
1

Mutation-driven Generation
of Unit Tests and Oracles

Gordon Fraser, Member, IEEE, Andreas Zeller, Member, IEEE

Abstract —To assess the quality of test suites, mutation analysis seeds artificial defects (mutations) into programs; a non-
detected mutation indicates a weakness in the test suite. We present an automated approach to generate unit tests that detect
these mutations for object-oriented classes. This has two advantages: First, the resulting test suite is optimized towards finding
defects modeled by mutation operators rather than covering code. Second, the state change caused by mutations induces
oracles that precisely detect the mutants. Evaluated on 10 open source libraries, our µTEST prototype generates test suites that
find significantly more seeded defects than the original manually written test suites.

Index Terms —Mutation analysis, test case generation, unit testing, test oracles, assertions, search based testing

✦

1 INTRODUCTION

How good are my test cases? This question can be an-
swered by applying mutation analysis: Artificial defects
(mutants) are injected into software and test cases are
executed on these fault-injected versions. A mutant
that is not detected shows a deficiency in the test suite
and indicates in most cases that either a new test case
should be added, or that an existing test case needs a
better test oracle.

Improving test cases after mutation analysis usually
means that the tester has to go back to the drawing-
board and design new test cases, taking the feedback
gained from the mutation analysis into account. This
process requires a deep understanding of the source
code and is a non-trivial task. Automated test gener-
ation can help in covering code (and thus hopefully
detecting mutants); but even then, the tester still needs
to assess the results of the generated executions—and
has to write hundreds or even thousands of oracles.

In this paper, we present µTEST, an approach that
automatically generates unit tests for object-oriented
classes based on mutation analysis. By using mu-
tations rather than structural properties as coverage
criterion, we not only get guidance in where to test,
but also what to test for. This allows us to generate
effective test oracles, a feature raising automation to a
level not offered by traditional tools.

As an example, consider Figure 1, showing a piece
of code from the open source library Joda Time.
This constructor sets iLocalMillis to the millisec-
onds represented by day, month, and year in the
values array and 0 milliseconds. It is called by
12 out of 143 test cases for LocalDate—branches
and statements are all perfectly covered, and each

• G. Fraser and A. Zeller are with the Chair of Software Engineering,
Saarland University, Saarbrücken, Germany.
E-mail: fraser,zeller@cs.uni-saarland.de

1 public class LocalDate {
2 // The local milliseconds from 1970−01−01T00:00:00
3 private long iLocalMillis;
4 . . .
5 // Construct a LocalDate instance
6 public LocalDate(Object instant, Chronology c) {
7 . . . // convert instant to array values
8 . . . // get iChronology based on c and instant
9 iLocalMillis = iChronology.getDateTimeMillis(

10 values[0],values[1],values[2],0); ⇐ Change 0 to 1

11 }
12}

Fig. 1. Mutating the initialization of iLocalMillis is
not detected by the Joda Time test suite.

1 LocalDate var0 = new org.joda.time.LocalDate()
2 DateTime var1 = var0.toDateTimeAtCurrentTime()
3 LocalDate var2 = new org.joda.time.LocalDate(var1)
4 assertTrue(var2.equals(var0));

Fig. 2. Test generated by µTEST. The call in Line 3
triggers the mutation; the final assertion detects it.

of these test cases also covers several definition-use
pairs of iLocalMillis. These test cases, however,
only check whether the day, month, and year are set
correctly, which misses the fact that comparison be-
tween LocalDate objects compares the actual value
of iLocalMillis. Consequently, if we mutate the
last argument of getDateTimeMillis from 0 to 1,
thus increasing the value of iLocalMillis by 1, this
seeded defect is not caught.

µTEST creates a test case with an oracle that catches
this very mutation, shown in Figure 2. LocalDate
object var0 is initialized to a fixed value (0, in our
case). Line 2 generates a DateTime object with the
same day, month, and year as var0 and the local
time (fixed to 0, again). The constructor call for var2
implicitly calls the constructor from Figure 1, and

2

Fig. 3. The µTEST process: Mutation analysis, unit
partitioning, test generation, oracle generation.

therefore var0 and var2 have identical day, month,
and year, but differ by 1 millisecond on the mutant,
which the assertion detects.

