
A Tutorial on Using and Extending
the EvoSuite Search-Based Test Generator

Gordon Fraser

University of Passau, Germany
gordon.fraser@uni-passau.de

Abstract. EvoSuite is an automated unit test generation tool for Java.
It takes as input a Java class under test, and produces JUnit tests op-
timised for code coverage, and enhanced with regression assertions, as
output. This paper is a tutorial on how to use EvoSuite to generate tests,
on how to build and extend EvoSuite, and how to use EvoSuite to run
experiments on search-based testing.

1 Introduction

EvoSuite [6] is a tool that automatically generates JUnit test cases for Java
classes. It applies search-based techniques, such as genetic algorithms, to gener-
ate these tests. Besides various optimisations at the algorithmic level proposed
over time (e.g., [3,9,11]), EvoSuite also implements many different Java-specific
optimisations (e.g., mocking of interactions with the filesystem [4] or network [5])
and has reached a good level of maturity (read: it does not crash too often).
While the principle techniques underlying EvoSuite and their empirical evalu-
ations have been published (e.g., [7]), the aim of this article is to provide an
introduction to the tool from a user and researcher point of view.

The tutorial is structured in three parts: First, we describe how to gener-
ate tests with EvoSuite from the command line. Second, we show how to build
and extend EvoSuite. Finally, in the third part we provide an example of how
EvoSuite can be used to run experiments, for example to evaluate different con-
figurations or extensions to EvoSuite. This tutorial covers a subset of the online
tutorial available at http://www.evosuite.org.

2 Using EvoSuite

There are plugins [2] to use EvoSuite within different IDEs (e.g., IntelliJ and
Eclipse), and there is a Maven plugin that simplifies the usage in larger projects.
In this tutorial, however, we will focus on the basic use case as a standalone
application, on the command line. For this, EvoSuite is available as an executable
jar (Java Archive) file. The latest release of EvoSuite is always available at
http://www.evosuite.org/downloads/, or in the release section on EvoSuite’s
GitHub page at http://github.com/EvoSuite/evosuite/. At the time of this

writing, the latest release version was 1.0.6; the filenames stated in this article
refer to this version number, but obviously new releases will lead to changed
filenames. There are two different jar files:

– evosuite-1.0.6.jar is the main file used to generate tests, including all its
dependencies.

– evosuite-standalone-runtime-1.0.6.jar is an archive containing only those
parts of EvoSuite and its dependencies that are necessary in order to execute
tests generated by EvoSuite.

In this tutorial, we will assume that you have these jar-files. Furthermore,
for several parts of the tutorial you will need Apache Maven1.

2.1 Invoking EvoSuite

As the name suggests, the executable jar file can be executed. To do so, call
EvoSuite like this:

java -jar evosuite-1.0.6.jar

You should see the following output:

* EvoSuite 1.0.6

usage: EvoSuite

...

This output is EvoSuite listing all the possible command-line options, as we
haven’t told EvoSuite what to do yet. To make the rest of this tutorial easier to
read, we will create an environment variable to point to EvoSuite, e.g.:

export EVOSUITE="java -jar $(pwd)/evosuite-1.0.6.jar"

Now we can simply invoke EvoSuite by typing:

$EVOSUITE

(If you are not using the Bash shell, the commands to create an alias $EVOSUITE
might differ.)

2.2 Generating Tests

As a running example in this tutorial, we will use the tutorial.Stack class
shown in Figure 1. We will assume that this file is part of a standard Java
project structure, where the source code of the Stack class is kept in the file
src/main/java/tutorial/Stack.java, and the compiled bytecode is placed in the
directory target/classes. You can find a project set up like this as a Maven
project in our online tutorial2.

1 https://maven.apache.org/
2 http://evosuite.org/files/tutorial/Tutorial Stack.zip

package tutorial;

import java.util.EmptyStackException;

public class Stack<T> {

private int capacity = 10;

private int pointer = 0;

private T[] objects = (T[]) new Object[capacity];

public void push(T o) {

if(pointer >= capacity)

throw new RuntimeException("Stack exceeded capacity!");

objects[pointer++] = o;

}

public T pop() {

if(pointer <= 0)

throw new EmptyStackException();

return objects[--pointer];

}

public boolean isEmpty() {

return pointer <= 0;

}

}

Fig. 1. Example Java class tutorial.Stack used in the tutorial.

To generate tests with EvoSuite, there are two essential pieces of information
that EvoSuite needs: (1) What is the class under test, and (2) what is the class-
path where it can find the bytecode of the class under test and its dependencies.
The class under test is specified using the -class argument (assuming we are
targeting a single class). Note that we need to use the fully qualified class name;
that is, we need to include the package name. Thus, in our example, we need to
use -class tutorial.Stack.

The classpath is specified using the -projectCP argument. This takes a reg-
ular classpath entry, like you would specify when using java -cp or by set-
ting export CLASSPATH=.... As we assumed that compiled bytecode is placed in
target/classes (as is, for example, done by Maven), this is the classpath which
we specify using -projectCP target/classes. Thus, we can now run EvoSuite as
follows:

$EVOSUITE -class tutorial.Stack -projectCP target/classes

Note that this assumes that the Stack class has been compiled, and there
exists a resulting file target/classes/tutorial/Stack.class. If you don’t have
this and don’t know how to produce it, consider getting the example project set
up2. If everything worked correctly, then EvoSuite has now produced two files:

evosuite-tests/tutorial/Stack_ESTest.java

evosuite-tests/tutorial/Stack_ESTest_scaffolding.java

Let’s take a closer look at these two files. If we look into the scaffolding
file, we’ll see lots of things happening in methods annotated with @Before and
@After. These are JUnit annotations which ensure that these methods are ex-
ecuted before/after execution of each individual test. The reason for all this is
that EvoSuite avoids flaky tests by controlling everything that might be non-
deterministic. The scaffolding ensures that tests are always executed in the same
consistent state, so they should really only fail if they reveal a bug, not because
they are flaky. The scaffolding may look a bit scary, but the good news is that
you’ll probably never need to look at it.

The tests are in the main Stack ESTest.java file. The test class inherits from
the scaffolding, such that all the setup/pulldown happens without showing all
the overhead to ensure tests are not flaky:

@RunWith(EvoRunner.class) @EvoRunnerParameters(mockJVMNonDeterminism

= true, useVFS = true, useVNET = true, resetStaticState = true,

separateClassLoader = true)

public class Stack_ESTest extends Stack_ESTest_scaffolding {

// ...

