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Research on software testing produces many innovative automated techniques, but because software testing is
by necessity incomplete and approximate, any new technique faces the challenge of an empirical assessment.
In the past, we have demonstrated scientific advance in automated unit test generation with the EVOSUITE
tool by evaluating it on manually selected open source projects or examples that represent a particular
problem addressed by the underlying technique. However, demonstrating scientific advance is not necessarily
the same as demonstrating practical value: Even if EVOSUITE worked well on the software projects we
selected for evaluation, it might not scale up to the complexity of real systems. Ideally, one would use large
“real-world” software systems to minimize the threats to external validity when evaluating research tools.
However, neither choosing such software systems nor applying research prototypes to them are trivial tasks.

In this paper we present the results of a large experiment in unit test generation using the EVOSUITE
tool on 100 randomly chosen open source projects, the 10 most popular open source projects according to
the SourceForge website, 7 industrial projects, and 11 automatically generated software projects. The study
confirms that EVOSUITE can achieve good levels of branch coverage (on average 71% per class) in practice.
However, the study also exemplifies how the choice of software systems for an empirical study can influence
the results of the experiments, which can serve to inform researchers to make more conscious choices in the
selection of software system subjects. Furthermore, our experiments demonstrate how practical limitations
interfere with scientific advances: Branch coverage on an unbiased sample is affected by predominant
environmental dependencies. The surprisingly large effect of such practical engineering problems in unit
testing will hopefully lead to a larger appreciation of work in this area, thus supporting transfer of knowledge
from software testing research to practice.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging

General Terms: Experimentation, Reliability

Additional Key Words and Phrases: Unit testing, automated test generation, branch coverage, empirical
software engineering, JUnit, Java, benchmark

1. INTRODUCTION
Software testing is an essential yet expensive activity in software development, there-
fore much research effort has been put into automating as many aspects as possible,
including test generation. For “simple” test generation techniques such as random
testing, it is possible to provide rigorous answers based on theoretical analyses (e.g.,
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see [Arcuri et al. 2012]). For more complex techniques where mathematical proofs
become infeasible or too hard, researchers have to rely on empirical analyses. There
are several challenges when carrying out empirical studies. To demonstrate that a new
technique improves over the state of the art in research often a handful of examples
representing the targeted problem domain are sufficient. Yet, if a technique works well
in the lab on a specific software system, will it also work well when it is applied on
other software developed by practitioners?

In the past, we have demonstrated that the EVOSUITE unit test generation
tool [Fraser and Arcuri 2011b; Fraser and Arcuri 2013c] can automatically produce test
suites with high code coverage for Java classes. As EVOSUITE only requires compilable
source code, we were able to select software from some of the many open source projects
in freely accessible repositories (e.g., SourceForge1 or Google Code2). In principle, the
possibility to use abundantly available open source software can serve to strengthen an
evaluation, as evaluating a test generation technique for a specific formalism would
restrict the choice to examples of that formalism (which often equates to a choice from
what has been used in the literature of that domain previously). Similarly, obtaining
real data from industry is a very difficult and time consuming activity. However, even
when using open source projects for experimentation, there remain unavoidable threats
to the external validity of these experiments: How well do our results generalize to
other programs than the ones chosen by us? Was our selection large enough? Even
when the selection of employed software systems is large and variegated, certain classes
of problems might not be present. For example, if a proposed testing technique does
not support file system I/O, then that kind of software might have been excluded from
the empirical study. Thus, was our selection unconsciously biased? How well does
EVOSUITE actually work?

To shed light on these questions, in this paper we present an empirical study where
we aimed to minimize the threats to external validity by making the choice of the
employed artifacts statistically as sound as possible. We randomly selected 100 Java
projects from SourceForge, a well established open source repository. As SourceForge
is home to many old and stale software projects, we further considered the 10 most
popular Java applications, which have been recently downloaded and used by millions
of users. The resulting SF110 corpus of classes is not only large (110 projects, 23,886
classes, more than 800 thousand bytecode level branches and 6.6 millions of lines of
code): The main virtue of this corpus is that, because it is randomly selected from an
open source repository, the proportions of kinds of software (e.g., numerical applica-
tions and video games) are statistically representative for open source software. To
provide further insight on how the choice of software artifacts influences experimental
results and the conclusions one can draw from them, we also performed experiments
on seven industrial systems (totaling 4,208 classes) and 11 automatically generated
software projects [Park et al. 2012] (totaling 1,392 classes) in addition to SF110. Indeed,
providing new empirical results on different types of software contributes to improve
generalizability of our past findings on EVOSUITE, and it is common practice in many
domains (e.g., [Koru et al. 2010; Koru et al. 2007]).

The results of our empirical analysis confirm that, as demonstrated by previous
empirical studies, EVOSUITE can indeed achieve high branch coverage — but only
on certain types of classes. In practice, dependencies on the environment (e.g., files,
network, databases) seem to inhibit high branch coverage, a point in case that experi-
mental results can diverge depending on whether the aim is to show scientific advance
or practical relevance. In fact, even more so than potentially leading to threats to

1http://sourceforge.net/, accessed June 2014.
2http://code.google.com/, accessed June 2014.



(a) Generating tests (b) Resulting tests

Fig. 1: Test generation in Eclipse works on the click of a button, and generated tests are
compatible with third party tools such as coverage analysers.

external validity of experiments, environmental interactions may be a practical threat
to the execution environment when applying test generation tools to unknown software:
As we learned through directories cluttered with randomly named files after experi-
ments, randomly disappearing project files, and an unfortunate episode where one of
the authors lost the entire contents of his home directory, applying test generation tools
to unknown software can lead to interactions with the environment in unpredictable
ways. To ensure that this does not happen (again), EVOSUITE uses a sandbox where
potentially unsafe operations (e.g., class methods that take as input the name of a
file to delete) are caught and properly taken care of. This allows us to measure the
effect of such environmental interactions on the aim of the test generation tools. To
show that environmental interactions are not a problem that applies only to EVOSUITE,
we validated our findings using Randoop [Pacheco et al. 2007], a popular random test
generation tool for Java.

Besides the insights on practically relevant problems, we can use our experimental
results to investigate and discuss the effects of the choice of software artifacts, and
quantify how size and bias can skew results. Although there is no golden rule on how to
design the perfect empirical study, we hope our experiments will inspire researchers to
more conscious choices in empirical study design in unit testing research and beyond,
and will help researchers put experimental results into context. To this purpose, we
provide our selection of 110 SourceForge projects as a benchmark to the community.

This paper is organized as follows: We start with a brief description of EVOSUITE and
its treatment of environmental dependencies in terms of a custom security manager
in Section 2. Section 3 describes the experimental setup and the results of these
experiments in detail. Finally, Section 4 reflects on the insights on our attempts to
reduce the threats to external validity, and implications for the choice of software
artifacts for experiments.

2. THE EVOSUITE UNIT TEST GENERATION TOOL
EVOSUITE [Fraser and Arcuri 2011b; Fraser and Arcuri 2013c] automatically generates
test suites for Java classes, targeting branch coverage and other coverage criteria (e.g.,
mutation testing [Fraser and Arcuri 2014]). EVOSUITE works at the Java bytecode
level, i.e., it does not require source code. It is fully automated and requires no manually
written test drivers or parameterized unit tests. For example, when EVOSUITE is used



from its Eclipse plugin (see Figure 1), a user just needs to select a class, and tests are
generated with a mouse-click.

EVOSUITE uses an evolutionary approach to derive these test suites: A genetic
algorithm evolves candidate individuals (chromosomes) using operators inspired by
natural evolution (e.g., selection, crossover and mutation), such that iteratively better
solutions with respect to the optimization target (e.g., branch coverage) are produced.
For details on this test generation approach we refer to [Fraser and Arcuri 2013c]. To
improve performance further, we are investigating several extensions to EVOSUITE.
For example, EVOSUITE can employ dynamic symbolic execution to handle the cases in
which evolutionary techniques may struggle [Galeotti et al. 2013]. Recent comparisons
as part of the unit testing tool competition [Bauersfeld et al. 2013; Fraser and Arcuri
2013a] in which EVOSUITE came first suggest that EVOSUITE can be considered on
par with the state of the art in testing Java classes.

One particular advantage of EVOSUITE in the scope of the experiments described in
this paper is that EVOSUITE only requires the bytecode of the class under test (CUT),
and the jar files of all the libraries it depends on should also be on the classpath.
Running large experiments can be done conveniently through EVOSUITE’s command
line interface, and EVOSUITE automatically determines dependencies, and generates a
JUnit test suite for each CUT. This level of automation was important for our experi-
ments, as it allowed us to apply the tool to new software projects out of the box, without
any necessary manual adaptation.

As the generated unit tests are meant for human consumption, EVOSUITE applies
various post-processing steps to improve readability (e.g., minimising) and adds test
assertions that capture the current behavior of the tested classes. To select the most
effective assertions, EVOSUITE uses mutation analysis [Fraser and Zeller 2012]. For
more details on the tool and its abilities we refer to [Fraser and Arcuri 2011b], and for
more implementation details we refer to [Fraser and Arcuri 2013b].

2.1. The Java Security Manager
Most unit test generation techniques require executing code. If this code interacts
with its environment, then not only may achieving high branch coverage be difficult,
but also unexpected or undesirable side-effects might occur. For example, the code
might access the filesystem or network, causing damage to data or affecting other
users on the network. To overcome this problem, EVOSUITE provides its own custom
security manager: The Java language is designed with a permission system, such that
potentially undesired actions first ask a security manager for permission. EVOSUITE
uses its own security manager that can be activated to restrict test execution. It is also
important to find out to what extent these unsafe operations are a problem for test
generation. Consequently, we kept track of which kinds of permissions were requested
from the code under test.

One of the original applications of the Java language was the development of “applets”,
i.e., programs included on web pages and run inside the browser. In this case, a security
manager is of paramount importance, otherwise malicious websites could host applets
that are developed on purpose for example to take control/damage the user’s computer,
steal confidential information, etc. The need of a security manager in automated test
data generation is different from the case of Java applets. For example, when testing
one’s own code, a software engineer does not really need to be afraid of his code “stealing”
information. Furthermore, crashing the testing tool (e.g., the CUT starting to “stop”
all the threads in the running JVM) is of less concern if the alternative is to have a
restrictive security manager that would prevent generating any test data for the given
CUT. At the end of the day, what really matters are the side-effects outside the JVM,
such as deleting files, sending messages on a network, etc. Note that besides safety



considerations, allowing tests to affect the environment would also create possible
dependencies between tests, and may cause generated tests to fail when executed
outside the test generation environment.

In our previous experiments in the conference version of this paper [Fraser and Arcuri
2012], no permissions were granted, except for three permissions which we determined
necessary to run most code in the first place in our earlier experiments [Fraser and
Arcuri 2013c]: (1) Reading from properties, (2) Loading classes, and (3) Reflection.
Except for these permissions, all other permissions were denied. As discussed above,
this might be overly strict. For the experiments in this paper, we first analyzed all
possible permissions that can be requested during the execution of the CUT. For each
permission, we decided whether (1) it was safe enough to grant it, (2) we should deny it
straight away (a clear example is deleting files), or (3) grant it but apply some techniques
to “re-set” the environment after a test case is executed.

All permissions in Java extend the class java.security.Permission, which has at
least 25 derived concrete subclasses. Each permission can have a name and an action.
For example, for the permission class FilePermission, actions are read, write, exe-
cute and delete, whereas the name represents the path of the file the permission is
asked for. On the other hand, a permission such as RuntimePermission has no action,
but at least 27 different “names” representing permissions such as accessing environ-
ment variables (i.e., getenv) and modifying running threads (e.g., modifyThread and
modifyThreadGroup).

Beside the permissions in the Java API, the CUT itself (and its third-party libraries)
could define and use its own custom permissions. This is achieved by extending the class
java.security.Permission, and then calling the method checkPermission(Permission
perm) on the security manager whenever such permissions need to be checked. Custom
permissions are not very common, but they did indeed appear in the software systems
used in this paper.

Table I shows all the permissions we decided to grant in EVOSUITE. Choosing which
permissions to grant and which to deny requires informed judgment, which forced us
to study all those permissions in detail. There is a tradeoff between security and test
effectiveness, and granting a permission always incurs some risks. As a rule of thumb,
we tended to allow “reading” operations, but checked in detail the ones that would
result in modifying the state (both of the JVM and its environment).