By generating oracles in addition to tests, µTEST

allows the tester to check whether the generated
assertions reflect the expected behavior, rather than
coming up with assertions and sequences that are
related to these assertions. If a suggested assertion is
does not reflect the expected behavior, then usually a
bug has been found.

Summarizing, the contributions of this paper are:
Mutant-based oracle generation: By comparing

executions of a test case on a program and its
mutants, we generate a reduced set of assertions that
is able to distinguish between a program and its
mutants.

Mutant-based unit test case generation: µTEST

uses a genetic algorithm to breed method/constructor
call sequences that are effective in detecting mutants.

Impact-driven test case generation: To minimize
assessment effort, µTEST optimizes test cases and
oracles towards detecting mutations with maximal
impact—that is, changes to program state all across
the execution. Intuitively, greater impact is easier to
observe and assess for the tester, and more important
for a test suite.

Mutant-based test case minimization: Intuitively,
we expect that shorter test cases are easier to
understand. We minimize test cases by first preferring
shorter sequences during test case generation, and
then we remove all irrelevant statements in the final
test case.

Figure 3 shows the overall µTEST process: The first
step is mutation analysis (Section 2) and a partitioning
of the software under test into test tasks, consisting of
a unit under test with its methods and constructors
as well as all classes and class members relevant for
test case generation. For each unit a genetic algorithm
breeds sequences of method and constructor calls
until each mutant of that unit, where possible, is
covered by a test case such that its impact is maxi-
mized (Section 3). We minimize unit tests by removing
all statements that are not relevant for the mutation
or affected by it; finally, we generate and minimize
assertions by comparing the behavior of the test case
on the original software and its mutants (Section 4).

We have implemented µTEST as an extension to

the Javalanche [39] mutation system (Section 5). This
paper extends an earlier version presented at IS-
STA 2010 [19], in which we used a first prototype to do
preliminary analysis. In this paper, we use a mature
version of µTEST to extend the empirical analysis to
a total of 10 open source libraries, making it one of
the largest empirical studies of evolutionary testing
of classes to date. The results show that our approach
can be used to extend (and theoretically, replace) the
manually crafted unit tests (Section 6).

2 BACKGROUND

2.1 Mutation Analysis

Mutation analysis was introduced in the 1970s [15]
as a method to evaluate a test suite in terms of how
good it is at detecting faults, and to give insight into
how and where a test suite needs improvement. The
idea of mutation analysis is to seed artificial faults
based on what is thought to be real errors commonly
made by programmers. The test cases of an existing
test suite are executed on a program version (mutant)
containing one such fault at a time in order to see if
any of the test cases can detect that there is a fault.
A mutant that is detected as such is considered dead,
and of no further use. A live mutant, however, shows
a case where the test suite potentially fails to detect
an error and therefore needs improvement.

There are two main problems of mutation analysis:
First, the sheer number of mutants and the effort of
checking all tests against all mutants can cause signif-
icant computational costs. Second, equivalent mutants
do not observably change the program behavior or
are even semantically identical, and so there is no
way to possibly detect them by testing. Since the
introduction of mutation analysis, a number of op-
timizations have been proposed to overcome possible
performance problems, and heuristics can identify
a small fraction of equivalent mutants—at the end
of the day, however, detecting equivalent mutants
is still a job to be done manually. A recent survey
paper [25] concisely summarizes all applications and
optimizations that have been proposed over the years.

Javalanche [39] is a tool that incorporates many
of the proposed optimizations and made it possible
to apply mutation analysis to software of previously
unthinkable size. In addition, Javalanche alleviates the
equivalent mutant problem by ranking mutants by
their impact: A mutant with high impact is less likely
to be equivalent, which allows the tester to focus
on those mutants that can really help to improve a
test suite. The impact can be measured, for example,
in terms of violated invariants or effects on code
coverage.

2.2 Test Case Generation

Research on automated test case generation has re-
sulted in a great number of different approaches,

3

deriving test cases from models or source code, us-
ing different test objectives such as coverage criteria,
and using many different underlying techniques and
algorithms. In this paper, we only consider white-box
techniques that require no specifications; naturally, an
existing specification can help in both generating test
cases and can serve as test oracle.