Besides inheriting from the scaffolding, we also see some annotation that
is specific to EvoSuite. The test class declares that it will be executed with the
EvoRunner, rather than a default JUnit runner. The test runner takes a couple of
parameters that tell it which parts of the execution environment are controlled.
You can safely ignore these for now – the values for these parameters are set
automatically by EvoSuite.

The rest of the file consists of the actual tests. The tests use JUnit 4 and are
annotated with @Test. Because automatically generated tests sometimes do silly
things causing infinite loops, all tests have a specified timeout, with a default
value of 4 seconds.

2.3 Running Tests

Let’s compile the tests. The compiler will need several things on the classpath:

– target/classes: This is the classpath directory containing the compiled byte-
code, which we need for the tutorial.Stack class.

– evosuite-standalone-runtime-1.0.6.jar: This is the EvoSuite runtime li-
brary (you can also use the full EvoSuite jar file instead of this, although
that will lead to more output since it uses EvoSuite’s logger configuration).

– evosuite-tests: This is the root directory where EvoSuite put the test class
files.

– junit-4.12.jar and hamcrest-core-1.3.jar: We need JUnit to execute JUnit
tests.

To automatically resolve the JUnit and Hamcrest dependencies, an easy way
is to use the Maven-version of our example project2 and use Maven to retrieve
the dependencies:

mvn dependency:copy-dependencies

This will download the two jar files and put them into target/dependency.
Now we need to tell the Java compiler where to find all these things, for

which we set the CLASSPATH environment variable:3

export CLASSPATH=target/classes:evosuite-runtime-1.0.6.jar:\

evosuite-tests:target/dependency/junit-4.12.jar:\

target/dependency/hamcrest-core-1.3.jar

For now, we will simply compile the tests in place. Check the online tutorial4

if you want to see how to integrate EvoSuite into the Maven project properly,
such that Maven takes care of compiling the tests. Type the following command:

javac evosuite-tests/tutorial/*.java

Check that there are the two .class files in evosuite-tests/tutorial. If they
are not there, then check what error messages the Java compiler gave you –
most likely some part of the classpath is not set correctly. If they were compiled
correctly, we can now run the tests on the commandline:

java org.junit.runner.JUnitCore tutorial.Stack_ESTest

If you followed all the steps so far correctly, you should see the following
output:

JUnit version 4.12

.....

Time: 2.021

OK (5 tests)

Congratulations! You just generated and executed an EvoSuite test suite!

2.4 Configuring EvoSuite

Now let’s take a closer look at how we can influence what EvoSuite does. First,
we had to wait quite a while until test generation completed – even though this is
such a simple class. A simple way to tell EvoSuite that we’ve waited long enough
for test generation is to simply hit Ctrl+C while it is generating tests. EvoSuite
will stop the search, and write the test cases generated up to that point. If you

3 Note that, as is common, wrapped lines at the commandline are indicated with a
backslash “\” in this paper. These lines are only wrapped to fit the text in the paper,
you can also type these commands on a single line.

4 http://www.evosuite.org/documentation/tutorial-part-2/

hit Ctrl+C a second time, this will kill EvoSuite completely. To try this out,
generate some more tests:

$EVOSUITE -class tutorial.Stack -projectCP target/classes

After a couple of seconds, when you think coverage is sufficient, hit Ctrl+C
and wait for the tests to be written. If you wait 10-20 seconds, you will notice that
the tests we got still cover all the lines in the Stack class. So why does EvoSuite
take so long? The reason is that EvoSuite by default targets not only lines of
code, but attempts to satisfy a range of different testing criteria, including things
like mutation testing. Some of the testing goals described by these criteria are
infeasible, which means that there exist no tests that satisfy; some other goals
are just so difficult to cover that EvoSuite cannot easily produce the tests. This
is a well-known aspect of test generation, and to deal with it, EvoSuite uses a
fixed amount of time for test generation, and stops generating tests once this
time has been used up. By default, this is 60 seconds. If we want to change this,
then besides manually stopping EvoSuite, we have two options: Either we change
the testing criteria to avoid the stronger criteria that may not be satisfiable, or
we set the timeout explicitly.

Let’s start by generating tests for a weaker criterion. We’ll use branch cover-
age, which requires that all if-conditions evaluate to true and false, and all lines
of code are covered. We can set the criterion using the -criterion argument. To
generate branch coverage tests, type:

$EVOSUITE -class tutorial.Stack -projectCP target/classes \

-criterion branch

EvoSuite will work for a couple of seconds, but once it has reached 100%
branch coverage it will terminate and give us a branch coverage test suite.

Alternatively, we can tell EvoSuite how much time to spend on test gen-
eration. EvoSuite uses search-based techniques, so the time it spends on test
generation is called the search budget. Unlike the target criterion, the search
budget is not a command line argument, but one of many properties that config-
ure how EvoSuite behaves. To set properties, we can use the -Dproperty=value

command line argument. For example, to specify the search budget to 20 seconds,
we would use the following command:

$EVOSUITE -class tutorial.Stack -projectCP target/classes \

-Dsearch_budget=20

EvoSuite has many properties that can all be set using the -Dproperty=value

syntax. To get an overview of the available properties, type the following com-
mand:

$EVOSUITE -listParameters

For example, by default EvoSuite will apply minimization to test cases, which
means that it removes all statements that are not strictly needed to satisfy

package tutorial;

import org.junit.Test;

import org.junit.Assert;

public class StackTest {

@Test

public void test() {

Stack<Object> stack = new Stack<Object>();

stack.push(new Object());

Assert.assertFalse(stack.isEmpty());

}

}

Fig. 2. Manually written test class for the Stack class.

the coverage goals; this can be deactivated using -Dminimize=false. EvoSuite
also minimizes the assertions it adds, and this can be changed by switching
the assertion generation strategy, e.g. to -Dassertion strategy=all. Thus, to
generate long tests with loads of assertions we could use the following command:

$EVOSUITE -class tutorial.Stack -projectCP target/classes \

-Dsearch_budget=20 -Dminimize=false -Dassertion_strategy=all

2.5 Working with existing tests

Let’s assume we have previously written some tests for our Stack class manually.
For example, suppose the file src/test/java/tutorial/StackTest.java contains a
test suite consisting of a single test shown in Figure 2. This is not a very exciting
test, and also one that EvoSuite could easily generate. However, in practice you
might have already written some tests at the point you invoke EvoSuite, and so
maybe you don’t want to see generated tests for code you have already covered.