Among the permissions granted in Table I, the action write in PropertyPermission
is treated slightly specially: We allowed the CUTs to modify all properties except for a
fixed set of system properties (e.g., java.vm) defined in the Java API documentation3.

Here, we provide explanations on why we decided to deny some of the Java permis-
sions during test case generation. We do not claim that these decisions are optimal, and
it might well be that in some cases we have been overprotective, denying permissions
that might not be harmful after all. In some cases, we denied permissions just because
we did not fully understand their implications and they were so rare that it did not
warrant more investigation at that time.

If our security manager is called on a security permission that the manager is not
aware of (e.g., we did not know about the existence of that permission, or EVOSUITE
is called on a new version of Java that we do not support yet), that permission will be
denied, but only if it is in the java* package. The reason is that, on one hand, we do
want to deny permissions for which we could not verify whether they are harmful or not.
On the other hand, we need to allow user’s defined permissions, as those are harmless.
Checking for the java* package is a possible way to distinguish among those two cases.

In the following, we discuss all permissions in detail:

3http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#getProperties(), accessed March 2014



Table I: List of security permissions that we granted for the experiments reported in
this paper.

Class Allowed Operations/Actions

CUT permissions All
java.lang.RuntimePermission accessClassInPackage*, accessDeclaredMembers, charset-

Provider, createClassLoader, defineClassInPackage*, getClass-
Loader, getenv.*, getFileSystemAttributes, getProtectionDo-
main, getStackTrace, loadLibrary.awt, loadLibrary.cmm, load-
Library.fontmanager, loadLibrary.instrument, loadLibrary.laf,
loadLibrary.lcms, loadLibrary.j2pkcs11, loadLibrary.jawt, load-
Library.jaybird, loadLibrary.jpeg, loadLibrary.kcms, loadLi-
brary.management, loadLibrary.net, loadLibrary.nio, loadLi-
brary.sunec, loadLibrary.t2k, loadLibrary.*libmawt.so, load-
Library.*liblwawt.dylib, modifyThread, modifyThreadGroup,
readFileDescriptor, reflectionFactoryAccess, selectorProvider,
setContextClassLoader, setDefaultUncaughtExceptionHandler,
setFactory, setIO, stopThread

java.security.SecurityPermission getDomainCombiner, getPolicy, printIdentity, getProperty.*,
putProviderProperty.*, getSignerPrivateKey

java.awt.AWTPermission All, but only if property java.awt.headless is defined
java.lang.management.ManagementPermission monitor
javax.net.ssl.SSLPermission getSSLSessionContext
java.io.FilePermission read
java.io.SerializablePermission All
java.lang.reflect.ReflectPermission All
java.net.NetPermission All
javax.security.auth.kerberos.ServicePermission All
javax.security.auth.PrivateCredentialPermission All
javax.sound.sampled.AudioPermission All
java.util.logging.LoggingPermission All
java.util.PropertyPermission All
javax.management.MBeanPermission All
javax.management.MBeanServerPermission All
javax.management.MBeanTrustPermission All
javax.management.remote.SubjectDelegationPermission All

— java.security.AllPermission is obviously denied, as it implies all the other per-
missions.

— All java.net.SocketPermissions are strictly denied. Our industrial partners were
particularly worried about this kind of permission, as having unpredictable TCP/UDP
activity on a corporate network was simply out of question. Furthermore, there are
potential hazards if the tested software interacts with physical hardware over the
network (e.g., a GUI application used to monitor a set of physical sensors/actuators),
and if the developing machine of the engineers using EVOSUITE is on the same
network (as it was the case with our industrial collaborators). Similarly, we denied
javax.xml.ws.WebServicePermission and writing operations (setHostnameVerifier
and setDefaultSSLContext) in javax.net.ssl.SSLPermission.

— javax.security.auth.AuthPermission, javax.security.auth.kerberos.DelegationPermission
and java.security.UnresolvedPermission are cases of rare permissions we did not
fully analyze, and so we deny them by default.

— For java.lang.management.ManagementPermission, we denied the action control,
as it modifies properties of the running JVM.

— java.sql.SQLPermission writing actions are denied. Reading permissions could be
granted in theory, but because EVOSUITE works at the unit level, relying on external
processes like a database for unit tests would be unreliable, so we decided to deny
that whole class of permissions.

— Writing actions in java.security.SecurityPermission were denied. This includes:
createAccessControlContext, setPolicy, createPolicy.*, setProperty.*, insert-
Provider.*, removeProvider.*, setSystemScope, setIdentityPublicKey, setIden-
tityInfo, addIdentityCertificate, removeIdentityCertificate, clearProvider-
Properties.*, removeProviderProperty.* and setSignerKeyPair. However, we had



to grant putProviderProperty.*, as it is needed for some common Java API func-
tionalities, albeit we do not know for sure if it has negative side-effects.

— java.awt.AWTPermissions were denied, unless EVOSUITE is run in headless mode
(which is its default configuration). In headless mode, many GUI components needing
the screen or mouse/keyboard interactions will just throw an exception, so there
should not be any particular risk.

— java.io.FilePermission is among the most dangerous permissions to grant. All
its actions but read were denied (in particular after we experienced loss of parts of
our files). Technically, though, even a read action could be harmful. On operating
systems like Windows where file reading operations put locks on those files, there
can be potential for interferences with other processes running on the same machine
that try to manipulate those same files. However, this problem does not occur on
operating systems like OS X and Linux. There is one exception: we allowed the
write action on the folder “$USER DIR/.java/fonts”. This is needed as many GUI
classes do have a write operation on such folder during their loading (i.e., in their
static initializer), which in normal conditions is always executed because inside a
AccessController.doPrivileged block.

— java.lang.RuntimePermission has several types of actions. setSecurityManager
and createSecurityManager were denied because they can modify the installed
security manager, e.g., by disabling it. exitVM was denied as it would kill the JVM,
and so EVOSUITE would just crash without generating any unit tests. shutdownHooks
was denied, as threads executed at the exit of the JVM would not be part of what
unit tests can handle. In principle, there could also be issues when thousands of
generated test cases during the search register new shutdown hook threads, as all
theses threads would be executed in parallel before the JVM quits. Because there is a
limit to the number of threads that can be created on the same machine, there could
be interferences with other processes running on the same machine and that try
to spawn new threads as well. writeFileDescriptor was denied, as it is related to
the manipulation of files and network sockets. queuePrintJob could lead to printing
documents if a printer is connected, which is clearly not a desirable effect for a unit
test generation tool. preferences can lead to changes on the file disk, and so was
denied. loadLibrary.* was denied but for some known libraries shipped with the
JVM and used in some specific classes. This action is particularly tricky, as it is loads
native code (e.g., a compiled C library). Native code would be executed outside of the
security manager, and so it is highly risky (e.g., it can delete files).

3. A LARGE EMPIRICAL STUDY WITH EVOSUITE
The performance of test generation tools is commonly evaluated in terms of the achieved
code coverage (e.g., statement or branch coverage). High code coverage by itself is not
sufficient in order to find defects as there are further major obstacles, most prominently
the oracle problem: Except for special kinds of defects, such as program crashes or
undeclared exceptions, the tester has to provide an oracle that decides whether a
given test run detected an error or not. This oracle could be anything from a formal
specification, test assertions, up to manual assessment. The oracle problem entails
further problems; for example, in order to be able to come up with a test assertion a
generated test case needs to be understandable and preferably short. However, in all
cases a prerequisite to the oracle problem is to find an input that takes the program
to a desired state. Therefore, in our experiments we compare the results in terms of
the achieved code coverage. In particular, we focus on branch coverage. EVOSUITE
measures branch coverage at the bytecode level, where complex branching conditions
are compiled to several atomic conditions; each of these needs to evaluate to true and to
false (see [Li et al. 2013] for a detailed discussion of bytecode level branch coverage). In



Table II: Top 10 most popular projects on SourceForge, October 2012. The table reports
how many million times a project was downloaded, and since when the project has been
hosted.

Rank Name Downloads Creation Date Brief Description

1 netweaver 11.3M 2010-04-29 Eclipse server adapter for the SAP
NetWeaver Application Server Java.

2 squirrel-sql 5.1M 2001-05-31 Graphical SQL client to view the structure
of a JDBC compliant database.

3 sweethome3d 30.9M 2005-11-07 Interior design application to draw the 2D
plan of a house and view the results in 3D.

4 vuze 535.1M 2003-06-24 P2P file sharing client using the bittorrent
protocol.

5 freemind 15.9M 2000-06-18 A mind mapper and hierarchical editor
with strong emphasis on folding.

6 checkstyle 11.2M 2003-05-03 Eclipse plug-in that provides feedback to
the user about violations of coding style
rules.

7 weka 3.4M 2000-04-27 Collection of machine learning algorithms
for solving data mining problems.

8 liferay 6.8M 2002-03-18 Enterprise portal framework, offering Web
publishing, content management, etc.

9 pdfsam 5.3M 2006-02-15 Tool to merge and split pdf documents.
10 firebird 12.0M 2000-07-30 A multi-platform relational database man-

agement system supporting ANSI SQL.

order to consider all edges in the control flow graph as coverable items, any methods
with no branching statements also need to be covered. We do not currently consider
exceptional control flow edges.

Furthermore, as discussed, executing unknown code can be unsafe, and environmen-
tal interactions may interfere with the traditional goal of code coverage. To this extent,
we analyze environmental dependencies and interactions during these experiments.
Based on these measurements, we aim to answer the following research questions:

RQ1: What is the probability distribution of achievable branch coverage with EVO-
SUITE on open source software?

RQ2: Is the branch coverage achieved by EVOSUITE affected by environmental
dependencies?

RQ3: Do the findings based on EVOSUITE generalize to other testing tools?
RQ4: What are the differences between a random choice and choosing the most

popular software for an empirical study using EVOSUITE?
RQ5: How do unit testing results for EVOSUITE differ between SF110 and industrial

software?
RQ6: How do unit testing results for EVOSUITE differ between SF110 and automat-

ically generated software?
RQ7: How does the class and project size affect the difficulty of unit testing a class

with EVOSUITE?

3.1. Artifact Selection
3.1.1. Open Source Software. To select an unbiased sample of Java software, we consider

the SourceForge open source development platform. SourceForge provides infrastruc-
ture for open source developers, ranging from source code repositories, webspace, dis-
cussion forums, to bug tracking systems. There are other similar services on the web,
for example Google Code, GitHub, or Assembla. We chose SourceForge because it has a
long history and for a long time it was the dominant site of this type.



We based our selection on a dataset of all projects tagged as being written in the Java
programming language, collected using a web crawler. In total there were 48,109 such
projects at the time of our experiment, and applying EVOSUITE to all of them would not
be possible in reasonable time. Therefore, we sampled the dataset, picking one randomly
chosen project out of this data set at a time. For each chosen project we downloaded
the most recent sources from the corresponding source repository and tried to build
the program. It turned out that many projects on SourceForge have no files (i.e., they
were created but then no files were ever added). A small number of projects was also
misclassified by their developers as Java projects although in fact they were written in
a different programming language. Finally, sometimes they were too old and relying on
particular Java APIs that are no longer available. In total, we therefore had to randomly
sample 321 projects until we had a set of 100 projects in binary format.4 This selection
leads to an experiment that is sound in the narrow context of SourceForge-hosted open
source software, because the projects that are subject of the experiment are chosen in
an unbiased way: a well defined methodology was employed to select those subjects,
rather than manually selecting them.

One might argue that projects randomly sampled from SourceForge may include
projects that are never used, poorly designed and implemented, and projects developed
by students or non-professionals. Although we would counter that non-professional
developers might particularly benefit from automated test generation, we take this
potential criticism into account and also consider the 10 most popular Java programs
on SourceForge as follows: When searching for programs on SourceForge, there is also
the option to sort them by recent popularity5. Our sampling was done on the 12th of
October 2012 and, as such, at the time of reading this paper that popularity ranking
might have changed. Table II shows details of these 10 projects. Not surprisingly, these
projects have been downloaded millions of times, by people from all around the world.
Choosing the 10 most popular Java programs was a biased selection, as we deliberately
aimed at including in our empirical study programs that matter for the final users,
regardless of their size and complexity. This is a way to address the possible limitations
of only sampling programs at random.

We call this combination of 100 plus 10 projects the SF110 corpus of classes. Table III
shows several statistics per each of these 110 projects (e.g., the number of classes and
branches). Table IV summarizes those statistics on all 110 projects. When we only refer
to the 100 projects selected at random, we use the term Rand100, whereas the top most
popular projects are labeled Top10.