The majority of systematic white-box testing ap-
proaches consider the control-flow of the program,
and try to cover as many aspects as possible (e.g., all
statements or all branches). Generating test data by
solving path constraints generated with symbolic ex-
ecution is a popular approach (e.g., PathCrawler [49]),
and dynamic symbolic execution as an extension
can overcome a number of problems by combining
concrete executions with symbolic execution. This
idea has been implemented in tools like DART [20]
and CUTE [41], and is also applied in Microsoft’s
parametrized unit testing tool PEX [45].

Meta-heuristic search techniques have been used
as an alternative to symbolic execution based ap-
proaches and can be applied to stateless and stateful
programs [1], [29] as well as object-oriented container
classes [8], [46], [48]. The test generation approach
presented in this paper is in principle similar to the
technique presented by Tonella [46], but refines the
search with different search operators and a fitness
function targeting mutations and their impact, which
potentially leads to very different test cases. A promis-
ing avenue seems to be the combination of evolu-
tionary methods with dynamic symbolic execution
(e.g., [24]), alleviating some of the problems both
approaches have.

While systematic approaches in general have prob-
lems with scalability, random testing is an approach
that scales with no problems to programs of any size.
Besides random input generation a recent trend is also
generation of random unit tests, as for example imple-
mented in Randoop [35], JCrasher [14], AutoTest [13],
or RUTE-J [4]. Although there is no guarantee of
reaching certain paths, random testing can achieve rel-
atively good coverage with low computational needs.

2.3 Test Case Generation for Mutation Testing

Surprisingly, only a little work has been done on
generating test cases dedicated to kill mutants, even
though this is the natural extension of mutation anal-
ysis. DeMillo and Offutt [16] have adapted constraint
based testing to derive test data that kills mutants.
The idea is similar to test generation using symbolic
execution and constraint solving, but in addition to
the path constraints (called reachability condition by
DeMillo and Offutt), each mutation adds a condition
that needs to be true (necessity condition) such that the
mutant affects the state. Test data is derived using
constraint solving techniques again. Offutt et al. [31]
also described an advanced approach to generate test

data that overcomes some of the limitations of the
original constraint based approach. Recently, a con-
straint based approach to derive test data for mutants
has also been integrated in the dynamic symbolic
execution based tool Pex [52].

Jones et al. [26] proposed the use of a genetic
algorithm to find mutants in branch predicates, and
Bottaci [11] proposed a fitness function for genetic
algorithms based on the constraints defined by De-
Millo and Offutt [16]; recently this has been used for
experiments using genetic algorithms and ant colony
optimization to derive test data that kills mutants [9].
µTEST also uses a genetic algorithm to detect mutants
but differs from these approaches as it addresses ob-
ject oriented software and adds assertions as oracles.

Differential test case generation (e.g., [17], [33], [44])
shares similarities with test case generation based on
mutation analysis in that these techniques aim to
generate test cases that show the difference between
two versions of a program. Mutation testing, how-
ever, does not require the existence of two different
versions to be checked and is therefore not restricted
in its applicability to regression testing. In addition,
the differences in the form of simple mutations are
precisely controllable and can therefore be exploited
for test case generation.

2.4 Oracle Generation

Automated synthesis of assertions is a natural exten-
sion of test case generation. Randoop [35] allows an-
notation of the source code to identify observer meth-
ods to be used for assertions generation. Orstra [50]
generates assertions based on observed return values
and object states and adds assertions to check future
runs against these observations. A similar approach
has also been adopted in commercial tools such as
Agitar Agitator [10]. While such approaches can be
used to derive efficient oracles, they do not serve
to identify which of these assertions are actually
useful, and such techniques are therefore only found
in regression testing. The approach presented in this
paper generates assertion in a similar manner, but
uses mutation testing to select an effective subset.

Eclat [34] can generate assertions based on a model
learned from assumed correct executions; in contrast,
µTEST does not require any existing executions.

Evans and Savoia [17] generate assertions from runs
of two different versions of a software system and
DiffGen [44] extends the Orstra approach to generate
assertions from runs on two different program ver-
sions. This is similar to our µTEST approach, although
we do not assume two existing different versions of
the same class but generate many different versions
by mutation, and are therefore not restricted to a
regression testing scenario.