We can tell EvoSuite to only output tests that are not already covered using
the junit property. For example, to tell EvoSuite to only give us tests that
are not already covered by tutorial.StackTest, we would set the property using
-Djunit=tutorial.StackTest. If we have multiple test classes, we can use a colon-
separated list for the property.

We also need to tell EvoSuite where to find this test, as it needs to execute
the test. So let’s first make sure that the test is compiled and passes. If we have
set up our project as a Maven project, we can simply run the following command:

mvn test

(If you are not using Maven or the example project provided online, you can also
invoke JUnitCore as described above, but with the corresponding classname).
This should give you the following output (among some other messages):

T E S T S

Running tutorial.StackTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

0.091 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

If the test doesn’t pass then most likely you have edited (and broken?) the Stack

class and should fix it.
If you are using Maven to run tests, then for EvoSuite the interesting part is

that Maven placed the bytecode of this test into the directory target/test-classes.
If we want to know how great this test suite is, we can ask EvoSuite to measure
the coverage for us. EvoSuite supports the command -measureCoverage, and we
need to specify the class under test (-class tutorial.Stack), the tests we are
interested in (-Djunit=tutorial.StackTest), the classpath containing the class
under test and the tests (-projectCP target/classes:target/test-classes), and
optionally, which criteria we are interested (e.g., -criterion branch):

$EVOSUITE -measureCoverage -class tutorial.Stack

-Djunit=tutorial.StackTest \

-criterion branch -projectCP

target/classes:target/test-classes

This should give you the following output (among other messages):

* Total number of covered goals: 3 / 7

* Total coverage: 43%

If we now only want to have tests that cover the remaining 4 branch coverage
goals, we would invoke EvoSuite as follows:

$EVOSUITE -class tutorial.Stack -Djunit=tutorial.StackTest \

-projectCP target/classes:target/test-classes \

-criterion branch

Take a look at the file evosuite-tests/tutorial/Stack ESTest.java to check that
it worked.

2.6 Running EvoSuite on multiple classes

Our example project only has a single class, so all calls to EvoSuite so far used
the argument -class. However, sometimes we might want to target more than
just a single class, for example when generating a regression test suite. In this
case, we can replace the -class argument with either -prefix or -target.

The -target argument specifies a classpath entry (e.g., directory or jar file).
EvoSuite will then be invoked sequentially on every testable class it can find
in that classpath entry. If you want to know which classes EvoSuite thinks are
testable (e.g., public), then type the following command:

$EVOSUITE -listClasses -target target/classes

Since our example project only contains one class, the output should be just our
example class:

tutorial.Stack

To invoke EvoSuite on all the classes in a classpath entry, type the following:

$EVOSUITE -target target/classes

EvoSuite will now go and test each class it finds, one at a time. Alternatively,
we might want to test all classes in a certain package. To test all classes in the
tutorial package, type the following command:

$EVOSUITE -prefix tutorial

As our project has only one class this will again just test the Stack.
The arguments -target and -prefix will run EvoSuite sequentially on each

class they find. If your project is large, this might not be the ideal strategy. In
fact, if your project is large and you want to use EvoSuite repeatedly, you will
probably not want to run things manually on the command line, but instead use
Maven to automate and parallelise things. This is not covered in this paper, but
you can find a tutorial for this online4.

3 Extending EvoSuite

EvoSuite is not only intended to serve as a test generator for developers, but
also as a platform to support experimentation in search-based software testing.
Often, this involves modifying or extending EvoSuite. In this section, we take a
look at how one can build EvoSuite from sources, and how one can extend it.

3.1 Obtaining the EvoSuite source code

The source code of EvoSuite is available on GitHub in a public Git repository.
The first step of this part of the tutorial thus consists of checking out the source
code. How to do this will differ depending on which IDE you prefer to use. On
the command line, we would check out the repository with Git directly:

git clone https://github.com/EvoSuite/evosuite.git

The source code is organised into several Maven sub-modules. That is, there
is one parent pom.xml in the main directory of the source code you just checked
out, and then there are several separate sub-projects in subdirectories. Let’s have
a closer look at the main sub-modules:

– master: EvoSuite uses a master-client architecture because things can go
wrong when executing randomly generated tests (e.g., we could run out of
memory). The client sends the current search result to the master process
every now and then, so that even if things go wrong, we still get some tests
in the end. The master module handles the user input on the command line
(e.g., parsing of command line options), and then spawns client processes to
do the actual test generation.

– client: The client contains all the heavy lifting. The genetic algorithm is
in here, the internal representation of test cases and test suites used by the
algorithm, the search operators, mechanisms to execute the test cases, all
the bytecode instrumentation that is needed to produce trace information
from which to calculate fitness values.

– runtime: This is the runtime library, i.e., all the instrumentation that is
needed to make test execution deterministic, the mocked Java API, etc.

– plugins: There are several sub-projects in here that are plugins for various
third-party tools, such as Maven, IntelliJ, Eclipse, or Jenkins.

Besides these, there are several other modules or sub-directories. You will
not usually need to access any of these, but in case you are curious what they
are:

– standalone runtime: There is no source code in this library, this is simply a
Maven sub-module that produces a standalone jar file, i.e., one that includes
all the dependencies of the runtime library.

– shaded: There is no source code in here either; this is a Maven module that
produces a version of EvoSuite where the package name is renamed from
org.evosuite to something else. This is to allow EvoSuite to be applied to
itself (which otherwise wouldn’t work, as EvoSuite refuses to instrument its
own code).

– generated: This is a sub-module in which we are putting tests generated by
EvoSuite to test EvoSuite. This is still work in progress.

– release results: This is not a Maven sub-module, it is just a collection of
data that represents the results of the experiment on the SF110 dataset we
conduct every time we perform a release.

– src: No Java source code in here, only some Maven-related meta-data.
– removed: Some source code files that are not used in the main source tree

but have been useful to keep as a reference.

3.2 Building EvoSuite

If you know Maven, then it will probably not come as a surprise to you that,
using Maven, Evosuite can be compiled using:

mvn compile

Most likely, your IDE will do this for you automatically. However, it is important
that your IDE supports Maven, and that you have configured the project as a

Maven project. If you haven’t done this, what you will get are error message com-
plaining that the compiler cannot find classes in the package org.evosuite.xsd.
These classes are generated automatically by jaxb based on an XML schema –
and this is only done if you properly compile the project with Maven.