Table V presents the summarized statistics (e.g, mean and standard deviation) for
the entire SF110 corpus, as well as for the subsets Rand100 and Top10. These numbers
were derived using EVOSUITE, which only lists top-level classes; EVOSUITE attempts
to cover member or anonymous classes together with their parent classes. Furthermore,
EVOSUITE might exclude certain classes it determines that it cannot handle, such
as non-public classes. In total, there are 23,886 classes and more than 800 thousand
bytecode branches reported by EVOSUITE in the SF110 corpus. Both in terms of the
number of classes and branches, what stands out is the large variation in the data;
e.g., the number of classes in a project ranges from 1 to 6,984, and the number of
branches in a class ranges from 0 to 12,879. Furthermore, these distributions present
infrequent extreme deviations, which is represented by high kurtosis values, and are

4The details of this selection process and the code of those projects are available online at
http://www.evosuite.org/SF110
5Note that there could be other ways to choose these 10 projects. For example, set a threshold for minimum
number of downloads, or minimum number of ratings, and select randomly from all the projects that achieved
the threshold. As we had to make a choice, we took the one that looked the least biased in our opinion.



Table III: Details of the SF110 corpus. For each project, we report how many testable
classes it is composed of, the total number of bytecode branches, the number of .java
source code files and lines of code (LOC) in them. We also report the number of non-
commenting source statements (NCSS) and the average cyclomatic complexity number
(McCabe metric) per method, using the JavaNCSS tool (version 32.53). We also report
the total number of third-party jar libraries each project uses.

Name # Testable Classes # Branches # Java Files LOCs NCSS Avg. CCN # Jar Files

liferay 6,984 321,443 8,345 2,878,331 922,463 1.73 305
ifx-framework 3,900 26,486 4,027 378,315 71,626 1.01 4
vuze 2,331 108,961 3,304 822,100 322,411 2.67 7
squirrel-sql 934 23,407 1,151 213,498 76,815 2.00 49
weka 888 61,269 1,031 462,994 179,139 3.05 4
caloriecount 596 12,197 684 103,582 37,413 1.74 3
openjms 542 18,266 624 132,586 40,511 2.80 25
summa 512 16,543 584 119,963 47,866 3.03 106
freemind 422 13,298 468 100,237 45,120 2.15 46
jcvi-javacommon 396 7,434 619 89,198 30,472 1.97 0
noen 382 4,029 408 36,566 14,155 1.74 142
pdfsam 348 8,140 369 66,383 27,746 2.66 30
corina 334 7,733 349 78,144 33,034 2.54 32
lilith 270 7,288 295 60,064 28,689 2.35 66
firebird 210 13,212 258 76,886 30,277 2.76 15
at-robots2-j 197 2,046 231 13,278 6,877 1.41 1
jsecurity 197 4,182 298 34,673 9,470 2.05 38
netweaver 187 7,256 204 38,016 17,953 2.82 61
xbus 181 4,645 203 38,816 13,294 3.50 38
jiggler 175 6,699 184 40,462 16,403 2.85 2
heal 170 6,132 184 32,983 16,982 2.82 29
sweethome3d 164 13,640 185 96,728 47,233 2.63 19
checkstyle 154 2,336 169 36,795 12,548 2.44 30
dom4j 146 5,597 173 42,198 12,980 1.87 11
hft-bomberman 126 1,954 135 14,468 6,474 1.87 29
quickserver 124 4,953 152 26,675 12,880 2.66 8
jdbacl 112 5,668 126 28,618 13,296 2.50 25
gangup 103 2,527 95 20,629 8,498 2.22 8
jiprof 103 5,683 113 26,296 10,473 3.76 5
lhamacaw 99 2,937 108 36,300 14,801 2.23 1
wheelwebtool 99 6,968 113 29,761 12,787 3.40 8
db-everywhere 97 2,099 104 11,079 5,686 2.54 36
twfbplayer 86 1,572 104 14,642 5,559 1.72 2
echodep 82 3,323 81 26,708 10,381 4.87 37
openhre 82 2,471 135 17,676 6,550 1.88 33
lagoon 79 2,512 81 17,415 6,060 3.52 18
objectexplorer 78 1,557 88 12,534 5,199 1.69 3
beanbin 76 996 88 4,784 2,878 2.13 34
schemaspy 71 3,407 72 16,157 7,987 3.09 0
fim1 69 2,042 70 13,713 8,273 2.21 1
jhandballmoves 69 1,455 73 8,553 4,005 2.32 2
nutzenportfolio 60 1,832 84 14,794 6,052 1.67 30
follow 58 633 60 7,634 3,003 1.79 0
jwbf 57 1,288 69 10,970 4,094 2.33 18
geo-google 56 892 62 20,974 3,941 1.18 11
lotus 54 226 54 1,354 681 1.94 0
petsoar 54 508 76 5,541 1,695 1.55 31
jnfe 51 289 68 5,199 1,294 1.38 60
javathena 50 2,228 53 13,927 6,194 1.84 4
gfarcegestionfa 48 760 50 5,480 2,923 2.18 4
lavalamp 48 313 54 2,123 1,039 1.50 16
water-simulator 48 736 49 9,931 5,433 2.41 6
apbsmem 47 1,269 50 9,342 3,831 2.92 3
a4j 45 954 45 6,618 2,787 1.80 2
javabullboard 44 2,295 44 13,987 5,647 2.85 34



Table III: Details of the SF110 corpus (continued).

Name # Testable Classes # Branches # Java Files LOCs NCSS Avg. CCN # Jar Files

jtailgui 43 433 44 4,053 1,409 2.01 12
ext4j 42 579 45 3,371 1,508 2.20 23
newzgrabber 39 1,367 39 6,603 4,007 3.95 0
jmca 38 10,487 25 16,891 10,610 7.57 0
xisemele 38 339 56 5,766 1,399 1.29 0
jopenchart 37 774 44 7,146 2,397 1.79 2
feudalismgame 35 1,352 36 4,355 2,653 3.34 0
mygrid 34 1,006 37 4,539 2,360 2.82 8
shop 34 1,171 34 5,348 2,741 3.80 0
bpmail 32 370 37 2,765 1,252 1.58 39
glengineer 32 996 41 5,694 2,026 2.20 0
dsachat 31 943 32 5,546 2,993 3.24 4
jaw-br 30 631 30 6,006 3,342 1.59 20
sugar 29 771 37 5,516 2,180 2.99 6
inspirento 27 510 36 5,290 1,769 1.76 2
jni-inchi 24 357 24 3,100 783 2.05 3
fixsuite 22 480 25 4,897 2,088 1.99 4
biblestudy 21 579 21 3,178 1,683 1.96 2
asphodel 19 141 24 1,358 520 1.57 6
httpanalyzer 19 327 19 4,928 2,472 2.03 9
jgaap 19 177 17 1,451 815 1.84 0
sfmis 19 268 19 1,749 941 1.56 49
templateit 19 595 19 3,315 1,542 2.82 6
tullibee 18 1,191 20 4,388 2,449 3.78 0
imsmart 17 155 20 1,407 790 1.82 65
diebierse 16 350 20 2,482 1,539 1.74 3
dash-framework 15 39 22 776 166 1.43 5
gsftp 15 553 17 3,441 1,785 2.85 2
io-project 15 160 19 2,136 485 1.70 4
javaviewcontrol 15 3,111 17 5,953 3,844 7.19 7
omjstate 14 103 23 1,628 387 1.51 12
rif 14 167 15 1,902 693 3.01 37
byuic 12 2,958 12 7,699 4,909 10.29 2
fps370 12 312 8 2,400 1,056 2.44 4
battlecry 11 663 11 3,342 2,208 3.89 0
celwars2009 11 684 11 3,654 2,052 4.09 0
saxpath 11 1,079 16 4,578 1,441 2.10 4
diffi 10 150 10 851 392 2.35 0
gaj 10 66 14 404 187 1.21 0
ipcalculator 10 448 10 4,201 2,132 2.37 0
dvd-homevideo 9 370 9 4,204 2,289 3.19 0
falselight 8 25 8 732 297 2.16 1
gae-app-manager 8 90 8 646 257 2.56 9
nekomud 8 65 10 695 270 2.13 8
resources4j 7 222 14 2,270 938 2.34 0
biff 6 831 3 2,371 1,753 12.36 0
classviewer 6 418 7 2,966 1,258 3.83 0
dcparseargs 6 100 6 387 158 3.57 0
sbmlreader2 6 87 6 1,025 400 3.43 5
trans-locator 5 66 5 454 298 1.57 0
jclo 4 133 3 602 276 2.88 0
shp2kml 4 39 4 334 196 1.72 29
jipa 3 163 3 619 304 4.59 0
greencow 1 1 1 16 4 1.00 0
templatedetails 1 18 1 513 262 1.29 15



Table IV: Summarized statistics of the whole SF110 corpus.

Property Value

Number of Projects: 110
Number of Testable Classes: 23,886
Number of Target Branches: 808,056
Number of Java Files: 27,997
Lines of Code: 6,628,619
Non-Commenting Source Statements: 2,340,843
Average Cyclomatic Complexity Number: 2.63
Number of Jar File Libraries: 1,939

Table V: For the SF110 corpus, statistical details of the number of classes per project
and number of bytecode branches per class. For median, average, skewness and kurtosis,
we also report a 95% confidence interval (CI) calculated with a 10,000 run bootstrapping.

# of Classes per Project # of Branches per Class
Statistics Rand100 Top10 All Rand100 Top10 All

Min 1 154 1 0 0 0
Median 37.5 385 43.5 7 14 10
Median CI [27.00, 48.50] [-839.50, 583.00] [32.00, 55.00] [7.00, 7.00] [13.00, 15.00] [9.00, 10.00]
Mean 112.64 1262.20 217.15 20.87 45.39 33.83
Mean CI [24.04, 167.00] [-102.80, 2183.89] [50.23, 336.34] [18.40, 22.79] [42.33, 47.91] [31.84, 35.51]
Std. Deviation 398.75 2117.86 790.56 118.85 160.81 143.09
Max 3900 6984 6984 7910 12879 12879
Skewness 8.74 2.24 6.89 53.33 44.63 47.96
Skewness CI [8.25, 15.22] [1.87, 4.20] [4.28, 10.76] [41.08, 91.46] [38.51, 80.44] [38.32, 81.51]
Kurtosis 83.09 6.63 54.55 3425.56 3286.67 3544.64
Kurtosis CI [76.42, 158.88] [5.32, 12.06] [13.03, 96.22] [1121.99, 6417.24] [2499.21, 6428.57] [1912.13, 6685.30]
Sum 11264 12622 23886 235094 572962 808056

highly skewed (skewness represents the asymmetry of a distribution between its left
and right probability tails). Notice that, in the normal distribution, skewness is equal
to zero whereas kurtosis is equal to three, regardless of the variance.

Considering the large variations shown in Table V regarding the number of classes
per project and branches per class, there is the question of whether using 110 projects
is enough to obtain reliable results. As there is large variation, one could argue that
even more projects should be used. However, there is a tradeoff between the number of
software artifacts a researcher would like to use for an empirical study and the practical
constraints (e.g., time and available hardware) of running large empirical studies. Even
if using just 110 projects is acceptable, another approach to reduce the sampling error
will be to first analyse all the Java projects in SourceForge (e.g., number of classes per
project, and number of branches per class), and then use a stratified sampling technique
(or one based on sample coverage scores like in [Nagappan et al. 2013]) instead of a
random one to select 110 projects to use for experiments. However, depending on the
factor of interest, this would be particularly time consuming, as each single project in
SourceForge would need to be manually downloaded and compiled before it is amenable
to analysis.

Another factor that could be considered when sampling from SourceForge is the age
of the projects; for example, one could select only old projects, only new projects, or a
balanced combination of different ages. For the type of research questions addressed in
this paper, we did not consider age as an extra factor to consider in the experiments,
and thus simply sampled projects independently of their age. Therefore, for future
empirical studies where the age of a project might greatly influence the performance of
an analysed technique, a new sample from SourceForge could be more appropriate than
using the SF110 corpus.



Tables III and V report data for all the classes in SF110. However, there were 781
classes in these projects for which EVOSUITE did not output any result (493 of them in
the liferay project alone). For many of these classes, the main reason is that loading
them through reflection (i.e., Class.forName) fails, as an exception is thrown during
execution of the static constructor of the class. Without being able to load the CUT, it is
practically impossible to generate any test case for it. When a class is loaded, its static
initializer is executed, but that can throw exceptions.