4

3 UNIT TESTS FROM MUTANTS

To generate test cases for mutants, we adopt an
evolutionary approach in line with previous work on
testing classes [8], [46]: In general, genetic algorithms
evolve a population of chromosomes using genetics-
inspired operations such as selection, crossover, and
mutation, and each chromosome represents a possible
problem solution.

To generate unit tests with a genetic algorithm, the
first ingredient is a genetic representation of test cases.
A unit test generally is a sequence of method calls
on an object instance; therefore, the main components
are method and constructor calls. These methods and
constructors take parameters which can be of primi-
tive or complex type. This gives us four main types
of statements:

Constructor statements generate a new instance of
the class under test or any other class needed as
a parameter for another statement:

DateTime var0 = new DateTime()

Method statements invoke methods on instances of
any existing objects (or static methods):

int var1 = var0.getSecondOfMinute()

Field statements access public fields of objects:

DurationField var2 = MillisDurationField.
INSTANCE

Primitive statements represent numeric data types:

int var3 = 54

Each statement defines a new variable (except void
method calls), and a chromosome is a sequence of
such statements. The parameters of method and con-
structor calls may only refer to variables occurring
earlier in the same chromosome. Constructors, meth-
ods, and fields are not restricted to the members of
the class under test because complex sequences might
be necessary to create suitable parameter objects and
reach required object states.

Let parameters(M) be a function that returns a list
containing the classes of the parameters of method
or constructor M , including the callee in the case of
non-static methods. Furthermore, let classes(t) be a
function that returns the set of classes for which there
are instances in test case t. A method is a generator
of class C if it returns a value of type C, and any
constructor of class C is also a generator of C. Let
generators(M,C) return the set of generators of class
C out of the set of methods and constructors M .

The initial population of test cases is generated
randomly as shown in Algorithm 1: Before gener-
ating test cases, we statically determine the set of
all method and constructor calls that either contain
the target mutation or directly or indirectly call the
method or constructor containing the mutation. We

Algorithm 1 Random generation of test cases.

Require: M : Set of all methods and constructors
Require: C: Set of all methods and constructors di-

rectly/indirectly calling mutation; C ⊆M
Require: l: Desired length of test case
Ensure: t: Randomly generated test

procedure GENTEST(C, l)
t← 〈〉
s← randomly select an element from C
for c in parameters(s) do

t←GENOBJECT(c, {}, M , t)
end for
t← t.s
while |t| < l do

c← randomly select class in classes(t)
M ′ ← {m | m ∈M ∧ c ∈ parameters(m)}
s← randomly select method from M ′

for p in parameters(s) do
if ¬(p ∈ classes(t)) then

t←GENOBJECT(p, {}, M , t)
end if

end for
s← set parameters of s to values from t
t← t.s

end while
return t

end procedure

randomly select one of these calls, and try to generate
all parameters including its callee, if applicable. For
this, we recursively add new calls that yield the
necessary objects (Algorithm 2) if the test case does
not already contain instances of the required types.
During this search, we keep track of classes we are
already trying to initialize to avoid getting stuck in
recursive loops. In Algorithm 1 and Algorithm 2 we
only generate new objects if they do not already exist;
in practice, we reuse existing objects only with a
certain probability (90% in our experiments) in order
to increase diversity within the test cases. If random
generation turns out to be difficult for a particular
class, Algorithm 2 can be turned into an exhaustive
search by adding backtracking and keeping track of
explored choices. Even though the search space can
be large depending on the size of the software under
test, this is not problematic as one can retain useful
sequences that lead to creation of certain objects and
reuse them later. Test cases are created in this way
until the initial population has reached the required
size.

Evolution of this population is performed by re-
peatedly selecting individuals from the current gen-
eration (for example, using tournament or rank selec-
tion) and applying crossover and mutation according
to a certain probability. Figure 4 illustrates single point
crossover for unit tests: A random position in each of

5

Algorithm 2 Recursive generation of objects.