Recall that the EvoSuite distribution consists of two jar files – one with the
standalone runtime dependencies, and one for test generation. You can generate
these by invoking:

mvn package

The main EvoSuite jar file is generated in the master sub-module: master/target.
You can validate that this is the case by invoking the executable with Java:

java -jar master/target/evosuite-master-1.0.7-SNAPSHOT.jar

You should now see the help text with the usage instructions. The standalone
runtime library is in directory standalone runtime/target/.

Building EvoSuite can take a while, but a lot of that time is spent executing
unit tests. Although we don’t recommend doing that, if you do need to build
a jar file quickly and can’t wait for the unit tests to complete, you can add
-DskipTests to the Maven command line.

3.3 Testing EvoSuite

As with any Maven project, you will find the source code in src/main/java for
every sub-module, and the tests in src/test/java.

EvoSuite has a fair number of unit tests, but it has a lot more system and
integration tests (executing all system tests takes somewhere between 1-2 hours,
depending on your machine). You can distinguish between the two types of tests
based on the classname: all system tests have the suffix SystemTest in their name.
Most of these system tests consist of a class under test that captures a specific
testing challenge, and then invoke EvoSuite to check that it is able to cover the
class fully, using a specific configuration.

In the test directories of the various sub-packages, you will find two main
packages of classes: Everything with a package name starting with org.evosuite

are the actual tests; the package com.examples.with.different.packagename pack-
age contains example classes under test used in the tests.

Let’s take a closer look at one of the system tests. For example, open the
class org.evosuite.basic.NullStringSystemTest, which you can find in the file
master/src/test/java/org/evosuite/basic/NullStringSystemTest.java (Fig. 3).

The first thing worth noting is that this system test extends SystemTestBase.
This is important for system tests, as it resets the state of EvoSuite (e.g.,
properties) and prepares everything for test execution (e.g., classpath). It also
sets a couple of important properties for tests - if you are interested to see
which ones they are, check out method setDefaultPropertiesForTestCases in
the SystemTestBase class. In particular, it sets this property:

Properties.CLIENT_ON_THREAD = true;

1 public class NullStringSystemTest extends SystemTestBase {

2

3 @Test

4 public void testNullString() {

5 EvoSuite evosuite = new EvoSuite();

6

7 String targetClass = NullString.class.getCanonicalName();

8

9 Properties.TARGET_CLASS = targetClass;

10

11 String[] command = new String[] { "-generateSuite", "-class",

targetClass };

12

13 Object result = evosuite.parseCommandLine(command);

14 GeneticAlgorithm<?> ga = getGAFromResult(result);

15 TestSuiteChromosome best =

16 (TestSuiteChromosome) ga.getBestIndividual();

17 System.out.println("EvolvedTestSuite:\n" + best);

18

19 int goals = TestGenerationStrategy.getFitnessFactories().get(0)

20 .getCoverageGoals().size(); // assuming single fitness

function

21 Assert.assertEquals("Wrong number of goals: ", 3, goals);

22 Assert.assertEquals("Non-optimal coverage: ", 1d,

23 best.getCoverage(), 0.001);

24 }

25 }

Fig. 3. Example system test checking that EvoSuite can assign null values to param-
eters of type String.

This tells EvoSuite not to spawn a new process for the client (i.e., the part that
runs the search and executes the tests). The reason for this is that a standard
Java debugger will only allow you to work in the process it is attached to, not
in any child processes spawned. So, if you want to, for example, set some break-
points, it is essential that Properties.CLIENT ON THREAD is set to true, otherwise
the debugger will not be involved when the breakpoint is passed.

The testNullString test starts by creating a new instance of EvoSuite (Line 5);
then, it tells EvoSuite what the class under test is, by setting the property
Properties.TARGET CLASS to the fully qualified name of the class under test. As
you can see, if you want to set any specific properties of EvoSuite for your test,
you can simply set them in the test. The SystemTestBase will ensure that these
properties are reset to their defaults after test execution. In our example, the
class under test is NullString, which the class shown in Figure 4. On this class,
we can only achieve 100% branch coverage if EvoSuite is able to provide a null
and a non-null value for String parameters. Thus, this class serves to test whether
EvoSuite properly supplies null values for strings.

package com.examples.with.different.packagename;

public class NullString {

public boolean isNull(String s){

if(s==null){

return true;

} else {

return false;

}

}

}

Fig. 4. NullString example class that is used as a target to check if EvoSuite can
produce null values as parameters for methods that expect Strings.

The test next invokes EvoSuite for the target class in Line 13. This essen-
tially is the same as calling EvoSuite on the command line and passing in some
arguments, which are captured in the command array here. EvoSuite will then
generate some tests, and return an object that summarizes the test generation.
SystemTestBase provides a helper function getGAFromResult to extract the genetic
algorithm instance from this result object, called in Line 14. This GA object can
be queried about various things, and most importantly, we can ask it for the best
individual, i.e., the result of the test generation; this is done in Line 16. Given
this test suite, we can do what we want with it – for example print it to stdout,
like done in Line 17. Or, more importantly, we can write some assertions to check
that the result is as expected. In this particular test, there are two assertions.
The first assertion (Line 21) checks if the number of coverage goals for the class
under test is 3. The second assertion (Line 23) checks that we have achieved
100% coverage. Checking the number of coverage goals has proven quite useful
over time, as a change in the number of coverage goals (for whatever reason) will
usually have implications on the coverage that can be achieved. Debugging this
case is much easier if we know explicitly that this has happened, rather than
when trying to guess why the coverage percentage is not as expected.

Try to execute the test and see if it passes. Then, insert the following line
before the call to evosuite.parseCommandLine:

Properties.NULL_PROBABILITY = 1.0;

Re-run the test again – EvoSuite is now configured to only generate null objects
(i.e., with a probability of 1.0), so it should only achieve 67% branch coverage (it
covers the default constructor and the true branch in the target method ‘isNull‘).

Now let’s remove that line again from the test to make sure we don’t have
a broken test! (Re-run the test after removing the line to make sure it passes
again.)