While debugging these exceptions in the static initializers, we found at least two
different reasons. One is if the security manager denies some permissions. In a few cases,
some static fields were initialized with method calls that led to the writing/creation of
files, which are denied by our custom security manager (Section 2.1). For example, this
happens when the static constructor of a class tries to create a log file. Such problems
could be solved once techniques to handle writing of files are developed.

The second reason is more subtle. The initialization of a static field in the CUT
could call a method on a static field in another class C that needs to be initialized first.
Loading the CUT can result in a null pointer exception if the static initializer of C
leaves its field set to null. The solution would be to first load C, call static methods
(or access its static fields directly if they are public) to set the state in a consistent
way, and then finally load the CUT, that now should not crash (i.e., Class.forName does
not throw any exception). This is a particular example, as there can be other kinds
of dependencies with other classes in the static initializer of the CUT. Unfortunately,
automatically determining the reason for such exceptions in the static initializers, and
solving them automatically before beginning to generate test cases for the CUT, is far
from trivial. This problem is complex enough to warrant dedicated research on it (which
was not possible for this paper).

Another reason, for which we obtained no data on some classes is that EVOSUITE
crashed. This can happen if the JVM runs out of memory, which may happen as we do
not have control on what the CUT might execute and allocate on the heap. EVOSUITE
has several mechanisms to prevent this problem [Fraser and Arcuri 2013b], but they
are not bullet proof (yet).

As these 781 missing classes represent only a relatively small fraction of the SF110
corpus, i.e., 781/23,886 < 3.26%, we do not believe they pose any particularly serious
threat to the validity of this study, as in any case we are still using 23,105 classes for
our analyses.

3.1.2. Industrial Software. Besides the experiments on SF110, we also carried out further
experiments on industrial systems in one of our industrial partners’ premises. One
of the authors received access to the Java projects in the department of an external
collaborator. This resulted in seven projects, totaling 4,208 classes. There were a further
three projects, which we excluded from the analyses. Two of them were excluded for the
following reason: those projects were compiled with Java 7, whereas on the engineer’s
machine only Java 6 was installed, and so their bytecode could not be loaded in the JVM
running EVOSUITE. The third project was excluded due to compilation dependencies
issues: for more than half of its classes, it was not possible to use reflection due to a
NoClassDefFoundError caused by some missing libraries in the classpath. Although we
had data for half of the remaining classes for that project we decided to exclude them
because they could skew the final, overall results.

Table VI summarizes the properties of these industrial systems. Due to confidentiality
restrictions, we can only provide minimal information on those systems. For example,
all project names have been anonymized, and we are not allowed to name our industrial
partner. Some of these systems are massive scale real-time controllers, others are data
analysis tools with GUI front-ends. Note that Table VI reports data only for 3,970



Table VI: Details of the seven industrial projects. For each project, we report how many
classes it is composed of, and the total number of bytecode branches.

Name # Classes # Branches

projectG 1,731 38,460
projectF 687 13,348
projectE 444 10,442
projectC 423 8,954
projectL 321 5,873
projectD 220 6,349
projectB 144 3,359

Total: 3,970 86,785

Table VII: Details of the artificially generated systems. For each project, we report how
many classes it is composed of, and the total number of bytecode branches.

Name # Classes # Branches

tp1m 751 758,717
sp500k 301 307,546
tp10k 101 12,744
tp80k 81 61,560
tp50k 51 31,554
tp5k 31 2,850
tp7k 31 4,045
tp2k 21 1,041
tp1k 16 659
tp300 4 177
tp600 4 341

Total: 1,392 1,181,234

classes: there were 238 classes for which EVOSUITE generated no data (5% of the total;
see above for discussion of the reasons).

3.1.3. Automatically Generated Software. Finally, in the literature there is also the idea
of applying automatically generated software systems to reduce the bias of manual
selection. In some domains (e.g., SAT solving) it seems to be standard to use gener-
ated examples; in unit test generation this is a relatively new idea, with tools like
Rugrat [Hussain et al. 2012] only recently being introduced as potential alternative
sources of software systems. Rugrat was used to produce artificial systems for the
empirical study in the paper on the Carfast [Park et al. 2012] tool, and we use the
systems from the Carfast paper6 for further experiments and comparison. Table VII
summarizes the properties of these software systems. Note that the Carfast paper
mentions a further software system with about 1k LOC, which is not included in the
archive on the website and therefore not part of our experiments.

3.2. Experiment Procedure
To answer the research questions posed in this paper, we first ran EVOSUITE on
each of the 23,886 selected empirical study objects (i.e., classes) in SF110. To account
for the randomness of the evolutionary search, we applied EVOSUITE 10 times on
each employed study object with different random seeds and then studied the resulting
probability distributions. Furthermore, we followed the guidelines in [Arcuri and Briand

6Available at: http://www.carfast.org, accessed June 2013



2012] to analyze all these data with appropriate statistical methods. In particular, we
studied several statistics like mean, median, standard deviation, skewness and kurtosis.
For all of them, confidence intervals were derived. Confidence intervals are a useful
tool to statistically verify if a null hypothesis can be rejected (i.e., if it lies within the
interval), and to compare different data sets (e.g., do their intervals overlap?).

In early experiments [Fraser and Arcuri 2013c], we applied EVOSUITE with a timeout
of 10 minutes per each of the 1,741 classes used in the empirical study. As we apply the
technique to a larger set of classes in this experiment (more than an order of magnitude
larger), and a developer might not be willing to wait for 10 minutes to see a result,
we chose a timeout of two minutes per class. This choice is based on our experience
in achieving a reasonable trade-off between time and branch coverage. The search is
ended after these two minutes, or as soon as 100% coverage was achieved.

The longer the search in EVOSUITE is left running, the better the results will be.
However, EVOSUITE also has other phases with bounded computational time, like the
building of the dependency graph of the CUT, minimization of the final test suite, and
generation of JUnit assertions. Depending on the CUT, EVOSUITE might either spend
most of its time in the search phase, but may also spend a non-negligible time in those
other phases. Therefore, to be sure that the experiments finished within a predictable
amount of time, we gave a general timeout of six minutes per class. In total, running all
these experiments on SF110 took up to (23,886× 10× 6)/(60× 24) = 995 days (recall
that, when 100% branch coverage was achieved, we stopped the search prematurely).

In all these experiments, we used EVOSUITE with its default parameter settings
(e.g., population size and crossover probability). The effects of parameter tuning on
search-based tools (e.g., EVOSUITE) has already been studied previously [Arcuri and
Fraser 2013].

For the experiments using the 1,392 classes of the Carfast evaluation, we used the
same procedure and configuration as for the experiments on open source projects, i.e.,
10 runs, each with two minutes for test generation per class. On the 4,208 classes of
the industrial systems, EVOSUITE was run only once, with the same settings as in the
other experiments on open source software. More runs were not possible, as we were
not permitted to take the bytecode of those projects and run the experiments on the
cluster of computers we have access to. The employed machine was running Windows 7,
with 12 cores (6 actual cores with hyper-threading enabled) at 3.07 GHz and 30GB of
RAM.

To answer RQ3 we used Randoop version 1.3.37, and applied it to each class with
a timeout of one minute. On each class, Randoop was called with only that particular
class specified as test class. We compiled the resulting test cases and used EVOSUITE
to measure the branch coverage for each class.

3.3. Branch Coverage Results on SF110
Figure 2 shows the distribution of the average branch coverage results per project, for
all the 110 projects in SF110. The average of the average branch coverage per project
is 67%, where the project with lowest average coverage on its classes (ipcalculator) still
has 20%. There are 30 projects for which the average branch coverage is above 80%.
Within a certain degree, the distribution of coverage values in Figure 2 bears some
resemblance to a normal distribution. Numerical statistics of these data are presented
in Table VIII (together with the data results on the other industrial and artificial
software systems). EVOSUITE on average created 3.8 tests per class, each having 8.2
statements on average (so on average 31 statements per test suite).

7https://code.google.com/p/randoop/, accessed October 2013
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Fig. 2: Proportion of projects that have an average branch coverage (averaged out of
10 runs on all their classes) within each 10% branch coverage interval. Labels show
the upper limit (inclusive). For example, the group 40% represents all the projects with
average branch coverage greater than 30% and lower than or equal to 40%.

Table VIII: For each type of experiment, we present statistics on the obtained branch
coverage. Results are grouped by class (average of its runs) and by project (average of
all runs on its classes). Confidence intervals (CI) are at 95% level, and were calculated
with bootstrapping.

Name Grouping Size Min Median CI Mean CI Std. Deviation Max Skewness Kurtosis

All 110 Class 23105 0.00 0.94 [0.93, 0.95] 0.71 [0.70, 0.71] 0.37 1.00 -0.85 2.11
Project 110 0.21 0.69 [0.66, 0.74] 0.67 [0.64, 0.71] 0.17 1.00 -0.24 2.57

Rand100 Class 11087 0.00 1.00 [1.00, 1.00] 0.78 [0.77, 0.78] 0.35 1.00 -1.26 2.98
Project 100 0.21 0.69 [0.67, 0.75] 0.68 [0.65, 0.72] 0.17 1.00 -0.32 2.65

Top10 Class 12018 0.00 0.82 [0.80, 0.83] 0.64 [0.64, 0.65] 0.38 1.00 -0.56 1.69
Project 10 0.32 0.55 [0.39, 0.61] 0.57 [0.49, 0.65] 0.14 0.77 -0.03 2.27

Industrial Class 3970 0.00 1.00 [1.00, 1.00] 0.77 [0.76, 0.78] 0.35 1.00 -1.19 2.83
Project 7 0.51 0.74 [0.62, 0.81] 0.75 [0.66, 0.86] 0.15 0.94 -0.39 2.16

CarFast Class 1392 0.66 0.79 [0.79, 0.80] 0.81 [0.80, 0.81] 0.06 1.00 1.56 5.69
Project 11 0.76 0.91 [0.88, 1.02] 0.87 [0.84, 0.91] 0.07 0.95 -0.55 1.73

EVOSUITE produces test suites per class, and each project might have some difficult
to cover and some easier to cover classes. Figure 3 therefore illustrates the distribution
of branch coverage across the classes. This shows that there is a large number of classes
which can easily be fully covered by EVOSUITE (branch coverage 90%-100%), and also
a non negligible number of classes with problems (branch coverage 0%-10%), while
the rest is evenly distributed across the 10%-90% range. Although the average branch
coverage per class is 71%, with such an extreme distribution presented in Figure 3,
it might be misleading to only look at average values when speaking about classes in
isolation.

The large number of classes with full branch coverage suggests that there are many
classes that are trivially covered by EVOSUITE. To analyze this further, Figure 4
illustrates, for each 10% branch coverage interval, the average number of branches



10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

All 110 Projects

Coverage Intervals

R
a

ti
o

 o
f 

C
la

s
s
e

s

0
.0

0
0

.1
0

0
.2

0
0

.3
0

Fig. 3: Proportion of classes that have an average branch coverage (averaged out of 10
runs) within each 10% branch coverage interval. Labels show the upper limit (inclusive).
For example, the group 40% represents all the classes with average branch coverage
greater than 30% and lower than or equal to 40%.
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Fig. 4: Average number of branches of classes within each 10% branch coverage interval.
Classes in the 90%-100% branch coverage range are the smallest, and thus potentially
“easiest” classes.



Table IX: For each type of permission exception, we report the proportion of classes in
which it is thrown at least once (first “Occurrence” column), and the average branch
coverage for those classes. We also show the proportion of projects that have at least
one class in which such an exception is thrown (second “Occurrence” column), and
the average branch coverage for those projects (including all classes in those projects,
regardless of what exceptions were thrown). Confidence intervals (CI) for the average
branch coverage values are at the 95% level, and were calculated with bootstrapping.

