoSuite framework keeps generating test cases triggering
program crashes before executing the target methods during the
evolution. In both cases, we cannot evaluate the performance dif-
ference between EvoSuite and Evoif from the perspective of code
implementation.
Filtering Heuristics. Addressing the mutation capability is be-
yond the scope of this work. Therefore, to evaluate the effectiveness
of our gradient recovering approach, we conservatively define the
filtering rules (in Table 2) to select methods which are less likely to
be affected by the limitation of mutation capability. In Table 2, we

Table 2: Heuristics for Filtering Experimental Methods

Categories Description #IPF
H1 Called IPF is not instrumentable. 1673
H2 Target method with no primitive parameters. 4573
H3 Target method with parameter of interface

or abstract class type.
1468

H4 Called IPF method with no primitive param-
eters.

131

H5 Called IPF method with parameters of inter-
face or abstract class type.

654

Used IPF
Methods The methods used for the experiment. 807

Total / 9306

also list the quantity of methods filtered by every filtering heuris-
tic. We will thoroughly discuss the filtering heuristics in details in
Section 4.5 and Section 4.6.
Project Complement. The heuristics in Table 2 cause the number
of usable IPF methods from the traditional SF100 data set to be small.
On one hand, some project in SF100, such as greencow (the 28th
project in SF100), contains only one class with two branchless meth-
ods. In addition, 56% of the Java classes in SF100 benchmark contain
only branchless methods [44]. On the other hand, our heuristics to
get grid of complicated data structure remove a lot of methods (we
will discuss it in Section 4.5 and 4.6). Therefore, following the con-
vention in software testing community [44], we complemented 50
large popular Java open source projects to scale up our experiment.
These projects are chosen considering their scale and popularity
(e.g., Weka (v3.8.0) [5], JFreeChart (v1.5.0) [4], etc.). Some have been
used in the annual unit test generation contest [46]. We deem them
to be representative and realistic.

4.1.3 Performance Evaluation. In this experiment, both Evoif and
EvoSuite stop when the 100s time budget is used up or they have
achieved 100% branch coverage. Given that the used time and cov-
erage of EvoSuite and Evoif on each target method is evaluated
for 10 times, we compare the mean and median coverage and time
respectively. We classify the performance comparison on a target
method into 5 categories.

• Better Coverage:Within the time budget, Evoif has a better
coverage than EvoSuite.
• WorseCoverage:Within the time budget, Evoif has aworse
coverage than EvoSuite.
• Better Time: Both approaches achieve same coverage, Evoif
uses less time than EvoSuite.
• Worse Time: Both approaches achieve same coverage, Evoif
uses more time than EvoSuite.
• Equal: This case is none of the case. That is, both approaches
achieve the same coverage with the same time.

4.1.4 Runtime Configuration. EvoSuite provides a rich set of search
algorithms, includingmonotonic genetic algorithm [24, 26], memetic
algorithm [26], MOSA algorithm [43], DynaMOSA algorithm [44],
etc. In this experiment, we select DynaMOSA algorithm [44] for
the following reason.
Justification. A successful test evolution towards a target branch
requires that the search algorithm addresses multiple challenges

447

Recovering Fitness Gradients for Interprocedural Boolean Flags ISSTA ’20, July 18–22, 2020, Virtual Event, USA

0

50

100

150

200

250

300

350

400

450

better
coverage

better time equal worse time worse
coverage

Figure 5: Overall comparison of Evoif vs EvoSuite on meth-
ods with interprocedural flags.

at the same time, for example applying appropriate mutations, de-
signing effective optimization algorithm, etc. Therefore, choosing a
lesser search algorithm causes that both Evoif and EvoSuite stuck
on the orthogonal challenges, which prevents us from comparing
Evoif and EvoSuite effectively. For example, MOSA algorithm will
generate test cases for an unnecessary large number of optimization
goals, making the Pareto frontier too large to select discriminative
test cases to evolve. Thus, we only select the DynaMOSA algorithm
which has been evaluated to outperform all other algorithms pro-
vided by EvoSuite [44]. DynaMOSA is a state-of-the-art multiple
objective evolutionary algorithm. It outperforms single objective
evolutionary algorithms and traditional multiple objective evolu-
tionary algorithms on various coverage criteria. Its key advantage
lies in the capability of dynamically prioritizing some uncovered
branches on runtime to improve the testing efficiency.