Require: c: Class of desired object
Require: G: Set of classes already attempting to gen-

erate
Require: M : Set of all methods and constructors
Require: t: Test case
Ensure: t: Test case extended with an instance of c

procedure GENOBJECT(c, G, M , t)
M ′ ← generators(M, c)
s← randomly select element from M ′

for all c ∈ parameters(s) do
if ¬(c ∈ classes(t)) then

t←GENOBJECT(c, G, M , t)
end if

end for
s← set parameters of s to values from t
t← t.s
return t

end procedure

Fig. 4. Crossover between two test cases.

the two selected parents is selected, and an offspring
is generated by trying to merge the sub-sequences.
As statements can refer to all variables created earlier
in the sequence this means simply attaching a cut-off
sub-sequence will not work. Instead we add the state-
ments and try to satisfy parameters with the existing
variables, or possibly create new objects to satisfy all
parameters, similar to the initial generation (Algo-
rithm 1). By choosing different points of crossover in
the two parent chromosomes the crossover will result
in a variation of the length of test cases.

After selection and crossover the offspring is mu-
tated with a given probability. There are numerous
ways to mutate chromosomes:

Delete a statement: Drop one random statement in
the test case. The return value of this statement
must not be used as a parameter or callee in
another statement, unless it can be replaced with
another variable.

Insert a method call: Add a random method call for

one of the objects of the test case, or create a new
object of a type already used in the test case.

Modify an existing statement: Apply one of the fol-
lowing changes on one of the existing statements:

– Change callee: For a method call or field refer-
ence, change the source object.

– Change parameters: Change one parameter of a
method or constructor call to a different value
or create a new value.

– Change method/constructor: Replace a call with a
different one with an identical return type.

– Change field: Change a field reference to a dif-
ferent field of the same type on the same class.

– Change primitive: Replace a primitive value with
a different primitive value of the same type.

When mutating a chromosome, with a certain prob-
ability each statement is changed or deleted, or a new
statement is inserted before it.

In order to guide the selection of parents for off-
spring generation, all individuals of a population are
evaluated with regard to their fitness. The fitness of
a test case with regard to a mutant is measured with
respect to (1) how close it comes to executing the mu-
tated method, (2) how close it comes to the mutated
statement in this method, and (3) how significant the
impact of the mutant on the remaining execution is.
Consequently, the fitness function is a combination of
these three components:

Distance to calling function
If the method/constructor that contains the mutation
is not executed, then the fitness estimates the distance
toward making this call possible. To quantify how
close we are to enabling a given method call, we
count for how many of the parameters of the method
there are no existing objects of that type in the test
case (i.e., how many of its parameters are unsatisfied).
If a method is not static, we also count the target
object (callee) of the method call as a parameter.
A mutation can be executed by directly calling the
method it is contained in, or indirectly by calling a
method that may lead to a call of the method with
the mutation. The overall distance is the minimum of
the distance values for all methods that directly or
indirectly execute the mutation. Generally, we want
the distance to be as small as possible. This value can
be determined without executing the test case, and is
1 if the mutant is executed. We define this distance as
a function of a test case t:

d(c, t) := 1 + # Unsatisfied parameters (1)

Df (t) := min{d(c, t) | calls c related to mutation}
(2)

Distance to mutation
If the mutant method/constructor is executed but
the mutated statement itself is not, then the fitness

6

specifies the distance of the test case to executing
the mutation; again, we want to minimize this dis-
tance. This basically is the prevailing approach level
and branch distance measurement applied in search-
based test data generation [29]. The approach level
describes how far a test case was from the target in
the control flow graph when it deviated course. This is
usually measured as the number of unsatisfied control
dependencies between the point of deviation and the
target, and is 0 if all control dependent branches are
reached. The branch distance estimates how far the
branch at which execution diverged from reaching the
mutation is from evaluating to the necessary outcome.
In addition, one can use the necessity conditions [16]
definable for different mutation operators to estimate
the distance to an execution of the mutation that
infects the state (necessity distance [11]). To deter-
mine these values, the test case has to be executed
once on the unmodified software. If the mutation
executed, then approach level and branch distance
are 0, while the necessity distance is 0 only if a state
infection occurs. As usual, the branch distance should
not dominate the approach level, and therefore it is
normalized in the range [0, 1], for example using the
following normalization function initially proposed
by Arcuri [5]:

α(x) =
x

x+ 1
(3)

We also normalize the necessity distance in the range
[0, 1] with the same formula, but have to make sure
that the resulting value is 1 in the case that the
mutation is not executed:

β(x) =

{

1 Mutation is not executed
x

x+1
Mutation is executed

(4)

Dm(t) := Approach Level+α(Branch Distance)

+β(Necessity Distance) (5)

Mutation impact

If the mutation is executed, then we want the test
case to propagate any changes induced by the mu-
tation such that they can be observed. Traditionally,
this consists of two conditions: First, the mutation
needs to infect the state (necessity condition). This
condition can be formalized and integrated into the
fitness function (see above). In addition, however, the
mutation needs to propagate to an observable state
(sufficiency condition) — it is difficult to formalize
this condition [16]. Therefore, we measure the impact
of the mutation on the execution; we want this impact
to be as large as possible.