Type Per Class Per Project
Occurrence Mean Coverage CI Occurence Mean Coverage CI

No Exception 0.50 0.84 [0.84, 0.84] 0.055 0.83 [0.70, 1.03]
FilePermission 0.42 0.57 [0.57, 0.58] 0.95 0.66 [0.63, 0.70]
RuntimePermission 0.25 0.58 [0.58, 0.58] 0.92 0.67 [0.64, 0.70]
SocketPermission 0.30 0.51 [0.51, 0.52] 0.84 0.65 [0.62, 0.68]
SecurityPermission 0.066 0.42 [0.42, 0.43] 0.13 0.63 [0.55, 0.71]
AllPermission 0.0012 0.47 [0.44, 0.51] 0.12 0.64 [0.57, 0.70]
UnresolvedPermission 4.4e-06 0.75 [0.75, 0.75] 0.0091 0.74 [0.74, 0.74]
SQLPermission 3.1e-05 0.52 [0.48, 0.55] 0.018 0.75 [0.74, 0.76]
SSLPermission 5.7e-05 0.33 [0.20, 0.44] 0.0091 0.69 [0.69, 0.69]
AuthPermission 0.0017 0.52 [0.49, 0.55] 0.064 0.65 [0.55, 0.74]
Other Permissions 0.00099 0.45 [0.40, 0.49] 0.045 0.76 [0.64, 0.89]

of the classes within this interval. The 90%-100% interval contains on average the
smallest classes, suggesting that a large number of classes are indeed easily coverable
because they are very small. As one would expect, on average larger classes are more
difficult to test.

RQ1: On average, EVOSUITE achieves 71% branch coverage in two
minutes, but there is extreme variation between “easy” and “difficult”

to test classes.

In general, the results on SF110 are similar to the results on our past experiments;
for example, in [Fraser and Arcuri 2013c] EVOSUITE achieved 83% branch coverage on
20 hand-selected open source projects. However, what causes the 12% drop in branch
coverage? The next research question investigates the influence of environmental
dependencies on the achieved branch coverage.

3.4. Security Permission Results on SF110
In Figure 3, there is a large number of classes that apparently have problems (0%-10%
branch coverage), and the question is what causes this. A possible reason for low branch
coverage is if the tested classes try to execute unsafe code, such that the security
manager prohibits execution.

To see to what extent this is indeed the case, Table IX lists the average branch
coverage achieved for classes for each of the possible permissions that the security
manager denied during the entire search (and not just in the final test suite given
as output by EVOSUITE). Classes that raise no exceptions achieve an average branch
coverage of 84%, whereas all classes that require some permission that is not granted
have lower coverage. Consequently, interactions with the environment can be considered
a prime source of problems in achieving branch coverage. It is striking that 42% of all
classes led to a FilePermission exception that does not involve just reading — in other
words, nearly half of all classes led to attempts to manipulate the filesystem in some
way!
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Fig. 5: Ratio of EVOSUITE runs for which there was at last one denied permission.
Those ratios are grouped by 10% branch coverage intervals.

It is important to note that this I/O might not come directly from the CUT but one
of its parameters: When testing object-oriented code one needs sequences of method
calls, and as part of the evolutionary search EVOSUITE attempts to create various
different types and calls many different methods on them. This means that just the
existence of a denied FilePermission does not yet indicate a problem as there might
be other ways to cover the target code that do not cause file access. Indeed Figure 5
shows that even classes that achieve high branch coverage often lead to some kind
of denied permission check. However, the fact that classes with file access achieved
significantly lower average branch coverage (57%) is a clear indication that file access
is a real problem.

The other two dominant types of permissions we observed were RuntimePermissions
(25% of classes in the SF110 corpus) and SocketPermissions (30%). RuntimePermis-
sions can occur for various reasons, such as for example attempts to shut down the
virtual machine or to access environment variables. As shown in Table I, we allowed
several RuntimePermission operations that we deemed safe enough. But, unfortunately,
the other operations we do not allow are still very common.
SocketPermissions happen when for example the CUT tries to open a TCP connection.

It is not a surprise to see many of these exceptions in SF110, as the Java language
is by construction well-suited for web applications, and several of the 110 projects are
indeed web applications.

Finally, a common assumption for test generation tools is that the code under test
is single-threaded, as multi-threaded code adds an additional level of difficulty to the
testing problem. Creating a new thread does not require any permissions in Java; only
terminating or changing running threads leads to permission checks. We therefore
observed the number of running/waiting CUT threads each time any permission check
was performed, each time a test execution timed out (EVOSUITE by default uses a
timeout of five seconds per test case), and at the end of the test case execution.
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Fig. 6: Ratios of classes that spawn at least one thread for each 10% branch coverage
interval.

Figure 6 illustrates the relation of branch coverage to the frequency of cases where
we observed more than one thread: Classes that spawn threads usually obtain lower
branch coverage. One reason is that, for the moment, EVOSUITE is not optimized to
handle multi-threaded code. Although it can run classes that spawn threads (which is
an essential requirement for using a testing tool on real-world software), the test case
execution of the sequence of method calls is done on a single thread. If a method call on
the CUT puts the test case executor thread on an object wait, then EVOSUITE would
not be able to call a new method on a different thread that will wake up the executor.

Another problem is that, in the case of multi-threaded code, simply covering the code
is usually not sufficient as test cases might become nondeterministic. Furthermore,
multi-threading introduces new types of faults (e.g., deadlocks), and using a randomized
algorithm (like EVOSUITE uses) on code that spawns new threads may cause problems,
as Java offers no way to forcefully stop running threads. For this problem, EVOSUITE
employs several advanced mechanisms to stop running threads (e.g., based on bytecode
instrumentation), but they are not bullet proof [Fraser and Arcuri 2013b].

RQ2: Multi-threading and interactions with the environment are
very common problems that negatively affect branch coverage.

The challenge will now be to overcome these problems, and to allow unit test gen-
eration tools like EVOSUITE to cover classes with environmental dependencies. One
possibility, which we are currently investigating, is the use of mocked versions of core
Java classes causing the interactions, such that the environment state is transformed
into a test input that the test generation tool can explicitly set.
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Fig. 7: Proportion of classes for which Randoop achieved branch coverage within each
10% branch coverage interval. Labels show the upper limit (inclusive).

Table X: For each type of permission exception found in the Randoop console output,
we report how many times it is thrown in total and in how many classes it is thrown at
least once.

Permission Exception # of Occurences # of Classes

com.liferay.portal.kernel.security.pacl.permission.PortalRuntimePermission 2,980,047 408
java.io.FilePermission 772,866 674
java.lang.RuntimePermission 85,810 50
java.net.SocketPermission 59,594 46
java.util.PropertyPermission 5,955 918
javax.xml.bind.JAXBPermission 3 1

3.5. Generalization to Other Test Generation Tools
Our experiments so far have shown that environmental dependencies affect the branch
coverage that EVOSUITE achieves. To verify whether this finding is specific to EVO-
SUITE or applies to other test generation tools as well, we ran the Randoop [Pacheco
et al. 2007] tool on all classes in SF110, by specifying one class at a time as input test
classes to Randoop. The reason we chose Randoop out of all other tools (which we will
discuss in Section 4.1, Table XII) is that it is fully automated (i.e., it does not require
manually written test drivers or parameterized unit tests), it is popular and highly
cited, freely available, and has been applied to many software systems in the past (e.g.,
4,576 classes, see Table XII).

To avoid potential problems with file access, we launched Java with a cus-
tom security policy when running Randoop using -Djava.security.manager -
Djava.security.policy=<POLICY>, as suggested by the authors of Randoop [Robinson
et al. 2011]. Randoop is not released with a policy file, so we wrote one for it based on
Table I. However, to measure branch coverage, we had to allow Randoop to write its
generated test cases (i.e., we had to grant it writing permissions on a specific folder). In



general, the issue of distinguishing between interactions caused by the CUT and those
caused by the testing tool is difficult, which is one among several technical reasons for
why in EVOSUITE we had to implement a sophisticated, customised security manager.

As it would need more modifications to make a unit test generation tool suitable for
experimentation on a cluster than just a security policy, we did not run the Randoop
experiments on the cluster of machines we had access to. For example, if a test data
generation tool is not able to properly mute the outputs (e.g., on the console) of the
CUTs, it can easily take down an entire cluster by filling up all the hardrive space (e.g.,
if console outputs are automatically redirected by the job scheduler to text files) and
overflow the intra-node network. These are experiences we drew from past experiments
with earlier versions of EVOSUITE, much to the dismay of our cluster’s administrators
(and likely also other users). Some of the technical solutions to overcome these problems
are discussed in [Fraser and Arcuri 2013b]. We therefore ran Randoop on a dedicated
machine, but thus were limited to run it only once per CUT. Randoop was run with its
default values, for 60 seconds per CUT. During an initial run where the policy did not
prohibit execution of native code due to a mistake in the policy file, the runs of Randoop
led to deletion of 49 out of the 110 projects in SF110 (i.e., their entire folders were
wiped out). We then reran Randoop on those 49 projects.

We compiled all the test cases generated by Randoop and used EVOSUITE to measure
the branch coverage of these test cases for each class. As these runs did not use
our custom security manager, we can only measure the number and type of security
exceptions that propagate to the console output of Randoop during test generation.

Figure 7 summarizes the branch coverage achieved by Randoop. On average, Randoop
achieves 40% branch coverage. As with EVOSUITE, the mean coverage is dominated by
large sets of classes with low coverage (<10%) and simpler classes with high coverage
(>90%). Table X summarizes the security exceptions that propagated to the console
output of Randoop. There are fewer types of exceptions, and the number of classes with
exceptions is also lower. To some extent, this is because not all security exceptions
will actually propagate to the output. Furthermore, lower branch coverage can also
reduce the chances of hitting code related to environmental interactions if such code is
inside blocks that are not executed due to unsolved constraints (e.g., if statements with
non-trivial predicates that would be hardly satisfied with random data). However, the
number of exceptions is still high, providing evidence that our findings on environmental
interactions are not specific to EVOSUITE.

RQ3: Environmental interactions are not specific to EVOSUITE but
also apply to other unit testing tools like Randoop.

Note that our measurements are based on security exceptions. However, branch
coverage will also be influenced by environmental interactions that do not lead to
security exceptions. For example, a CUT might depend on the existence of a particular
file, and in absence of that file might simply be uncoverable. This case would not show
up in our statistics, as we permit file reading. Consequently, we conjecture that the
problems caused by environmental dependencies on the achieved branch coverage are
even more significant than our results can indicate.

The research field of automated unit test generation is often considered mature, but
based on this result we are aware of no technique that practitioners could use today to
automatically achieve high branch coverage on real-world software. For a successful
technology transfer from academic research to industrial practice, it will be essential
for the research community to solve all of these problems.
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Fig. 8: Bar plots showing for each 10% branch coverage interval the proportion of
projects that have an average coverage (averaged out of 10 runs on all their classes)
within that interval. Labels show the upper limit (inclusive). For example, the group
40% represents all the projects with average coverage greater than 30% and lower than
or equal to 40%.

3.6. Unbiased Selection vs. Top 10
The results so far considered the combination of projects chosen at random (e.g.,
Rand100) with the most popular ones (e.g., Top10). In this case, it is important to
study whether their probability distributions related to achievable branch coverage
differ or not. This is important if one wants to average and study results on all the
employed software artifacts, without each time having to present data (e.g., with graphs
and tables) separately for each group. Note that such properties would depend on
the test case generation tool (e.g., EVOSUITE). Whether there would be only small
differences, or not, among different testing tools is a matter that would require further
empirical analyses (to this end, recall that SF110 is freely available).

Table V already showed results separately for Rand100 and Top10, illustrating that
the projects in Top10 are usually bigger than the ones in Rand100. This is not surprising,
as very small programs of just a few classes are not likely to be able to implement
useful enough functionalities that millions of people would be interested in. Figure 8
shows the data that was presented in Figure 2, but by dividing them between Rand100
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Fig. 9: Bar plots showing for each 10% branch coverage interval the proportion of
classes that have an average branch coverage (averaged out of 10 runs) within that
interval. Labels show the upper limit (inclusive). For example, the group 40% represents
all the classes with average branch coverage greater than 30% and lower than or equal
to 40%.

(Figure 8(a)) and Top10 (Figure 8(b)). It is worth noting that, for both sets, most projects
have average branch coverage between 50% and 90%.

Figure 9(a) and (Figure 9(b)) show the same data as Figure 3, but again by dividing
them between Rand100 and Top10. Surprisingly, the two sets present the same (or at
least very similar) kind of irregular distribution. In other words, the largest group has
over 90% branch coverage, and the second largest group is that with below 10% branch
coverage, while the rest has similar occurrence.

Figure 10 shows the same data as in Figure 4, but split between Top10 and Rand100.
In both cases, there is the same trend as it was in Figure 4: more complex classes (i.e.,
more bytecode branches) lead to lower branch coverage. This expected phenomenon is
more marked for Top10 than for Rand100, as visible in Figure 10.

Although Rand100 and Top10 projects show similar probability distributions, it is
clear that Top10 classes are significantly more difficult to test, i.e. average 64% branch
coverage (Top10) compared to 78% (Rand100) (see Table VIII).
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Fig. 10: Bar plots showing for each 10% branch coverage interval, we report average
number of branches of the classes with that average branch coverage.