We run our experiment on 14 nodes on NCL cloud in Singa-
pore (https://ncl.sg/), each node is with Intel Xeon E5-2620 CPU
of 2.1GHz and 64G DDR4 Memory. The detailed EvoSuite runtime
configurations can be found in our tool website [1].

4.2 RQ1: Prevalence of IPF Problem
We observe that there are 78973 individual methods with program
branches in all 150 projects, and 9306 (i.e., 11.8%) of them suffer
from interprocedural flag problems. Moreover, we check the ratio
of methods suffering from interprocedural flag problem for each
project. The average ratio of methods that have at least one in-
terprocedural flag is 14.4% and the median ratio is 11.9%. A more
detailed project-wise IPF distribution can be referred in [1]. In this
regard, we conclude that the interprocedural flag problem is prevalent.

4.3 RQ2: Performance
Fig. 5 shows how the comparisons are distributed among the 5
categories. Overall, 255 methods fall to “better coverage”, 57 fall to
“better time”, 414 fall to “equal coverage”, 31 fall to “worse time”,
and 50 fall to “worse coverage”. We can see that (1) the number of
methods in Better Coverage is much larger than that inWorse Cover-
age (more specifically, 255 (i.e., 31.6%) v.s. 50 (i.e., 6.2%), (2) the used
time is similar for those methods where both Evoif and EvoSuite
achieve same coverage (more specifically, 12.1s v.s. 14.5s on average

1 public void solvePhase1(final SimplexTableau tableau) throws

OptimizationException {

2 ...

3 if (!MathUtils.equals(tableau.getRhs(), 0, this.epsilon)) {

4 throw new NoFeasibleSolutionException();

5 }

6 }

7
8 public static boolean equals(double x, double y, double eps) {

9 return equals(x, y) || FastMath.abs(y - x) <= eps;

10 }

Listing 6: Trivial Interprocedural Flag

and 4s v.s. 5s on median), and (3) there are a noticeable number of
methods where both approaches have equal performance (more
specifically, 51.3%). In terms of average coverage, our approach
achieves 51.1% coverage comparing to 47.9% of EvoSuite. The Mann-
Whitney u test on coverage shows that the two-tailed significance
value p < 0.0001, indicating that our improvement on the coverage
is statistically significant.

Qualitative Analysis. The results show that Evoif outperforms
EvoSuite in general (improves the performance on 312 methods,
a.k.a, 38.7% of the total methods) as the algorithm can search to-
wards a valid test case with recovered gradients. Nevertheless, there
are still a number of methods where Evoif does not improve or
even “underperforms” EvoSuite. We empirically investigated the
details and qualitatively analyzed the worse and equal coverage.
Equal Coverage and Time. In this experiment that, despite that
414 (i.e., 51.3%) of the target methods fall into equal category, we
observe that, in equal category, both Evoif and EvoSuite achieve
100% coverage with less than or equal to 5s on 63 methods, and
more importantly, both approaches achieve 0% coverage (and use
up the time budget) on 193 methods. The former shows that the
interprocedural flag problem is sometimes trivial and can be covered
with random guess (see example in Listing 6, as long as the eps
variable is set to a large value, the condition of interprocedural flag
on line 3 is easy to satisfy). The latter case (i.e., 0% coverage) lies in
that EvoSuite framework has trouble on initializing the constructor
of the class declaring the target method. Such an implementation
limitation largely impairs the effectiveness of Evoif .
Worse Coverage. We investigate the target methods where Evoif
underperforms EvoSuite. It happens usually when the interprocedu-
ral flag branch bi depends on non-interprocedural branch bn . Note
that, Evoif may have a larger runtime overhead than EvoSuite as our
approach requires more instrumentation to maintain the context
information to make sure the branch distance is context-sensitive.
Therefore, in general, Evoif needs to spend more time to cover
“normal” branch before Evoif gets a chance to “break through” the
tough interprocedural flag branch. Listing 7 shows an example from
IDA SDK project [3], we need to break through the branch on line
3 before the approach of Evoif takes effect on the branch on line
4. Note that, EvoSuite applies rule-based testability transformation
on this case so that String.equals() method return continuous
branch distance and EvoSuite can cover it within a number of trials.
Nevertheless, such a heuristic testability transformation rule cannot
work on the branch on line 4. Noteworthy, during our investigation
for this example, Evoif will have the same coverage performance
with EvoSuite with 200s time budget and outperforms EvoSuite with
a time budget of 250s.