Quantification of the impact of mutations was ini-
tially proposed using dynamic invariants [38]: The
more invariants of the original program a mutant
program violates, the less likely it is to be equiva-
lent. A variation of the impact measurement uses the
number of methods with changed coverage or return

values [40] instead of invariants. We take a slightly
different view on the impact, as strictly speaking it
is not just a function of the mutant itself, but also of
the test case. Consequently, we use the impact as part
of the fitness function, and quantify the impact of a
mutation as the unique number of methods for which
the coverage changed and the number of observable
differences. An observable difference is, for example,
a changed return value or any other traceable artifact
(cf. Section 4). Using the unique number of changed
methods avoids ending up with long sequences of the
same method call.

Im(t) = c× |C|+ r × |A| (6)

Here, C is the set of called statements with changed
coverage, and A is the set of observable differences
between a run on the original and the mutant pro-
gram; c and r are constants that allow testers to put
more weight on observable changes. To determine the
impact, a test case has to be executed on the original
unit and on the mutant that is currently considered.

Overall fitness

The overall fitness function is a combination of these
three factors; the two distances have to be minimized,
while the impact should be maximized. As long as
Df (t) > 1 and Dm(t) > 0, Im(t) will be 0 per
definition. Consequently, a possible combination as
a fitness function that should be maximized is as
follows:

fitness(t) =
1

Df (t) +Dm(t)
+ Im(t) (7)

The fitness is less than 1 if the mutant has not been
executed, equal to 1 if the mutant is executed but has
no impact, and greater than one if there is impact or
any observable difference.

Individuals with dynamic length suffer from a
problem called bloat, which describes a dispropor-
tional growth of the individuals of a population dur-
ing the search. Test cases that are much too long
are problematic with respect to their execution time
and memory consumption, and may thus inhibit the
search. However, longer test cases can be useful as
they make it easier to reach difficult search objec-
tives [6], thus it is important to allow the search
to dive into longer sequences during the evolution,
while still preventing it from becoming excessively
long. On the other hand, from a user perspective we
expect that test cases should be as short as possible
to allow easier understanding. In our initial proto-
type [19] we integrated the length directly into the
fitness function. This, however, might have negative
side-effects on achieving the optimization goal, as
the search might converge prematurely. Consequently,
following the insights of our recent extensive experi-
mentation [18] we do not include the length explicitly

7

in the fitness function, but implicitly in terms of
the rank selection: If two individuals have the same
fitness, the shorter one will be ranked before the
longer individual. In addition, we apply bloat control
techniques such as a fixed upper bound on the length
of individuals during the search, or relative position
crossover which avoids an increase in length [18].

When generating test cases for structural coverage
criteria the stopping criterion is easy: If the entity to
be reached (e.g., a branch) is actually reached, then
one is done. In our scenario this is not so easy: It
might not be sufficient to stop once a mutant has
resulted in an observable difference, as we are also
optimizing with respect to the test case length and
the impact. Consequently, one may choose to let the
genetic algorithm continue until a maximum time or
number of generations has been reached and returns
the test case with the highest fitness.

As determining the fitness value of a test case
requires it to be executed, a nice side-effect is that
memory violations and uncaught exceptions may also
be detected during test case generation. If such excep-
tions are not declared to occur, then they are likely to
point to defects (see Section 5).

4 GENERATING ASSERTIONS TO K ILL MU-
TANTS

The job of generating test cases for mutants is not
finished once a mutation is executed: A mutant is
only detected if there is an oracle that can identify
the misbehavior that distinguishes the mutant from
the original program. Consequently, mutation-based
unit tests need test oracles such that the mutants are
detected.