RQ4: In terms of achievable branch coverage with EVOSUITE, the
top 10 most popular Java projects on SourceForge have similar
characteristics with the other hosted projects, although they are

considerably more difficult to test.

The similarity between Top10 and Rand100 means that, for experiments in unit
test generation, we can use the combined SF110 corpus of classes for representative
empirical studies. However, adding Top10 to Rand100 makes the problem at hand
more difficult, and so potentially underestimates the actual performance of a tool on an
unbiased selection of projects like Rand100.

The similarity between the two sets (Rand100 and Top10) was observed only for
the problem domain addressed in this paper, and may not hold for other domains.
For example, techniques that are dependent on the number of classes in a project
would behave differently on the very large projects in Top10 and the predominantly
small projects in Rand100. Consequently, for problem domains other than unit test
generation we can make no claims. However, although we still recommend using SF110,



it is also important to study Rand100 and Top10 separately, to see if there are any large
differences between the two sets that needs to be further investigated.

3.7. Industrial Systems
With the results of the empirical analysis on the seven industrial systems, we want to
provide data to help address RQ5. Similar to the experiments on open source software,
Figure 8(c) shows average branch coverage per project, Figure 9(c) shows them by
class, and Figure 10(c) shows them by numbers of branches. It is important to stress
that looking at single classes in isolation would be statistically invalid in this case, as
only one run of EVOSUITE was carried out. But, when looking at properties on the
entire projects, then there are enough data points (3,970) to reach some preliminary,
meaningful results.

The average branch coverage values are higher for these industrial projects compared
to SF110. Based on all the classes of the seven industrial projects, EVOSUITE achieved
an average of 77% branch coverage. However, when comparing the results of the
industrial projects with just those of Rand100, obtained branch coverage is similar
(77% and 78%). What is striking though is, that the distribution shapes in Figure 9(c)
and in Figure 9(a) are very similar.

To some extent, these results came as a surprise to us: We were expecting to obtain
(much) lower branch coverage values on these seven industrial projects, as they imple-
ment very complex functionalities. Can we conclude that industrial software is easier
to test than open source software? Although these are seven real industrial systems,
they do not represent a statistically valid sample of software developed in the whole
industry, and thus we cannot draw any general conclusions. For example, there might
have been some specific architectural decisions in these systems that are peculiar to
the particular engineering department that developed them.

So what can we conclude from this experiment? There is reasonable evidence that
EVOSUITE works on software of this particular company as well as on open source
software. The similarity between the results on SF110 and the industrial systems
increases our trust that SF110 is a useful corpus for empirical studies.

RQ5: Experiments on seven real-world, industrial systems provide
reasonable evidence that industrial code is not necessarily more

difficult to cover for EVOSUITE than open source software.

Considering the limitations of running empirical studies on industrial software, it
will be important to produce more evidence over time by running as many as possible
new empirical studies and replications. However, it is unlikely there will ever be a
“representative” benchmark for industrial systems (except maybe for very narrow sub-
fields).

3.8. Automatically Generated Software
On the Carfast artificial software systems, EVOSUITE achieved an average branch
coverage of 80.6% (minimum 57.1%, median 79.4%). Similar to the other experiments,
Figure 8(d) shows average branch coverage per project, Figure 9(d) shows it by class,
and Figure 10(d) shows it by number of branches. Figure 8(d) suggests that all the
individual projects seem similar in difficulty, and there are no projects with problems
that EVOSUITE is unable to handle; this is also confirmed by Figure 9(d). The difference
between this set of artificial software and the other systems is probably most striking
in Figure 10(d): The achieved branch coverage is generally high and does not seem to
correlate with the number of branches.



Table XI: Pearson’s product-moment correlation between the branch coverage achieved
on each CUT (i.e., class) and different types of variables. Confidence intervals on the
correlation values are at a 95% significance level.

Variable Correlation Confidence Interval

# of branches in the SUT -0.17 [-0.17, -0.17]
# of classes in the project of the SUT 0.20 [0.19, 0.20]
Total # of branches in the project of the SUT 0.0052 [0.0011, 0.0093]
Average # of branches per class in the project of the SUT -0.25 [-0.25, -0.25]

RQ6: EVOSUITE achieves higher branch coverage on automatically
generated software, as this software may not contain certain types of

problematic classes.

This difference in the results on open source software comes as a surprise, as a
previous evaluation of Rugrat generated software [Hussain et al. 2012] suggested that
software systems generated with Rugrat are very similar to open source software; it
seems that software metrics are not necessarily good predictors of testability. To some
degree this result is influenced by the absence of three categories of classes in these
artificial systems: Trivially testable classes, classes with environmental dependencies,
and “untestable” classes (i.e., badly designed classes where constructing parameter
objects and reaching relevant states is very difficult). Arguably, these are categories
of classes one would not want to use to demonstrate effectiveness of a technique
that, for example, aims to improve the efficiency or scalability of a test generation
approach. To some extent, the environmental dependencies aspect may be covered with
a “Rugrat4Load” extension described on the Rugrat website, and the systems at hand
are influenced by how they were configured for the Carfast experiments.

3.9. Effects of Class and Project Size
When choosing a set of software artifacts for software testing research, it is usually
advisable to also include complex large systems to study the scalability of a proposed
approach. Intuitively, one would expect a technique that works well on large, complex
systems to also work well on smaller problems. Size is a very problem-specific property;
in the case of unit test generation, we consider two dimensions: First, the size of an
individual class for which unit tests are generated. Second, as empirical studies in
unit testing are often based on selecting software projects and then including all their
classes, we also consider the size of a software project. Table XI shows the correlations
between branch coverage and these variables.

As one would expect, there is a weak negative correlation between the number of
branches in the CUT and the average branch coverage that EVOSUITE achieved. This
means that there is a tendency that on larger (measured in number of branches) CUTs,
lower branch coverage is achieved given the same amount of search effort. Not only
are there more testing targets (i.e., branches) to cover, but also each test case will
take longer to run and evaluate during the search. The negative correlation between
number of branches and branch coverage is not particularly strong, i.e., it is only −0.17.
This is not a surprise, as (1) complex code (from the point of view of testing) involving
network sockets and manipulating files can well be in small classes, (2) the whole test
suite generation approach applied by EVOSUITE is known to alleviate the problem of



large classes [Fraser and Arcuri 2013c] and (3) in general, it is well known in the code
complexity field that this kind of metrics have limitations [Weyuker 1988].

The second dimension of size we consider is the size of a project from which classes
are taken. Larger classes have a tendency to be more difficult to test, so one might
also expect that large projects involving thousands of classes will be more challenging.
However, Table XI show a weak (0.2) positive correlation. This is a counter-intuitive
result, as regardless of the strength of the effect size we would have expected a negative
correlation (i.e., larger projects would be more difficult to unit test), not a positive one.
This result holds only if we define the “size” of a project as the number of its classes,
and not if we consider the sum of all the branches of all its classes (in which it seems
there is no correlation). Note that we consider the difficulty of testing single classes,
and not an entire project as a whole. Given the same testing budget per class, of course
a project with more classes will obviously take longer to be unit tested.

Determining the exact reasons will be a matter of future research, but we conjecture
that this result is due to the principles of object-oriented programming: A project that
is developed following an adequate object-oriented methodology will tend to result in
many small classes. Furthermore, it is likely that for an open source project to grow
beyond a certain size it needs to be reasonably designed, otherwise it would be unlikely
to attract sufficient developers in order to have it grow to that size. In contrast, small
open source projects developed by single (potentially inexperienced) individuals may be
abandoned after a short while.

One last correlation that we consider is the average number of branches in a project.
In this case, there is a negative −0.25 correlation. Surprisingly, this correlation is
stronger than the one with the number of branches in the CUT (−0.17). A possible
explanation is that, when generating test cases for a particular CUT, there is also the
need to initialise other objects that will be used as input to the methods of the CUT. If
those other classes are particularly complex, then generating the right input data for
the CUT will be more complicated.

RQ7: There are only weak correlations between sizes and coverage.
Larger classes tend to be more difficult to test with EVOSUITE, but

larger projects do not necessarily have more difficult classes.

3.10. Threats to Validity
The main goal of this paper was to evaluate EVOSUITE on different types of software in
order to minimize the threats to the external validity of these experiments. However,
there still remain some. The SF110 corpus is a statistically sound representative of
open source projects, and our results are also statistically valid for other Java projects
stored in SourceForge. For example, even if we encountered high kurtosis in the number
of classes per project and branches per class, median values are not particularly affected
by extreme outliers. To reduce this particular threat to validity, we used bootstrapping
to create confidence intervals for some of the statistics (median, average, skewness
and kurtosis). These confidence intervals allow the reader to judge how reliable the
presented statistics and results are.

Our results might not extend to all open source projects, as other repositories (e.g.,
Google Code) might contain software with statistically different distribution properties
(e.g., number of classes per project, difficulty of the software from the point of view of
test data generation). Furthermore, there might be a significant percentage of open
source projects that are not stored in any repository.



Furthermore, results on open source projects might not extend to software that is
developed in industry, as for example financial and embedded systems might be under
represented in open source repositories. To partially address this threat, we also carried
out experiments on seven industrial systems, but this only serves as a sanity check: i.e.,
to see whether we get similar or very different results compared to open source projects.
However, even if our results would be valid only for SourceForge projects, considering
the two million subscribers of SourceForge they would still be of practical value and
important for a large number of practitioners (both developers and final users).

The properties of the SF110 corpus are independent from which tool and technique
was used for experimentation, but all conclusions based on coverage data are obviously
dependent on the testing tool. In this paper, we used EVOSUITE, and different tools
might lead to different branch coverage results. As a sanity check, we also carried out
comparisons with Randoop, a popular random testing tool. However, larger studies
with other tools were not carried out for several reasons. Among the most obvious ones,
there is the fact that often tools are not available, written for different programming
languages (e.g., C#), intended for other usage scenarios (e.g., many test generation tools
require explicit entry functions, which is infeasible to provide manually for SF110)
or difficult to apply/adapt for experiments to run on a cluster. There can be several
prototypes to compare with, and using all of them would be too time consuming (e.g.,
repeating the same experiments as those described in this paper on a different tool
would have required another 995 days of computational resources), and so only some can
be chosen — but then, similar to the choice of software artifacts, to avoid biased results,
the choice of which tools/techniques to compare with should be done in a systematic
way. An alternative, less biased, way to compare tools is through “tool competitions”,
where tools are run by the competition organizers, and the authors do not have access
to the used benchmark (so as to avoid tuning on it). Such a competition for JUnit
test data generation tools was for example held at the 6th International Workshop
on Search-Based Software Testing (SBST 2013) [Bauersfeld et al. 2013]. EVOSUITE
participated [Fraser and Arcuri 2013a], and won by a large margin against the other
tools. Therefore, we believe that EVOSUITE can serve as a representative tool for Java
unit test generation.

Threats to internal validity come from how experiments were carried out. We used
the EVOSUITE tool for our experiment, which is an advanced research prototype for
Java test data generation. Although EVOSUITE has been carefully tested, it might
have internal faults that compromised the validity of the results. Because EVOSUITE is
based on randomized algorithms, we repeated each experiment on each class 10 times to
take this randomness into account. Furthermore, the guidelines in [Arcuri and Briand
2012] were followed to properly analyze the statistical distributions of those runs.

A possible threat to construct validity is how we evaluated whether there are unsafe
operations when testing a class. We considered the security exceptions thrown by all
method calls in a test case, even when those methods do not belong to the class under
test. Potentially, EVOSUITE might have tried to satisfy parameters of the class under
test using classes that lead to actions blocked by the security manager, even if these
parameters could also have been satisfied with other classes that do not result in any
security exceptions (e.g., when a method is declared to take an Object as parameter,
EVOSUITE considers every known class as a potential input).

A further threat to construct validity comes from the use of branch coverage. Even
though reaching code is a necessity to finding bugs with testing, in practice other aspects
might be important, such as the fault finding capability or the difficulty of manually
evaluating the test cases for writing assert statements (i.e., checking the correctness of
the outputs).



To verify whether the conclusions drawn from an empirical study are indeed correct,
it is important to enable other researchers to independently replicate the performed
study. To this end, both EVOSUITE and SF110 are freely available from our webpage 8.