448

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong

1 boolean getMethod(String p1, String p2){

2 ...

3 if (p1.equals(p2)

4 && signatureCorrect(p1)) {

5 return false;

6 }

7 }

Listing 7: Normal Parent Branch

Worse Time. Trivial interprocedural flag branch is the major rea-
son for Evoif to achieve its coverage with worse time. Of the 37
target methods where Evoif underperforms EvoSuite in time, both
approaches achieve 100% coverage within 10s on 30 of them. It
means that those flags are trivial and can be covered with a few
seconds.

4.4 RQ3: Runtime Overhead
During this experiment, within the budget of 100s, Evoif evolves on
average 498.9 iterations. In contrast, EvoSuite evolves on average
680.9 iterations. A more detailed runtime overhead distribution can
be referred in [1]. As discussed above, the performance overhead of
Evoif is caused by building the context-sensitive branch distance.
In general, the trade-off between runtime overhead and gradient
recovering is paid off as Evoif achieves higher coverage even with
less number of evolving iterations.

In summary, we conclude that (1) Evoif outperforms EvoSuite
in general (EvoSuite achieves higher average coverage and the im-
provement is statistically significant), (2) Evoif may not improve
or even underperforms EvoSuite when the interprocedural is trivial
or some non-interprocedural flag branch guards the interprocedu-
ral flag branch, and (3) the gradient recovering technique incurs
acceptable overhead (less evolving iterations but higher coverage)
for interprocedural flag problem.

4.5 Discussion
4.5.1 Applicability. Our experiment empirically shows that testing
can be an optimization problem in theory, but code synthesizing
problem in practice. The success of applying a search-based soft-
ware testing in practice involves the careful design of multiple
components, for example a well-designed fitness to gauge a “fitter”
test case, a comprehensive mutation capability on generated test
cases, an efficient optimization algorithm (like DynaMOSA), etc.
In this work, we target a finer design of fitness, which presents
its effectiveness within the reach of EvoSuite’s mutation capability.
More specifically, the fitness can only work if EvoSuite can provide
enough search space to explore. Our approach works well on more
target methods with primitive parameters (including String) while
is nullified when the target method requires deep analysis on com-
plex data structure and polymorphism. We deem that addressing
an orthogonal problem such as improving mutation capability has
beyond the scope of this work. Nevertheless, we are targeting to
improve mutation capability in our future work.

4.5.2 No Free Lunch. From an information perspective, it is not
free for us to recover the gradient for branch distance for interpro-
cedural flag problem. Our context-sensitive approach essentially

trades some additional runtime overhead for the gradient informa-
tion. The experiment shows that such trade-off is paid-off in general.
Nevertheless, the price may sometimes be paid in vain, which leads
to worse coverage. It is the common problem for all online learning
technique used in software testing or fuzzing approach. A more
practical and economical way can be a hybrid testing approach
combining Evoif and EvoSuite. Intuitively, we can first apply light-
weight EvoSuite with a short time budget to cover those trivial
branches. Then, for the remaining uncovered “tough” branches, we
can then apply Evoif . We will explore the optimal way to switch
between different testing strategies in our future work.

4.6 Threats to Validity
Threats to external validity arise from our selection of benchmarks.
We conducted our experiment on the 150 open source Java projects.
Although the number of projects is large, the selected projects may
not be representative, and further experiments with more methods
are needed to generalize our results. Threats to internal validity
arise from how the experiments were carried out. We ran Evoif
and EvoSuite for only 10 times on each method, while the effect
of randomness for test-generation may require a larger number
of runs to offset. However, to address this threat, we applied both
tools in large number of Java methods. In addition, the time budget
for each comparison is only 100s, which means that some “equal”
comparisons may not be equal if we run both approaches for a
longer time. Nevertheless, the same problem may arise under any
time budget. In the future, we will run experiments with longer
time budget and under more search algorithms for more generalized
result. Threats to construct validity come from what measure we
chose to evaluate the success of our techniques. We compared
the performance of Evoif with EvoSuite in terms of coverage on
individual methods, but did not quantify the effects on entire classes.
In the future, we will extend our experiments regarding the above
threats to generalize our results.