A common type of oracles in the case of unit
tests are assertions, which are supported by most unit
testing frameworks. Some types of assertions (e.g.,
assertions on primitive return values) can be easily
generated, as demonstrated by existing testing tools
(cf. Section 2.4). This, however, is not so easy for
all types of assertions, and the number of possible
assertions in a test case often exceeds the number of
statements in the test case by far. Mutation testing
helps in precisely this matter by suggesting not only
where to test, but also what to check for. This is a very
important aspect of mutation testing, and has hitherto
not received attention for automated testing.

After the test case generation process we run each
test case on the unmodified software and all mutants
that are covered by the test case, while recording
traces with information necessary to derive assertions.
In the following we list different types of assertions,
all illustrated with examples of actually generated test
cases:

Primitive assertions make assumptions on primi-
tive (i.e., numeric or Boolean) return values:

DurationField var0 =
MillisDurationField.INSTANCE;

long var1 = 43;
long var2 = var0.subtract(var1, var1);
assertEquals(var2, 0);

Comparison assertions compare objects of the
same class with each other. Comparisons of objects
across different execution traces are not safe because
they might be influenced by different memory ad-
dresses, which in turn would influence assertions;
therefore we compare objects within the same test
case. For classes implementing the Java Comparable
interface we call compareTo; otherwise, we apply
comparison to all objects of compatible type in terms
of the Java equals method:

DateTime var0 = new DateTime();
Chronology var1 = Chronology.getCopticUTC();
DateTime var2 = var0.toDateTime(var1);
assertFalse(var2.equals(var0));

Inspector assertions call inspector methods on ob-
jects to identify their states. An inspector method is a
method that takes no parameters, has no side-effects,
and returns a primitive data type. Inspectors can, for
example, be identified by purity analysis [37].

long var0 = 38;
Instant var1 = new Instant(var0);
Instant var2 = var1.plus(var0);
assertEquals(var2.getMillis(), 76);

Field assertions are a variant of inspector asser-
tions and compare the public primitive fields of
classes among each other directly. (As Joda Time has
no classes with public fields, there is no example from
this library).

String assertions compare the string representa-
tion of objects by calling the toString method. For
example, the following assertion checks the ISO 8601
representation of a period in Joda Time:

int var0 = 7;
Period var1 = Period.weeks(var0);
assertEquals(”P7W”, var1.toString());

String assertions are not useful in all cases: First, they
are only usable if the class implements this method it-
self, as the java.lang.Object.toString method
inherited by all classes includes the memory location
of the reference—which does not serve as a valid
oracle. Second, the toString method is often used
to produce debug output which accesses many inter-
nals that might else not be observable via the public
interface. Oracles depending on internal details are
not resilient to changes in the code, and we therefore
only use these assertions if no memory locations are
included in the string and if no other assertions can
be generated.

8

Null assertions compare object references with the
special value null:

int var0 = 7;
Period var1 = Period.weeks(var0);
assertNonNull(var1);

Exception assertions check which exceptions are
raised during execution of a test case:

@Test (expected=IllegalArgumentException.class)
int var0 = −20;
DateTime var1 = new DateTime(var0,var0,var0); //

should raise exception

To generate assertions for a test case we run it
against the original program and all mutants using
observers to record the necessary information: An ob-
server for primitive values records all observed return
and field values, while an inspector observer calls
all inspector methods on existing objects and stores
the outcome, and a comparison observer compares
all existing objects of equal type and again stores the
outcome. After the execution the traces generated by
the observers are analyzed for differences between the
runs on the original program and its mutants, and for
each difference an assertion is added. At the end of
this process, the number of assertions is minimized
by tracing for each assertion which mutation it kills,
and then finding a subset for each test case that is
sufficient to detect all mutations that can be detected
with this test case. This is an instance of the NP-hard
minimum set covering problem, and we therefore use
a simple greedy heuristic [12]. The heuristic starts
by selecting the best assertion, and then repeatedly
adds the assertion that detects the most undetected
mutants.

5 GENERATING JAVA UNIT TEST SUITES

Being able to generate unit tests and assertions gives
us the tools necessary to create or extend entire test
suites. We have implemented the described µTEST ap-
proach as an extension to the Javalanche [39] mutation
system.