4. CHOOSING SOFTWARE ARTIFACTS FOR EMPIRICAL STUDIES IN UNIT TESTING
In the previous section we described and analyzed an empirical study with EVOSUITE
that is as sound as possible with respect to open source software, and a replication of
the experiment on industrial and automatically generated software. At this point, it
would be great to state what are the exact steps to follow in order to select a perfect set
of artifacts for a desired subject of evaluation. However, the choice of software artifacts
is typically subject to many constraints:

Availability. The main limitation when assembling a set of software systems is the
availability of suitable subjects to choose from. Code-centric approaches have a clear
advantage here, as they can leverage masses of available open source code.
Computational resources. A second limitation lies in the available resources to
perform the experiment. A full experiment on SF110 requires the use of a cluster of
computers, which is not available to all researchers.
Matureness of prototype. Empirical studies are typically performed using re-
search prototypes, and research prototypes are inherently fragile and incomplete,
as not many researchers are fortunate enough to have the resources to develop a
prototype to a level where it can be applied to real-world programs.

Considering all this, the choice of software artifacts will always represent a trade-off
between what is reasonable to demonstrate a technique works and the attempt to
minimize the threats to validity of these experiments. Given the insights from our
experiments using the EVOSUITE tool, we now discuss the potential implications of
the choices that have to be made when assembling a set of software artifacts for an
empirical study on unit test generation, or any other software engineering technique.

4.1. Common Practice in Unit Testing Experimentation
We start this section with a critical reflection of the current practice in software testing
research, by surveying the literature on test generation for object-oriented software in-
cluding studies. This is not meant to be an exhaustive and systematic survey, but rather
a representative sample of the literature to motivate the need to reconsider the choice of
software systems during empirical studies in software engineering research. Table XII
lists the inspected papers and tools, together with statistics on their experiments.

We explicitly list how many out of the considered classes are container classes, if
this was clearly specified. Container classes are an interesting category of classes that
have particular properties that can be exploited for dedicated approaches for testing
(e.g., [Boyapati et al. 2002]). Interestingly, 17 papers exclusively focus on container
classes. We discuss implications of such a choice in Section 4.7. Note that some empirical
studies use libraries such as Apache Commons Collections which are highly related to
collections, but it is difficult to precisely quantify the containers; the table thus does
not reflect the use of such projects.

We also list whether the evaluation classes were selected from open source code, in-
dustrial software, the literature, or were constructed for that evaluation. For industrial
code, there often is no choice, because the systems are selected and provided by an
industrial partner. Out of 50 evaluations we considered in our literature survey, 34
selected their software artifacts from open source programs, while only six evaluations
included industrial code. This is to be expected, as it is difficult to get access to industrial

8http://www.evosuite.org/SF110



Table XII: Evaluation settings in the literature. The container column denotes how
many of the classes are container data structures, in those cases where this was
determinable. The source column describes whether software artifacts were chosen
from available open source projects (OS), industry projects, taken from the literature,
or created by the authors.

Tool Reference Projects Classes Containers Source

APex [Jamrozik et al. 2012] 9 9 0 Open Source
Artoo [Ciupa et al. 2008a] 1 8 8 Open Source
AutoTest [Ciupa et al. 2008b] 1 27 17 Open Source
Ballerina [Nistor et al. 2012] 6 14 4 Open Source
CarFast [Park et al. 2012] 12 1,500 - Generated
Check’n’Crash [Csallner and Smaragdakis 2005] 2 - 1 OS / Literature
Covana [Xiao et al. 2011] 2 388 - Open Source
CSBT [Sakti et al. 2012] 2 3 2 Open Source
DiffGen [Taneja and Xie 2008] 1 21 8 Literature
DSDCrasher [Csallner et al. 2008] 2 24 - Open Source
DyGen [Thummalapenta et al. 2010] 10 5,757 - Industrial
Eclat [Pacheco and Ernst 2005] 7 631 16 OS/Lit./Constr.
eCrash [Ribeiro et al. 2010] 1 2 2 Open Source
eCrash [Ribeiro et al. 2009] 1 2 2 Open Source
eToc [Tonella 2004] 1 6 6 Open Source
eToc [McMinn et al. 2012] 10 20 0 Open Source
EvaCon [Inkumsah and Xie 2008] 1 6 6 Open Source
EvoSuite [Fraser and Arcuri 2011a] 6 727 - OS + Industrial
EvoSuite [Fraser and Arcuri 2013c] 20 1,741 - OS + Industrial
Jartege [Oriat 2005] 1 1 - Constructed
JAUT [Charreteur and Gotlieb 2010] 3 7 - Constructed
JCrasher [Csallner and Smaragdakis 2004] 1 8 2 Literature
JCute [Sen and Agha 2006] 1 6 6 Open Source
jFuzz [Karthick Jayaraman and Kiezun 2009] 1 - - Open Source
JPF [Visser et al. 2004] 1 1 1 Open Source
JPF [Visser et al. 2006] 1 4 4 Constructed
JTest+Daikon [Xie and Notkin 2006] 1 9 9 Constructed / Lit.
JWalk [Simons 2007] 6 13 - Constructed
Korat [Boyapati et al. 2002] 1 6 6 Literature
MSeqGen [Thummalapenta et al. 2009] 2 450 - Open Source
MuTest [Fraser and Zeller 2012] 10 952 - Open Source
NightHawk [Andrews et al. 2007] 2 20 20 Literature
NightHawk [Andrews et al. 2011] 1 34 34 Open Source
NightHawk [Beyene and Andrews 2012] 2 - - Open Source
OCAT [Jaygarl et al. 2010] 3 529 - Open Source
Palus [Zhang et al. 2011] 6 4,664 - OS + Industrial
Pex [Tillmann and Schulte 2005] 2 8 - Constructed
PexMutator [Zhang et al. 2010] 1 5 1 Open Source
Randoop [Pacheco et al. 2007] 14 4,576 - OS / Industrial
Rostra [Xie et al. 2004] 1 11 9 Constructed / Lit.
RuteJ [Andrews et al. 2006] 1 1 1 Open Source
Symclat [d’Amorim et al. 2006] 5 16 12 Constructed / Lit.
Symstra [Xie et al. 2005] 1 7 7 Literature
Symbolic JPF [Pǎsǎreanu et al. 2008] 1 1 - Industrial
Symbolic JPF [Staats and Pasareanu 2010] 6 6 4 Industrial/OS
TACO [Galeotti et al. 2010] 6 6 6 OS/Lit.
Testera [Marinov and Khurshid 2001] 4 4 2 Open Source
TestFul [Baresi et al. 2010] 4 15 12 OS + Literature
YETI [Oriol 2012] 100 6,410 - Open Source
N/A [Arcuri and Yao 2008] 1 7 7 Open Source
N/A [Wappler and Wegener 2006] 2 4 4 Open Source
N/A [Andrews et al. 2008] 2 2 1 Open Source



code, and even if one gets access it is not always easy to publish results achieved on
this code due to privacy and confidentiality issues. We also include the .NET libraries
as industrial code here, although the bytecode is available freely. On the other hand, 17
evaluations used artificially created examples, either by generating them or by reusing
them from the literature.

If it is not justified how a particular set of classes was selected for evaluation, then
in principle it could mean that the presented set represents the entire set of classes
on which the particular tool was ever tried, but it could also mean that it is a subset
on which the tool performs particularly well. Interestingly, only a single paper [Oriol
2012] out of those considered justifies why this particular set of classes was selected,
and how this selection was done. In his study, Oriol [Oriol 2012] used the tool YETI
to evaluate some general laws of random testing. The software artifacts were taken
from the Qualitas Corpus [Tempero et al. 2010], from which 100 classes were chosen
at random from each of the projects in that corpus. The Qualitas Corpus [Tempero
et al. 2010] is a set of open source Java programs that were originally collected to help
empirical studies on static analysis. This corpus has been extended throughout the
years, although it is not clear whether any formal criterion was applied to choose which
projects to include (i.e., although such corpus features many kinds of different software
applications, their choice seems manual).

4.2. Size vs. Statistical Power
With an automated tool like EVOSUITE, it could be possible to have even larger (in
terms of the number of artifacts considered) empirical studies than those presented
in this paper. There is no particular technical problem that prevented us from using
20,000 projects and repeating each experiment 1,000 times — it all depends on available
resources. As it was, our experiments on SF110 took 995 days of computational effort.
This would make such an experiment impossible, unless a cluster of computers is
available. In some cases, it is not only a matter of time, but rather of resources. For
example, for their experiments on the CarFast tool, Park et al. [Park et al. 2012]
used the Amazon EC2 virtual machine. An empirical study estimated to take 1,440
computational days, resulted in a US$30,000 cost.

For a fixed amount of computational resources (e.g., 1000 days on a cluster), there is a
tradeoff between the number of used artifacts in the empirical study and repeated runs
with different seeds. As explained in more detail in [Arcuri and Briand 2012], one needs
to strike a balance between threats to external validity (e.g., number of artifacts) and
statistical power (e.g., number of runs). This balance depends on the addressed research
questions, and as such it will vary from study to study. For example, if a researcher
wants to compare two testing techniques, and check on which classes one is better than
the other, then it would make more sense to have fewer software artifacts (e.g., 100
or 1,000 classes chosen at random from Rand100) in order to have a higher number of
runs (within the same budget for computational resources). More runs would be helpful
to have enough statistical power (to detect statistical differences, if any) when the two
techniques are compared on a per class basis. However, sampling classes randomly from
Rand100 is not the same as sampling directly from SourceForge, as Rand100 itself is a
sample of SourceForge which is subjected to sampling error.

Before running an experiment, in general one would not know what is the magnitude
that the effect sizes will have. Therefore, choosing the right number of runs for an
experiment to obtain enough statistical power is cumbersome. One approach would
be to first run an experiment with a pre-defined number of runs, calculate the effect
size, and then apply power analysis techniques [Cohen 1988]. Power analysis can give
an indication of how many more runs (i.e., data points) one would need to achieve the
desired level of statistical significance given the obtained effect size. After such an



analysis, more runs can be carried out and new statistical tests can be performed. For a
more in details discussion on these points, we refer to [Arcuri and Briand 2012].

4.3. Does Size Solve All Problems?
Assuming one has sufficient resources to run a large experiment with sufficient statisti-
cal power, does using a large and variegated set of software artifacts solve the problem
of external validity? The answer is unfortunately no. For example, let us critically
look at our own previous work on EVOSUITE. When we first presented the whole test
suite approach in [Fraser and Arcuri 2011a], the empirical study was composed of
five libraries (java.util, Joda Time, Commons Primitives, Commons Collections and
Google Collections) and a small package from an industrial system, consisting of a total
of 727 public classes. In the successive extension [Fraser and Arcuri 2013c], we used
19 libraries and the same industrial package, totaling 1,741 public classes. On these
software artifacts, EVOSUITE obtained 83% branch coverage on average, which is higher
than the 71% reported in this paper on SF110. The selection of the six (for [Fraser and
Arcuri 2011a]) and 20 (for [Fraser and Arcuri 2013c]) projects was manual. Although
we tried to strike a balance between different types of libraries, the selection was still
biased. But, even if the selection was not biased, are such numbers of projects enough
for an empirical study? We have shown in Table V that there are extreme variations
among projects, so one should try to have a high number of projects in an empirical
study. If six and 20 projects were chosen from SF110, what would be the best possible
and the worst possible result for a study that size?

For each of the 110 projects in SF110, we have an average (on their classes) branch
coverage value. On one hand, if we choose the six projects from SF110 with lowest
average branch coverage, the average on those six projects would be only 30%. On
the other hand, if we choose the ones with the highest branch coverage, the average
on those six would be 97%. The difference between a “lucky” choice of six projects
for an empirical study and an “unfortunate” one can lead to branch coverage values
that are different by 67%! If instead of six projects we take 20, then a lucky choice
would give 91% branch coverage, whereas an unfortunate one would result in 41%
branch coverage. The difference is this time lower (50%), but still very high. Our own
experiments in [Fraser and Arcuri 2013c] resulted in 83% branch coverage — and in
retrospective, we probably did select libraries devoid of environmental dependencies.

In general, there is so much variation in average branch coverage values among
different projects that, considering these data, the choice of which projects to use in
an empirical study is an important decision that needs to be done deliberately and
systematically. A further issue that our analyses show is that, only concentrating the
research effort on large projects may bias results (see correlation analysis in Table XI),
as smaller projects showed a tendency towards being more difficult to test in our
experiments. This suggests that having few large projects may be less preferable than
using many smaller ones, although the correlations in Table XI are relatively weak.