5 RELATEDWORK
5.1 Search Based Software Testing
Search based Software Testing (SBST) regards software testing as
an optimization problem [28]. Miller et al. [41] pioneered the work
for generating test cases with parameters of float types. Following
their work, SBST is used for a range of software testing problems,
including functional testing [14], regression testing [35], mutation
testing [33], as well as test case prioritization [49]. The majority
of existing works leverage meta-heuristic search algorithms [12]
for generating test cases to cover challenging test goals. Given
such a framework, researchers aim to cover various test goals (e.g.,
branch coverage, path coverage, use-def coverage, etc.) with differ-
ent search strategies (genetic algorithm, hill-climbing algorithm,
etc) [6, 15, 24, 42, 48], fitting test representations [11, 15, 30, 53], and
the fitness metrics [11, 30, 45, 53, 58]. Readers are referred to survey
papers [32, 40] for more details. Following their work, Aleti et al. [7]
investigated the fitness landscape characterisation and showed that
the most problematic landscape feature is the presence of many
plateaus. The interprocedural flag problem is one of the reasons
causing such many-plateaux landscape, where the absence of gra-
dients in the search landscape makes any search-based approach

449

Recovering Fitness Gradients for Interprocedural Boolean Flags ISSTA ’20, July 18–22, 2020, Virtual Event, USA

degenerate to a simple random testing approach. Our work aims
at recovering the disappeared gradients, which can facilitate and
improve many different search-based software testing approaches.

5.2 Testability Transformation
Testability transformation [10, 13, 29, 31, 34, 40] is one of the major
techniques for addressing flag problems. Researchers use testability
transformation to remove flags by replacing boolean condition
with non-boolean condition. Harman et al. [31] classified the flag
problem into 5 levels based on the complication to make testability
transformation. Baresel et al. [10] and Binkley et al. [13] proposed
different flag removal approaches to address the level-5 flag problem,
i.e., transforming the flag assigned in the loop. However, these
papers only focus on the flag problem within procedures, leaving
the interprocedural flag problem unaddressed.

One most relevant work comparing to our approach is Li et al.’s
method transforming approach [34], which recursively transforms
all boolean method calls into ones with non-boolean return types.
However, their rule-based approach is limited in practice as the
number of necessary transforming rules is huge and keeping the
rules practical and consistent is complicated, and it is hard to prove
that the rules are semantic-preserving for recursive method trans-
formations. In contrast, our approach does not require complicated
transformation rules, as we only require instrumentating the called
methods and aggregate the branch distance through program analy-
sis. Our experiment shows that, with acceptable runtime overheads,
we can achieve good coverage improvement.

6 CONCLUSION AND FUTUREWORK
In this work, we proposed a context-sensitive and recursive ap-
proach to address the interprocedural flag problem in search-based
software testing. Unlike the traditional testability transformation
based approaches, our approach only requires instrumentation to
get the branch distances inside the called flag methods, and aggre-
gates those branch distances with regard to specific call contexts
and iteration contexts.

In our future work, we will explore hybrid testing strategy com-
bining Evoif and EvoSuite or even other testing technique such as
symbolic execution [52], loop summarization techniques [55–57],
and formal analysis [9, 16, 17]. Moreover, we will investigate our
guided testing techniques on more platforms [38, 39]. Finally, we
will explore the testing criteria beyond the coverage for finding
more bugs, and integrate testing with various root cause analy-
sis [18, 19, 27, 36, 37, 50, 51, 54].