3.4 Extending the search algorithm

Now let’s make some changes to EvoSuite. As you might know, EvoSuite uses
a Genetic Algorithm to drive the test generation. In a nutshell, this means that
there is a population of candidate solutions (chromosomes, which are test suites
in this case), and these test suites are evolved using search operators that are
intended to simulate natural evolution. A fitness function estimates how good
each candidate solution is. The fittest individuals have the highest likelihood of
reproducing, and if they are selected for reproduction, then two parent individ-
uals are combined to produce two new offspring individuals using a crossover
operator, and then mutation makes smaller changes to these offspring.

All this is implemented in the client module, in the org.evosuite.ga package.
For the abstract superclass org.evosuite.ga.metaheuristics.GeneticAlgorithm

there are several concrete implementations, such as StandardGA (a default text-
book genetic algorithm), a SteadyStateGA, or EvoSuite’s default, the MonotonicGA.
If you look at the GeneticAlgorithm class you will see that the search algo-
rithm has plenty of members, such as a selection operator selectionFunction,
the crossover operator crossoverFunction, and a population (population). The
population is a list because individuals are ranked by their fitness value; this
value is calculated by the fitnessFunctions. This, in turn, is a list because Evo-
Suite typically is used with several fitness functions at the same time, and there
is a fitness value for every fitness function.

The GeneticAlgorithm class is configured with a SinglePointCrossOver by
default. Let’s have a closer look at how this class looks like – open up the
class org.evosuite.ga.operators.crossover.SinglePointCrossover in an editor.
The class extends the abstract class CrossOverFunction, and implements the
method crossOver. The method receives two individuals as parents and chooses
two crossover points point1 and point2 randomly, one for each of the two indi-
viduals. Then, it clones the parents, and on the resulting individuals it invokes
the crossover method to do the actual work. This is the beauty of meta-heuristic
search algorithms: The algorithm is independent of what the chromosomes rep-
resent.

Let’s assume that we would like to implement an alternative crossover opera-
tor, which always cuts chromosomes in the middle, unlike the existing crossover
operators which all choose random crossover points. Let’s create a new Java class
org.evosuite.ga.operators.crossover.MiddleCrossOver in the client module (in
the directory client/src/main/java/org/evosuite/ga/operators/crossover). The
class should extend the abstract class CrossOverFunction, which means it has to
implement the method crossOver. The skeleton thus looks like this:

package org.evosuite.ga.operators.crossover;

import org.evosuite.ga.Chromosome;

import org.evosuite.ga.ConstructionFailedException;

public class MiddleCrossOver extends CrossOverFunction {

@Override

public void crossOver(Chromosome parent1, Chromosome parent2)

throws ConstructionFailedException {

// TODO

}

}

In order to implement this crossover function, we need to understand one
important aspect: Textbook examples on genetic algorithms will usually assume
a fixed number of genes in a chromosome. However, unlike many other standard
applications of genetic algorithms, the size of individuals in EvoSuite can vary,
as we cannot know the right number of test cases before we even start the search.
Consequently, what is the “middle” is different for every individual.

Thus, the first thing we need to check is whether our individuals even have
more than one test case. If they don’t there’s no way we can do any crossover:

if (parent1.size() < 2 || parent2.size() < 2) {

return;

}

After this, we can assume that both parent chromosomes have at least 2
tests, and so we can calculate the middle of each of them:

int middle1 = (int) Math.round(parent1.size() / 2.0);

int middle2 = (int) Math.round(parent2.size() / 2.0);

The crossover operator in EvoSuite changes a chromosome in place. That
means we first need to create the offspring as direct copies of the parents:

Chromosome t1 = parent1.clone();

Chromosome t2 = parent2.clone();

Now we can change the offspring using the crossOver method, which takes as
parameters (1) the other chromosome with which to cross over, (2) the crossover
point in the chromosome the method is invoked on, and (3) the crossover point
in the other chromosome:

parent1.crossOver(t2, middle1, middle2);

parent2.crossOver(t1, middle2, middle1);

That’s it! Let’s write a test case MiddleCrossOverTest.java to find out if
it works. Add the new file in the appropriate directory in the client module
(client/src/test/java/org/evosuite/ga/operators/crossover/).

The tests in the client module have a DummyChromosome implementation that
we use for the test. A DummyChromosome takes a list of integers, and does mutation
and crossover. For example, we could create to parents with different sizes (e.g.,

4 and 2), and then check if the resulting individuals have the right genes. For
example, the test could look like this:

@Test

public void testSinglePointCrossOver() throws

ConstructionFailedException {

DummyChromosome parent1 = new DummyChromosome(1, 2, 3, 4);

DummyChromosome parent2 = new DummyChromosome(5, 6);

MiddleCrossOver xover = new MiddleCrossOver();

DummyChromosome offspring1 = new DummyChromosome(parent1);

DummyChromosome offspring2 = new DummyChromosome(parent2);

xover.crossOver(offspring1, offspring2);

assertEquals(Arrays.asList(1, 2, 6), offspring1.getGenes());

assertEquals(Arrays.asList(5, 3, 4), offspring2.getGenes());

}

If you did everything correctly, then this test should pass. Does it?
Now that we’ve got this wonderful new crossover operator, the next big ques-

tion is: How do we make EvoSuite use it? EvoSuite is highly configurable, and
the configuration is controlled by the class org.evosuite.Properties in the client
module. In this class, you’ll find all the different properties that EvoSuite sup-
ports – there are a lot of them. Each property consists of a public static field
in all caps, which is how the properties are accessed from within code. In addi-
tion, each property has @Parameter annotation, in which we define a key – this is
the key we use on the command line, if we set properties using the -Dkey=value

syntax. If we look for crossover, we will find the following relevant code:

public enum CrossoverFunction {

SINGLEPOINTRELATIVE, SINGLEPOINTFIXED, SINGLEPOINT, COVERAGE

}

@Parameter(key = "crossover_function", group = "Search Algorithm",

description = "Crossover function during search")

public static CrossoverFunction CROSSOVER_FUNCTION =

CrossoverFunction.SINGLEPOINTRELATIVE;