Furthermore, the results on RQ7 (Section 3.9) suggest that, if one wants to somehow
quantify the difficulty/complexity of a project (e.g., when choosing a set of artifacts for
experimentation) by considering the number of classes or branches in it, this would
be misleading for unit testing. A more appropriate measure might be to consider the
average number of branches per class, or use some other code complexity metric. For
example, Daniel and Boshernitsan [Daniel and Boshernitsan 2008] trained a decision
tree based on several code metrics to estimate the difficulty of a class before a test data
generation tool is applied to it.



4.4. Industrial vs. Open Source
Although open source software is widely used, it only represents one face of software
development. In all likelihood, there are many more industrial programs than open
source programs. Because industrial software might be very different from what can be
found in open source repositories, it would be important to evaluate testing techniques
on software in industry. However, it is the sad truth and the topic of many a panel
discussion these days that accessing industrial software is difficult for researchers.

Even when it is possible to engage with industrial partners for experiments, there
are issues related to the properties of such industrial systems. First, the empirical
study would be biased and those employed systems cannot represent a statistically
valid sample, as their choice is usually limited to the industries one has contacts with
(e.g., located in the same area, city). Any generalization attempt from a biased selection
is limited. Second, in most cases an empirical analysis based on industrial software
is not replicable by other researchers, usually due to confidentiality restrictions (e.g.,
software companies are usually not willing to share their intellectual property, as it
represents critical assets). Replication, however, is a critically important aspect of
software engineering experimentation. Besides replication, a common point of reference
to compare with (e.g., SF110) will be essential for meta-analyses when conclusions
are inferred by studying and combining the data of different empirical studies (and so
different industrial systems). Consequently, we argue that when possible, experiments
using open source software are preferable.

Of course, experiments on industrial software are still very important, and should be
done whenever possible. Indeed, precisely because obtaining data from industry is very
challenging, we strongly believe that using industrial systems and comparing them to
SF110 or Rand100 will be essential to obtain over time a reliable body of empirical
evidence.

However, one should be aware of the limits of how far results can generalize. In this
regard, the results of RQ5 are of high practical value for researchers in software testing.
As long as there are no new experimental results showing differing performance of
testing tools between SF110 and industrial systems, it can be safe to assume that
good results achieved on SF110 can be of value for practitioners in industry. This is
especially important for researchers who are not in contact with industrial partners,
and can only do empirical studies on open source software.

4.5. Real vs. Generated Software
When generating software automatically, the bias introduced when selecting projects
manually is avoided entirely. However, bias may be introduced through (a) the capabili-
ties of the benchmark generation tool and (b) the particular configuration applied when
running the tool. Consequently, automatically generated software is not free of bias
either: Automatically generating software removes the selection bias, but adds bias in
terms of capabilities and configuration of the code generation tool.

A particular strength of automatically generating software is that the type of problem
generated can directly be influenced. In the case of the Carfast study, the particular
targeted problem seems to be largely independent classes without environmental depen-
dencies, but high code complexity. Indeed, the artificial software systems studied seem
to be good for this (e.g., the proportion of classes with 100% branch coverage achieved
by EVOSUITE is much smaller than for the other types of software). Consequently,
automatically generated software seems well suited to evaluate particular techniques
or optimizations. However, it seems that, despite static similarities to open source
software, automatically generated software does not yet serve as a replacement for
“real” programs. When for a given domain there are no artifacts to choose from available



on the internet, then automatically generating them may be the only option. In general,
however, to draw conclusions about how results generalize, experiments on open source
programs are still preferable.

4.6. Effectiveness vs. Practical Relevance
An important point in choosing a set of artifacts for an empirical study lies in the
objective of the planned experiments. Is it reasonable to look for sound and unbiased
studies in all research papers in the future? The answer is clearly no. In many cases
this is not feasible, and sometimes it is not even desirable. For a technique X that
addresses a specific problem, that particular problem may only have few instances in
a corpus like SF110 or Rand100. Even if the given technique applied to the targeted
problem in isolation can have strong results, applying it to Rand100 may diffuse that
effect. If the problem addressed by the technique is not common in Rand100, then the
measurable effect may be very small if other types of problems are not affected by the
technique. However, the opposite is also possible: For example, software modularization
is commonly applied to large software projects, of which there are few in Rand100.
Thus, measuring the performance of a modularization technique on Rand100 may lead
to very optimistic results, as the performance on small projects is likely very good for
any modularization technique. Such results would be valid, but of less practical value
as one would not apply such a technique on small projects in the first place.

Consequently, we note that Rand100 is a representative sample of open source
software that is well suited to answer questions such as:

— Does technique X have wide scope? I.e., how common is the addressed problem?
— Having shown that X overcomes a specific problem, are there any negative side-

effects on other software not affected by that problem?

Ideally, one would still perform an unbiased selection (e.g., by “filtering” a relevant
subset of Rand100), and then run on something like Rand100 to check for negative side
effects.

4.7. Focused Studies: Container Classes
An example of a specific type of classes addressed in the literature on unit test gener-
ation are container classes. As already mentioned in Section 4.1 (e.g., see Table XII),
many empirical studies are exclusively based on container classes (e.g., vectors and
lists). When addressing a problem as specific as container classes, a large and unbiased
corpus such as SF110 would not be suitable: Only few of the classes in SF110 are
container classes, and among the 4,208 classes in the employed industrial software, not
a single one was a container class. Any effects of a technique that specifically improves
testing of container classes would be practically insignificant when evaluated on an
unbiased set of software systems, regardless of how effective it would be for container
classes.

However, while it is certainly true that containers are widely used, writing new
container classes may not be such a common scenario (e.g., considering the existence
of mature libraries such as java.util). Consequently, if a technique targets unit test
generation in general, then focusing on container classes may create a strong bias in the
results. For example, containers do not have GUIs, they do not spawn threads, they do
not require sequences of function calls to set the internal states of their inputs (e.g., one
can insert/remove integers), they do not write to disk, they do not open TCP connections
and they usually do not have constraints based on string matching and float arithmetic.
We observed in our experiments on SF110 and the industrial projects that these are
common characteristics of classes developed in industry and in open source projects,



therefore these problems would likely outweigh any improvements specific to container
classes.

Does using a larger set of software artifacts automatically avoid this problem? Let
us take another critical look at our initial EVOSUITE study [Fraser and Arcuri 2011a],
where we used five libraries and an industrial system, resulting in a total of 727
public classes. At first look, this sounds like a reasonable choice. A closer look reveals
that among the libraries we included java.util, Apache Commons Primitives, Apache
Commons Collections, and Google Collections. In other words, four out of the six projects
provide different types of containers and helper classes. This may well be a contributing
factor to the high average branch coverage achieved in these experiments. Indeed there
is evidence that high coverage on container classes is even possible using random
testing [Sharma et al. 2011].

Consequently, if a testing tool aims to improve unit testing in general, then regardless
of its size the employed set of artifacts should aim to cover a representative variety of
software subjects, rather than focusing on one particular type (e.g., container classes).

4.8. Libraries vs. Applications
In the followup experiment [Fraser and Arcuri 2013c] to the original EVOSUITE ex-
periments [Fraser and Arcuri 2011a], we added 14 additional projects to our empirical
study, yet the branch coverage remained as high as 83% on average. Although we tried
to be systematic and unbiased in the selection, these projects all shared similarities
that are not prevalent in SF110: All 19 open source projects in [Fraser and Arcuri
2013c] were libraries.

We conjecture that libraries in general are “easier” for unit testing: They provide
extensive public APIs, these APIs have evolved over the years based on extensive use
in other projects, and they are often surprisingly well tested, again suggesting that the
APIs are well-designed with testing in mind. In contrast, many of the SF110 projects are
not libraries but programs, most of them without unit tests. Unlike libraries, programs
do need to offer rich APIs, and often there are complex dependencies between the
components of a program, whereas libraries often consist of independent or only loosely
coupled units. The distinction between libraries and actual applications is therefore
something to pay attention to when software artifacts are manually selected. Likely
this observation is specific to unit testing; however, other testing domains will likely
have similar categories of subjects one might need to be aware of.

4.9. Technical Limitations
The experiments performed in this paper show that 50% of the classes may lead
to interactions with the environment that inhibit high branch coverage in the best
case, and are potentially harmful in the worst case. When there are no interactions,
average branch coverage is as high as 84%, which is higher than the average 71%. The
environment problem is not a new discovery – in manual testing, mocking frameworks
are part of the standard repertoire of a tester. For Java, there are many popular
frameworks (e.g., Mockito9, EasyMock10 or JMock11). The use of mocking frameworks
within automated test generation tools is less common. An example is the Moles
framework [de Halleux and Tillmann 2010], which has been used in conjunction with
the Pex tool [Tillmann and Schulte 2005]. While representing a promising approach,
the lack of extensive evidence (the empirical study in [de Halleux and Tillmann 2010]

9http://code.google.com/p/mockito/, accessed June 2014
10http://www.easymock.org, accessed June 2014
11http://jmock.org, accessed June 2014



was based only on a 15 lines long method) suggests that there are still opportunities for
further research.

Besides highlighting the importance of addressing this type of engineering problems
in testing tools, the existence of environment interactions represents an important
consideration when choosing empirical study subjects. In particular, when studies
are repeated and comparative experiments with different tools are performed, it is
important to be clear about technical limitations influencing the results and the choice
of employed software artifacts.

5. CONCLUSIONS
Like all experimentation in software engineering research, our past empirical investiga-
tions of the EVOSUITE unit test generation tool inherently suffer from a common threat
to external validity, caused by the choice of software artifacts for experimentation. To
study how our past findings on EVOSUITE generalize, and to analyze the effects of the
choice of software artifacts in our empirical studies, in this paper we introduced the
SF110 corpus: 110 open source projects consisting of 23,886 Java classes, for a total of
more than 800 thousand bytecode branches and more than 6.6 millions of lines of code.
We ran experiments with the EVOSUITE tool, which automatically generates test cases
aiming at maximizing branch coverage. To the best of our knowledge (see Section 4.1),
this corpus does not only represent one of the largest sets of software systems in the
literature of empirical studies on test data generation for object-oriented software to
date, but most importantly it helps to reduce the threats to external validity of the
experiments we ran. This is important as external validity is one of the main barriers
for a successful transfer of research results to software development practices.

We applied our research prototype EVOSUITE on this statistically valid corpus, as well
as seven industrial systems and artificial software. Besides confirming good levels of
achieved branch coverage, these experiments allowed us to investigate the effects of the
choice of software artifacts on the branch coverage achieved by EVOSUITE. Comparisons
with past results on EVOSUITE clearly demonstrate the significance of a proper choice
of software artifact: Even a selection of subjects that would be considered as large can
more or less produce any result, depending on the software projects selected for the
empirical analyses. Even if the “perfect” selection of software artifacts does not exist for
practical reasons, it is therefore important to be systematic and clear in the choice of
the subjects employed in an empirical study.

Besides the experiments on the SF110 corpus, in this paper we also used seven
industrial systems. Because in contrast to SF110 they are a biased sample, no general
conclusion can be derived from their analysis. However, as obtaining real data from
industry is very challenging, we believe that reporting case studies on industrial
software, and comparing them to SF110, is important to obtain a reliable body of
empirical evidence over time.

Bias in the software artifacts selection can also cause important practical limitations
to be obfuscated behind positive results. In the case of unit test generation, our exper-
iments revealed that the large majority of classes (i.e., 50%) may lead to potentially
unsafe interactions with the environment, thus inhibiting branch coverage, creating
dependencies between tests, and in the worst case harming the execution environment.
On classes without unsafe operations, EVOSUITE achieves on average an 84% branch
coverage, while on the entire SF110 corpus the average coverage is only 71%. On
classes manipulating the file system, branch coverage goes down to 57%, and down to
51% for the classes using network sockets. Environment interactions are not only an
issue for EVOSUITE, but also for other tools, as for example witnessed by experiments
using Randoop.



Our experiments in this paper focused on the Java programming language and the
EVOSUITE unit test generation tool. However, the problem of choosing a proper set of
software artifacts for experimentation is independent of the programming language and
the addressed software engineering task. For other programming languages, corpora
that are similar to SF110 can be created. For example, the evaluation of a tool for C#
can be based on choosing 100 C# projects at random from SourceForge, plus the top 10
most popular C# projects. Furthermore, beside automated unit test generation, SF110
can also be used for empirical analyses in other software engineering tasks, like for
example mutation and regression testing.

For more information on EVOSUITE and the SF110 corpus of classes, please visit our
website at:

http://www.evosuite.org/SF110
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