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their valuable comments
and suggestions. This research has been partially supported by the
following grants. The National Research Foundation, Prime Minis-
ters Office, Singapore, under its Corporate Laboratory@University
Scheme, National University of Singapore and under its National
Cybersecurity R&D Program, Singapore Telecommunications Ltd.,
the National Research Foundation Singapore under its NSoE Pro-
gramme (NSOE-TSS2019-03 and NSOE-TSS2019-05), the EPSRC
project EP/N023978/2, and the National Science Foundation of
China (No. 61632015, U1766215, 61833015).

REFERENCES
[1] [n. d.]. Anonymous Webiste. https://sites.google.com/view/evoipf/home. Ac-

cessed: 2019-05-13.
[2] [n. d.]. Apache Math. https://commons.apache.org/proper/commons-math/

download_math.cgi. Accessed: 2020-01-27.
[3] [n. d.]. IDA SDK. https://www.hex-rays.com/products/ida/support/download.

shtml. Accessed: 2020-01-27.
[4] [n. d.]. JFreechat. http://www.jfree.org/jfreechart/download.html. Accessed:

2020-01-27.
[5] [n. d.]. Weka. https://sourceforge.net/projects/weka/files/weka-3-8/3.8.0/. Ac-

cessed: 2020-01-27.
[6] Aldeida Aleti and Lars Grunske. 2015. Test Data Generation with a Kalman Filter-

based Adaptive Genetic Algorithm. J. Syst. Softw. 103, C (May 2015), 343–352.
https://doi.org/10.1016/j.jss.2014.11.035

[7] Aldeida Aleti, I. Moser, and Lars Grunske. 2017. Analysing the Fitness Landscape
of Search-based Software Testing Problems. Automated Software Engg. 24, 3 (Sept.
2017), 603–621. https://doi.org/10.1007/s10515-016-0197-7

[8] Andrea Arcuri. 2013. It really does matter how you normalize the branch distance
in search-based software testing. Software Testing, Verification and Reliability 23,
2 (2013), 119–147.

[9] Guangdong Bai, Quanqi Ye, Yongzheng Wu, Heila Botha, Jun Sun, Yang Liu,
Jin Song Dong, and Willem Visser. 2018. Towards Model Checking Android
Applications. IEEE Transactions on Software Engineering 44, 6 (2018), 595–612.

[10] André Baresel, David Binkley, Mark Harman, and Bogdan Korel. 2004. Evolution-
ary Testing in the Presence of Loop-assigned Flags: A Testability Transformation
Approach. In Proceedings of the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’04). ACM, New York, NY, USA, 108–118.
https://doi.org/10.1145/1007512.1007527

[11] André Baresel, Harmen Sthamer, and Michael Schmidt. 2002. Fitness Function
Design to Improve Evolutionary Structural Testing. In Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation (GECCO’02). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1329–1336. http://dl.acm.
org/citation.cfm?id=2955491.2955736

[12] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J. Gutjahr.
2009. A Survey on Metaheuristics for Stochastic Combinatorial Optimization. 8,
2 (June 2009), 239–287. https://doi.org/10.1007/s11047-008-9098-4

[13] David W. Binkley, Mark Harman, and Kiran Lakhotia. 2011. FlagRemover: A
Testability Transformation for Transforming Loop-assigned Flags. ACM Trans.
Softw. Eng. Methodol. 20, 3, Article 12 (Aug. 2011), 33 pages. https://doi.org/10.
1145/2000791.2000796

[14] Oliver Bühler and Joachim Wegener. 2008. Evolutionary Functional Testing.
Comput. Oper. Res. 35, 10 (Oct. 2008), 3144–3160. https://doi.org/10.1016/j.cor.
2007.01.015

[15] Jeroen Castelein, Maurício Aniche, Mozhan Soltani, Annibale Panichella, and
Arie van Deursen. 2018. Search-based Test Data Generation for SQL Queries. In
Proceedings of the 40th International Conference on Software Engineering (ICSE ’18).
ACM, New York, NY, USA, 1220–1230. https://doi.org/10.1145/3180155.3180202

[16] Naipeng Dong, Hugo Jonker, and Jun Pang. 2013. Enforcing Privacy in the
Presence of Others: Notions, Formalisations and Relations. In Computer Security –
ESORICS 2013, Jason Crampton, Sushil Jajodia, and Keith Mayes (Eds.). 499–516.