Thus, there is a property Properties.CROSSOVER FUNCTION, and it is of type
of the enum class CrossoverFunction, which contains all the possible crossover
functions. In the future maybe EvoSuite will see some way to make it extensible
at runtime, but for now we need to add our new crossover operator to the enum:

public enum CrossoverFunction {

SINGLEPOINTRELATIVE, SINGLEPOINTFIXED, SINGLEPOINT,

COVERAGE, MIDDLE

}

The final thing we need to change is the place where this property is read
and the crossover function is instantiated. If we look up where in the source code
the property Properties.CROSSOVER FUNCTION field is used, we see that it is used in
org.evosuite.strategy.PropertiesSuiteGAFactory and PropertiesTestGAFactory.
These are two factory classes that create and configure a genetic algorithm ob-
ject based on the values in the Properties class. As we are doing whole test suite
generation (it’s EvoSuite’s default), let’s edit PropertiesSuiteGAFactory. Find
the method getCrossoverFunction(). It contains a switch over the value of our
property, and calls the corresponding constructor. Thus, we need to add a new
case:

case MIDDLE:

return new MiddleCrossOver();

That’s it! Now we’re ready to generate a jar file and use EvoSuite with our
new crossover function. Recall that you can generate the jar file (which will be
located in master/target) using:

mvn package

When we now run EvoSuite with this jar file, we can specify to use our new
crossover function using -Dcrossover function=Middle. Likely this operator will
not make a difference – it’s just an example for illustration purposes. However, in
the next section we will look at how to run experiments with EvoSuite in general,
and you could investigate this crossover operator with some similar experiments.

4 Running Experiments with EvoSuite

4.1 Preparing the experiment

For the third part of the tutorial, we will be looking at how one can collect
data about the test generation. We will use a simple example scenario: EvoSuite
by default uses a combination of different coverage criteria [10]. What are the
effects of this combination over using just branch coverage as target criterion?
A reasonable hypothesis would be that the combination leads to more tests, and
better test suites. But is that actually true? Let’s run an experiment to find out!

The experiment will involve running EvoSuite on a number of classes with
its default configuration and configured to only use branch coverage, and then to
take different measurements of the resulting test suites. When doing experiments
of this kind, the selection of classes has implications on how much our results
generalize: If we use a very specific and small selection of classes, then what-
ever our findings, they may only be relevant to that particular type of classes.
Therefore, we generally would want to select as many as possible, as diverse as
possible, and as representative as possible classes in order to get results that gen-
eralize. However, this is not the aim of this tutorial, so let’s just use a selection of

classes we’ve prepared for this tutorial. The tutorial assumes that you download
and extract the archive containing the selection of example classes (but note you
can, in principle, use any collection of Java classes instead):

wget http://evosuite.org/files/tutorial/Tutorial_Experiments.zip

unzip Tutorial_Experiments.zip

Change into the main directory again, and compile the example project with
Maven:

cd Tutorial_Experiments

mvn compile

We will be invoking EvoSuite directly in this part of the tutorial. To avoid
having to set the classpath repeatedly, let’s set up EvoSuite. First, we need to
download all dependency jar files of the example project. To make things slightly
more challenging, the class tutorial.Bank has a (quite artificial) dependency on
the Apache Commons Collections library. When running EvoSuite from Maven,
then Maven downloads all dependencies and sets up the classpath for us auto-
matically – but when we run EvoSuite directly it is our responsibility to set up
a correct classpath. Fortunately, this is easy enough: To download all dependen-
cies, type the following Maven command:

mvn dependency:copy-dependencies -DincludeScope=runtime

This command downloads all dependency jar files, and puts them into the
target/dependency directory. The reason for specifying the scope to be runtime
using -DincludeScope=runtime is that the project has test dependencies on JU-
nit and EvoSuite – but neither of these dependencies are necessary in order to
generate some tests for the classe under test, we really just need the compile and
runtime dependencies. Thus, the full project classpath consists of the classes in
target/classes and the jar file target/dependency/commons-collections-3.2.2.jar.
We can store this information by creating an evosuite.properties file that saves
this classpath, by use the following command:

$EVOSUITE -setup target/classes

target/dependency/commons-collections-3.2.2.jar

Check that the resulting evosuite-files/evosuite.properties at the top has the
correct classpath set:

CP=target/classes:target/dependency/commons-collections-3.2.2.jar

4.2 Collecting data with EvoSuite

Let’s start by invoking EvoSuite on the Stack class in our project, targeting only
branch coverage:

$EVOSUITE -class tutorial.Person -criterion branch

We have already had a closer look at the test suites that EvoSuite produces.
However, EvoSuite also produces data to document what happened. This is
stored in the following file:

evosuite-report/statistics.csv

Use your favourite editor to have a closer look at this file. You should see some-
thing like this:

TARGET_CLASS,criterion,Coverage,Total_Goals,Covered_Goals

tutorial.Person,BRANCH,1.0,3,3

This file is in comma-separated value format. The first row contains head-
ers showing what the individual columns contain, and then the rows contain
the actual data. The first column contains the name of the class we tested
(tutorial.Person). The second column shows us the coverage criteria that we
used – in this case we see the full list of criteria that EvoSuite uses by default,
separated by semincolons. The third column tells us the achieved coverage – 1.0
in this case, which means we have 100% coverage (yay!). This is calculated based
on the ratio of coverage goals covered to total goals (last two columns).

Let’s test the same class again, but this time using line and branch coverage:

$EVOSUITE -class tutorial.Person -criterion line:branch

If we look at evosuite-report/statistics.csv again we’ll see a new row:

TARGET_CLASS,criterion,Coverage,Total_Goals,Covered_Goals

tutorial.Person,BRANCH,1.0,3,3

tutorial.Person,LINE;BRANCH,1.0,9,9

As you can see, we now have a new entry for our second call to EvoSuite, where
we specified branch and line coverage as target criteria.

Let’s try another class and criterion:

$EVOSUITE -class tutorial.Company -criterion line

Again, the evosuite-report/statistics.csv file will now contain a new line:

TARGET_CLASS,criterion,Coverage,Total_Goals,Covered_Goals

tutorial.Person,BRANCH,1.0,3,3

tutorial.Person,LINE;BRANCH,1.0,9,9

tutorial.Company,LINE,1.0,4,4

The tutorial.Company class has four lines of code, and the generated tests cover
all of them. Great!

4.3 Setting output variables

We now know where to find data about the test generation. However, the data we
have seen does not help us to answer the questions we would like to investigate.
Recall that our scenario was that we wanted to know if the default combination
of criteria leads to more tests, and better test suites. We cannot answer this
with the data in the statistics.csv files currently — the coverage values cannot

be compared (they refer to different criteria), and neither can the numbers of
goals.