[17] Naipeng Dong and Tim Muller. 2018. The Foul Adversary: Formal Models. In
FormalMethods and Software Engineering - 20th International Conference on Formal
Engineering Methods, ICFEM 2018, Gold Coast, QLD, Australia, November 12-16,
2018, Proceedings (Lecture Notes in Computer Science), Vol. 11232. 37–53.

[18] Z. Dong, A. Andrzejak, D. Lo, and D. Costa. 2016. ORPLocator: Identifying
Read Points of Configuration Options via Static Analysis. In 2016 IEEE 27th
International Symposium on Software Reliability Engineering (ISSRE). 185–195.

[19] Z. Dong, A. Andrzejak, and K. Shao. 2015. Practical and accurate pinpointing of
configuration errors using static analysis. In 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 171–180.

[20] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel Testing of Android Apps. In Proceedings of the 42nd International
Conference on Software Engineering (ICSE ’20). 1–12.

[21] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE ’11). ACM, New York, NY, USA, 416–419. https://doi.org/10.
1145/2025113.2025179

[22] Gordon Fraser and Andrea Arcuri. 2012. Sound Empirical Evidence in Software
Testing. In Proceedings of the 34th International Conference on Software Engineering
(ICSE ’12). IEEE Press, Piscataway, NJ, USA, 178–188. http://dl.acm.org/citation.
cfm?id=2337223.2337245

[23] Gordon Fraser and Andrea Arcuri. 2013. Evosuite: On the challenges of test
case generation in the real world. In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation. IEEE, 362–369.

[24] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Trans. Softw. Eng. 39, 2 (Feb. 2013), 276–291.

450

https://sites.google.com/view/evoipf/home
https://commons.apache.org/proper/commons-math/download_math.cgi
https://commons.apache.org/proper/commons-math/download_math.cgi
https://www.hex-rays.com/products/ida/support/download.shtml
https://www.hex-rays.com/products/ida/support/download.shtml
http://www.jfree.org/jfreechart/download.html
https://sourceforge.net/projects/weka/files/weka-3-8/3.8.0/
https://doi.org/10.1016/j.jss.2014.11.035
https://doi.org/10.1007/s10515-016-0197-7
https://doi.org/10.1145/1007512.1007527
http://dl.acm.org/citation.cfm?id=2955491.2955736
http://dl.acm.org/citation.cfm?id=2955491.2955736
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1145/2000791.2000796
https://doi.org/10.1145/2000791.2000796
https://doi.org/10.1016/j.cor.2007.01.015
https://doi.org/10.1016/j.cor.2007.01.015
https://doi.org/10.1145/3180155.3180202
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
http://dl.acm.org/citation.cfm?id=2337223.2337245
http://dl.acm.org/citation.cfm?id=2337223.2337245

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong

[25] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated
unit test generation using evosuite. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 2 (2014), 8.

[26] Gordon Fraser, Andrea Arcuri, and Phil McMinn. 2015. A Memetic Algorithm
for Whole Test Suite Generation. J. Syst. Softw. 103, C (May 2015), 311–327.
https://doi.org/10.1016/j.jss.2014.05.032

[27] Wang Haijun, Xie Xiaofei, Li Yi, Wen Cheng, Li Yuekang, Liu Yang, Qin
Shengchao, Chen Hongxu, and Sui Yulei. 2020. Typestate-Guided Fuzzer for Dis-
covering Use-after-Free Vulnerabilities. In Proceedings of the 42nd International
Conference on Software Engineering. ACM.

[28] M. Harman. 2007. The Current State and Future of Search Based Software
Engineering. In Future of Software Engineering (FOSE ’07). 342–357. https://doi.
org/10.1109/FOSE.2007.29

[29] Mark Harman, André Baresel, David Binkley, Robert Hierons, Lin Hu, Bog-
dan Korel, Phil McMinn, and Marc Roper. 2008. Formal Methods and Testing.
Springer-Verlag, Berlin, Heidelberg, Chapter Testability Transformation: Pro-
gram Transformation to Improve Testability, 320–344. http://dl.acm.org/citation.
cfm?id=1806209.1806220

[30] M. Harman and J. Clark. 2004. Metrics are fitness functions too. In 10th In-
ternational Symposium on Software Metrics, 2004. Proceedings. 58–69. https:
//doi.org/10.1109/METRIC.2004.1357891

[31] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer, André
Baresel, and Marc Roper. 2004. Testability Transformation. IEEE Trans. Softw.
Eng. 30, 1 (Jan. 2004), 3–16.