Fortunately, we can generate more data than just the columns our data file
has shown us so far. EvoSuite has a property output variables which determines
which values should be written to the statistics.csv file. Before we do that,
let’s remove the old statistics.csv file:

rm evosuite-report/statistics.csv

This is important if we decide to change the columns of the data files – our
data file currently has a header row and three data rows that assume there are
five columns; if we change the columns, and additional rows will not match the
existing data.

Now, let’s include some new values. There are two main types of output vari-
ables: runtime variables, which are the result of computation (e.g., the coverage),
whereas properties are the input properties we can set. For example, TARGET CLASS

and criterion are properties, whereas Total Goals and Covered Goals are run-
time variables. There are some inconsistencies in terms of which variables are
capitalised – this is for historic reasons, as changing the runtime variable names
may break existing experimental infrastructure. However, in a future major re-
lease we may decide to change the variable names to a consistent format.

Let’s think about what values we would like to include. Our first question
is whether the combination of criteria leads to more tests. The corresponding
output variable is Size, which reports the number of tests. However, let’s not
forget that these are unit tests, where a single test can consist of several state-
ments. Thus, we can also use the Length variable to count the total number of
statements, which is maybe a better representation of the size of a test suite.

Our second question is whether the combination of criteria leads to better
tests. A standard way to evaluate test suites is by measuring coverage – but
which criterion would we use to measure this? A better way might be to compare
the test suites in terms of their mutation scores. The mutation score is a metric
based on the idea of Mutation Analysis, and quantifies how many artificial faults
a test suite can find. There are several mutation analysis frameworks for Java
available, but EvoSuite also has a basic mutation functionality integrated [8], as
it can aim to generate tests that kill mutants directly. The output variable for
this is MutationScore.

To summarize, for our experiment we would like to have the following data:

– Class under test (TARGET CLASS)

– Criteria (criterion)

– Size (Size)

– Length (Length)

– Mutation score (MutationScore)

The list of variables is passed as a comma separated list to the output variables

property. Let’s try this out:

$EVOSUITE -class tutorial.Company -criterion branch

-Doutput_variables=TARGET_CLASS,criterion,Size,Length,MutationScore

If you look at the resulting evosuite-report/statistics.csv file, you should see
something like this:

TARGET_CLASS,criterion,Size,Length,MutationScore

tutorial.Company,BRANCH,1,2,1.0

Thus, we have just generated one test consisting of two statements, and this test
killed all the mutants EvoSuite generated for the class.

If we look at the test suite in evosuite-tests/tutorial/Company ESTest.java

you should see something like this:

@Test(timeout = 4000)

public void test0() throws Throwable {

Company company0 = new Company("");

String string0 = company0.getName();

assertEquals("", string0);

}

Note that the assertion is not included in EvoSuite’s statement count. This is
because assertions are not generated as part of the search-based test generation,
but are added in a post-processing step.

4.4 Running an experiment

Now let’s run an actual experiment and gather some data. We would like to get
information on all classes in our project, so we need to run EvoSuite on all of
them. Furthermore, let’s not forget that EvoSuite is randomized: If you run it
twice in sequence, you will get different results. That also means that if you get
a very large test suite in one run, you may get a test suite with a different size in
the next run. In general, when we have randomized algorithms, we need to run
repetitions, and statistically analyze our data. Therefore, we’ll generate tests on
all our classes, and repeat this 10 times. Furthermore, we need to do all this
twice, once with only branch coverage, and once with the default criteria. Before
we start the experiment, let’s remove the old statistics.csv file again:

rm evosuite-report/statistics.csv

Now, let’s run the experiment. We will tell EvoSuite to test all classes in the
tutorial package using the -prefix argument, and pass in the target criterion
(branch) as well as our output variables.

$EVOSUITE -criterion branch -prefix tutorial -Dshow_progress=false \

-Doutput_variables==TARGET_CLASS,criterion,Size,Length,MutationScore

We added -Dshow progress=false; this isn’t essential, but the progress bar does
tend to clutter up log files if we perform larger numbers of runs, so we deactivated
it here. If you look at the data file, you should see something like this:

TARGET_CLASS,criterion,Size,Length,MutationScore

tutorial.ATM,BRANCH,10,75,0.3888888888888889

tutorial.ATMCard,BRANCH,8,40,1.0

tutorial.Bank,BRANCH,4,15,0.8

tutorial.BankAccount,BRANCH,2,6,0.8

tutorial.Owner,BRANCH,1,1,1.0

tutorial.CurrentAccount,BRANCH,2,7,0.6521739130434783

tutorial.SavingsAccount,BRANCH,2,7,0.8529411764705882

tutorial.Company,BRANCH,1,2,1.0

tutorial.Person,BRANCH,2,4,0.0

We now have data for all classes, for the first configuration we are interested in
(branch coverage). If we re-run this command without the -criterion branch

argument, we’ll get some more data for all classes for the other configura-
tion (default coverage criteria). When analysing this data, we need to distin-
guish between the two configurations; we can either use the criterion col-
umn we have already added, or we can also label our configurations, using the
-Dconfiguration id=name syntax, and then including this property in the output
variables. Thus, to run our experiment, we will need the following two commands,
one for branch coverage, one for the default combination:

$EVOSUITE -Dconfiguration_id=Default \

-prefix tutorial -Doutput_variables=configuration_id,\

TARGET_CLASS,criterion,Size,Length,MutationScore

$EVOSUITE -Dconfiguration_id=Branch -criterion branch \

-prefix tutorial -Doutput_variables=configuration_id,\

TARGET_CLASS,criterion,Size,Length,MutationScore

This will result in something like the following in statistics.csv:

configuration_id,TARGET_CLASS,criterion,Size,Length,MutationScore

Default,tutorial.ATM,[...],14,109,0.3611111111111111

Default,tutorial.ATMCard,[...],13,65,1.0

Default,tutorial.Bank,[...],6,22,0.8

Default,tutorial.BankAccount,[...],8,24,1.0

Default,tutorial.Owner,[...],1,1,1.0

Default,tutorial.CurrentAccount,[...],4,12,0.7608695652173914

Default,tutorial.SavingsAccount,[...],4,12,0.8823529411764706

Default,tutorial.Company,[...],3,6,1.0

Default,tutorial.Person,[...],6,12,1.0

Branch,tutorial.ATM,BRANCH,10,77,0.4166666666666667

Branch,tutorial.ATMCard,BRANCH,8,40,1.0

Branch,tutorial.Bank,BRANCH,4,15,0.8

Branch,tutorial.BankAccount,BRANCH,2,6,0.8

Branch,tutorial.Owner,BRANCH,1,1,1.0

Branch,tutorial.CurrentAccount,BRANCH,2,7,0.6739130434782609

Branch,tutorial.SavingsAccount,BRANCH,3,8,0.6470588235294118

Branch,tutorial.Company,BRANCH,1,2,1.0

Branch,tutorial.Person,BRANCH,2,4,0.0

(In this example, we replaced the list of criteria (LINE;BRANCH;...) with [...]

to make it fit into this article.)