[32] Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza, and Shin Yoo. 2012.
Empirical Software Engineering and Verification. Springer-Verlag, Berlin, Hei-
delberg, Chapter Search Based Software Engineering: Techniques, Taxonomy,
Tutorial, 1–59. http://dl.acm.org/citation.cfm?id=2184075.2184076

[33] Y. Jia and M. Harman. 2008. Constructing Subtle Faults Using Higher Order
Mutation Testing. In 2008 Eighth IEEE International Working Conference on Source
Code Analysis and Manipulation. 249–258. https://doi.org/10.1109/SCAM.2008.36

[34] Yanchuan Li and Gordon Fraser. 2011. Bytecode Testability Transformation.
[35] Z. Li, M. Harman, and R. M. Hierons. 2007. Search Algorithms for Regression

Test Case Prioritization. IEEE Transactions on Software Engineering 33, 4 (April
2007), 225–237. https://doi.org/10.1109/TSE.2007.38

[36] Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and Jinsong Dong.
2018. Break the Dead End of Dynamic Slicing: Localizing Data and Control
Omission Bug. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 509–519.

[37] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong. 2017. Feedback-
Based Debugging. In Proceedings of the 39th International Conference on Software
Engineering. 393–403.

[38] Tianming Liu, Haoyu Wang, Li Li, Guangdong Bai, Yao Guo, and Guoai Xu.
2019. DaPanda: Detecting Aggressive Push Notifications in Android Apps. In
Proceedings of the 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE Press, 66–78.

[39] Kulani Mahadewa, Kailong Wang, Guangdong Bai, Ling Shi, Jin Song Dong, and
Zhenkai Liang. 2019. Scrutinizing Implementations of Smart Home Integrations.
IEEE Transactions on Software Engineering (2019).

[40] Phil McMinn. 2004. Search-based Software Test Data Generation: A Survey:
Research Articles. Softw. Test. Verif. Reliab. 14, 2 (June 2004), 105–156.

[41] W. Miller and D. L. Spooner. 1976. Automatic Generation of Floating-Point Test
Data. IEEE Trans. Softw. Eng. 2, 3 (May 1976), 223–226. https://doi.org/10.1109/
TSE.1976.233818

[42] Duy Tai Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Minh Quang Tran. 2020.
sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts. In Proceedings
of the 42nd International Conference on Software Engineering (ICSE ’20). 1–12.

[43] A. Panichella, F. M. Kifetew, and P. Tonella. 2015. Reformulating Branch Cover-
age as a Many-Objective Optimization Problem. In 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST). 1–10.

[44] A. Panichella, F. M. Kifetew, and P. Tonella. 2018. Automated Test Case Generation
as aMany-Objective Optimisation Problemwith Dynamic Selection of the Targets.
IEEE Transactions on Software Engineering 44, 2 (2018), 122–158.

[45] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea
Arcuri. 2015. Combining Multiple Coverage Criteria in Search-Based Unit Test
Generation. In Proceedings of the 7th International Symposium on Search-Based
Software Engineering (SSBSE ’15). Springer, 93–108.

[46] U. Rueda, T. E. J. Vos, and I. S. W. B. Prasetya. 2015. Unit Testing Tool Competition
– Round Three. In 2015 IEEE/ACM 8th International Workshop on Search-Based
Software Testing. 19–24. https://doi.org/10.1109/SBST.2015.12

[47] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do automatically generated unit tests find real faults?
an empirical study of effectiveness and challenges (t). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 201–211.