Just by eyeballing the results, we can see that the default configuration leads
to more tests in all classes except tutorial.Owner. Your specific data will look dif-
ferent – in the data down above, the mutation score is higher for tutorial.Person,
tutorial.SavingsAccount, tutorial.CurrentAccount, but surprisingly, lower for
tutorial.ATM. How can that be the case? Recall that EvoSuite is randomized
— sometimes test generation will be lucky to hit a specific value that is good
at killing some mutants, sometimes it isn’t. What we need to establish, then, is
not whether one configuration is better than the other in one particular run, but
on average. Thus, we need to repeat our experiment several times, and do some
more rigorous analysis.

A simple way to do the repetitions would be to simply wrap the call in a
bash-loop to run it, for example, 5 times:

for I in {1..5}; do $EVOSUITE -Dconfiguration_id=Default [...] ; done

for I in {1..5}; do $EVOSUITE -Dconfiguration_id=Branch [...] ; done

This is going to take quite a while. In fact, 5 repetitions is not even a suitably
large number for serious experiments, ideally you’d want 30 repetitions or more
to get representative results.

4.5 Analyzing results

Now we have some data – from at least one run, and if you were patient enough,
maybe from 5 or more additional runs. What are we going to do with that data?
The best thing to do now is to use statistical analysis package to process and
analyze the data. For example, using Python’s Matplotlib5 we can produce the
boxplots shown in Figure 5. Besides visualizing the data, you will also need to
statistically analyze it [1]. If we consider the data of our experiment, you will
find that, with statistical significance, we can say that test suites generated for
branch coverage have different sizes, numbers of statements, and mutation scores
than those generated for the default criteria. The effect size tells us that for all
three of these properties there is a medium increase when using the default
configuration over the branch configuration. So all in all, it sounds like a good
idea to use the default configuration! (After all, that is why it is the default
configuration...)

4.6 Other useful variables

To get a full overview of the available output variables, the best place is cur-
rently the source code, in particular the file RuntimeVariable.java in the client

module (package org.evosuite.statistics). For example, if you want to know
how certain values evolved over time, there are timeline variables that capture
this data for you. Assume we would like to see how branch coverage evolves over
the first 30 seconds of the search, and we want to sample once every second.

5 https://matplotlib.org/

Branch Default

2

4

6

8

10

12

14

16

Size

(a) Number of Tests

Branch Default
0

20

40

60

80

100

120

Length

(b) Number of Statements

Branch Default
0.0

0.2

0.4

0.6

0.8

1.0
MutationScore

(c) Mutation Score

Fig. 5. Analysis of the results on the branch coverage vs. default criteria comparison.

To do this, we would add an output variable CoverageTimeline, and specify the
sampling interval using -Dtimeline interval=1000:

$EVOSUITE -class tutorial.ATM -criterion branch \

-Doutput_variables=TARGET_CLASS,BranchCoverage,CoverageTimeline \

-Dtimeline_interval=1000 -Dsearch_budget=30

As we specified a time budget of 30 seconds in total (-Dsearch budget=30), the
statistics.csv file will now have 30 columns labeled CoverageTimeline T1 up to
CoverageTimeline T30, with the individual values for each second of the search.

As another interesting example, the BranchCoverageBitString variable will
produce a string of 0 and 1 digits, where each digit represents one branch in the
program, and 1 indicates that the branch was covered. This bitstring allows us
to compare whether specific branches were covered by specific configurations.

5 Conclusions

In this tutorial, we covered basic usage of EvoSuite on the command-line, some
simple changes to EvoSuite’s source code, and some basic experiments. If you
want to learn more about EvoSuite, here are some pointers:

– http://www.evosuite.org: The main EvoSuite website contains many pa-
pers related to EvoSuite, experimental data to reproduce past experiments,
and documentation. The documentation includes a more elaborate version

of this tutorial, and instructions on how to use the different plugins (e.g.,
Maven).

– https://github.com/EvoSuite/evosuite: EvoSuite is open source, licensed
with the GNU Lesser General Public License version 3. The source code
repository is on GitHub, as is an issue tracker. Since EvoSuite is an open
source project, its continued maintenance depends on contributions. If you
produce work or improvements to EvoSuite, please do consider to feed them
back to the project!

Acknowledgements

This work is supported by EPSRC project EP/N023978/2.

References

1. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. Software Testing, Verification and
Reliability (STVR) 24(3) (2012)

2. Arcuri, A., Campos, J., Fraser, G.: Unit test generation during software develop-
ment: EvoSuite plugins for Maven, IntelliJ and Jenkins. In: IEEE International
Conference on Software Testing, Verification, and Validation (ICST) (2016)

3. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investiga-
tion in search-based software engineering. Empirical Software Engineering (EMSE)
18(3), 594–623 (2013)

4. Arcuri, A., Fraser, G., Galeotti, J.P.: Automated unit test generation for classes
with environment dependencies. In: ACM/IEEE International Conference on Au-
tomated Software Engineering (ASE). pp. 79–90. ACM (2014)

5. Arcuri, A., Fraser, G., Galeotti, J.P.: Generating TCP/UDP Network Data for
Automated Unit Test Generation. In: ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (FSE). pp. 155–165 (2015)

6. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software
Engineering (TSE) 39(2) (2013)

7. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test genera-
tion using EvoSuite. ACM Transactions on Software Engineering and Methodology
(TOSEM) 24(2) (2014)

8. Fraser, G., Arcuri, A.: Achieving scalable mutation-based generation of whole test
suites. Empirical Software Engineering 20(3), 783–812 (2015)

9. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: IEEE International Conference on Soft-
ware Testing, Verification and Validation (ICST). pp. 1–10. IEEE (2015)

10. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple
coverage criteria in search-based unit test generation. In: International Symposium
on Search Based Software Engineering. pp. 93–108. Springer (2015)

11. Rojas, J.M., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit test
generation. Software Testing, Verification and Reliability 26(5), 366–401 (2016)