[48] Anupama Surendran and Philip Samuel. 2017. Evolution or Revolution: The
Critical Need in Genetic Algorithm Based Testing. Artif. Intell. Rev. 48, 3 (Oct.
2017), 349–395. https://doi.org/10.1007/s10462-016-9504-8

[49] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and Robert S. Roos.
2006. TimeAware Test Suite Prioritization. In Proceedings of the 2006 International
Symposium on Software Testing and Analysis (ISSTA ’06). ACM, New York, NY,
USA, 1–12. https://doi.org/10.1145/1146238.1146240

[50] Haijun Wang, Yun Lin, Zijiang Yang, Jun Sun, Yang Liu, Jin Song Dong, Qinghua
Zheng, and Ting Liu. 2019. Explaining Regressions via Alignment Slicing and
Mending. IEEE Transactions on Software Engineering (2019), 1–1.

[51] Haijun Wang, Xiaofei Xie, Shang-Wei Lin, Yun Lin, Yuekang Li, Shengchao Qin,
Yang Liu, and Ting Liu. 2019. Locating Vulnerabilities in Binaries via Memory
Layout Recovering. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). Association for Computing Machinery, New York,
NY, USA, 718–728. https://doi.org/10.1145/3338906.3338966

[52] Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin.
2018. Towards Optimal Concolic Testing. In Proceedings of the 40th International
Conference on Software Engineering. 291–302.

[53] Joachim Wegener, André Baresel, and Harmen Sthamer. 2001. Evolutionary test
environment for automatic structural testing. Information & Software Technology
43, 14 (2001), 841–854. http://dblp.uni-trier.de/db/journals/infsof/infsof43.html#
WegenerBS01

[54] Yan Xiao, Jacky Keung, Kwabena E Bennin, and Qing Mi. 2019. Improving bug
localization with word embedding and enhanced convolutional neural networks.
Information and Software Technology 105 (2019), 17–29.

[55] Xiaofei Xie, Bihuan Chen, Yang Liu, Wei Le, and Xiaohong Li. 2016. Proteus:
computing disjunctive loop summary via path dependency analysis. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 61–72.

[56] Xiaofei Xie, Bihuan Chen, Liang Zou, Shang-Wei Lin, Yang Liu, and Xiaohong Li.
2017. Loopster: static loop termination analysis. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, 84–94.

[57] Xiaofei Xie, Yang Liu, Wei Le, Xiaohong Li, and Hongxu Chen. 2015. S-looper:
Automatic summarization for multipath string loops. In Proceedings of the 2015
International Symposium on Software Testing and Analysis. ACM, 188–198.

[58] Xiong Xu, Ziming Zhu, and Li Jiao. 2017. An Adaptive Fitness Function Based
on Branch Hardness for Search Based Testing. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’17). ACM, New York, NY, USA,
1335–1342. https://doi.org/10.1145/3071178.3071184

451

https://doi.org/10.1016/j.jss.2014.05.032
https://doi.org/10.1109/FOSE.2007.29
https://doi.org/10.1109/FOSE.2007.29
http://dl.acm.org/citation.cfm?id=1806209.1806220
http://dl.acm.org/citation.cfm?id=1806209.1806220
https://doi.org/10.1109/METRIC.2004.1357891
https://doi.org/10.1109/METRIC.2004.1357891
http://dl.acm.org/citation.cfm?id=2184075.2184076
https://doi.org/10.1109/SCAM.2008.36
https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1109/TSE.1976.233818
https://doi.org/10.1109/TSE.1976.233818
https://doi.org/10.1109/SBST.2015.12
https://doi.org/10.1007/s10462-016-9504-8
https://doi.org/10.1145/1146238.1146240
https://doi.org/10.1145/3338906.3338966
http://dblp.uni-trier.de/db/journals/infsof/infsof43.html#WegenerBS01
http://dblp.uni-trier.de/db/journals/infsof/infsof43.html#WegenerBS01
https://doi.org/10.1145/3071178.3071184

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Definitions
	3.2 Overview
	3.3 Context Sensitive Branch Distance
	3.4 Graph Walking Algorithm
	3.5 Aggregating Branch Distance

	4 Evaluation
	4.1 Experiment Setup
	4.2 RQ1: Prevalence of IPF Problem
	4.3 RQ2: Performance
	4.4 RQ3: Runtime Overhead
	4.5 Discussion
	4.6 Threats to Validity

	5 Related Work
	5.1 Search Based Software Testing
	5.2 Testability Transformation

	6 Conclusion and Future Work
	References