5.1 Mutation Analysis

The first step of a mutation based approach is to
perform classic mutation analysis, which Javalanche
does efficiently: Javalanche instruments Java bytecode
with mutation code and runs JUnit test cases against
the instrumented (mutated) version. The result of this
process is (a) a classification of mutants into dead or
live with respect to the JUnit test suite, as well as (b)
an impact analysis on live mutants that have been
executed but not detected.

5.2 Setup

The second step on the way to a test suite is to extract
testable units with all necessary information:

• Mutations of the unit under test (UUT)
• Testable constructors and methods of the UUT,

together with their control flow and control de-
pendency graphs for fitness calculation

• Classes and their members necessary to execute
all methods and constructors of the UUT (i.e.,
parameter classes)

• Inspector methods of the UUT and all other
considered classes

During test case generation, µTEST accesses the
UUT via Java reflection, but at the end of the test
case generation process the test cases are output as
regular JUnit test cases. Therefore, an important factor
for the testability of a Java class is its accessibility. This
means that all public classes can be tested, including
public member classes. Private or anonymous classes,
on the other hand, cannot be explicitly tested but only
indirectly via other classes that access them. Of the
accessible classes, all constructors, methods, and fields
declared public can be accessed. As abstract classes
cannot be instantiated directly, we consider all derived
subclasses when deriving information about testable
members for a class.

A basic requirement to test methods and construc-
tors is the ability to create objects of all parameter
types; therefore each parameter type is analyzed to
determine whether it offers all necessary generators to
be applicable to Algorithm 2. Alternatively, the user
can add helper functions that create usable objects,
or theoretically one could also keep a pool of created
objects [13]. A further requirement for a method to be
testable is that it can be executed repeatedly during
the search, and that calling the same method with
identical parameters always returns the same result
(i.e., it is deterministic).

For each unit, we only consider the mutants derived
at this level in the type hierarchy, i.e., for an abstract
class only mutants of that class are used although
members of subclasses are necessary to derive test
cases. The intuition for this is that it will be easier
for the tester to understand test cases and assertions
if she or he only has to focus on a single source file
at a time.

In addition to the test methods, each unit is an-
alyzed with respect to its inspector methods. An
inspector method is a method that does not change
the system state but only reports some information
about it, and is therefore very useful for assertion
generation. For Java, one has to resort to purity anal-
ysis [37] or manual input to identify inspectors.

5.3 Test Case Generation

Once the setup is finished, the actual test case gener-
ation can be started, possibly in parallel for different

9

Fig. 5. The process of generating test cases.

units. µTEST selects a target mutant and generates a
test case for it (see Figure 5). To measure the fitness
of individuals, µTEST executes test cases using Java
reflection. The resulting test case is checked against all
remaining live mutants to see if it also kills other mu-
tants. For all killed mutants, we derive a minimized
version of the test case, enhanced with assertions, and
add it to the test suite. To minimize test cases we use a
rigorous approach and try to remove each statement
from the test case and check the test case’s validity
and fitness afterward. Although this is basically a
costly approach, it is not problematic in practice, as
the rank selection favors short test cases, and they are
therefore usually short to begin with. Alternatively,
one could for example apply delta-debugging [27] or
a combination of slicing and delta-debugging [28] to
speed up minimization. This process is repeated until
all mutants are killed or at least test case generation
has been attempted on each of them.

5.4 Output

At the end of the process, the tester receives a JUnit
test file for each unit, containing test cases with asser-
tions and information about which test case is related
to which mutant. Unless the test cases are used for
regression testing, the assertions need to be analyzed
and confirmed by the tester, and any assertion that is
not valid reveals a bug in the software, or an invalid
test input due to an implicit constraint that needs
to be declared. To aid the developer, the number
of assertions is minimized such that each test case
only includes sufficiently many assertions to kill all
mutants that the test case can detect.

Besides test cases, the developer also receives in-
formation about the mutants considered during test
case generation: If one or more assertions could be
generated, the mutant is considered to be killed. If
the mutant was executed but no assertions could be
found, then the impact is returned, such that muta-
tions can be ranked according to their probability of
being inequivalent. Some mutants cannot be tested
(such as mutations in private methods that are not
used in public methods), and some mutants are not
supported by the tool itself (for example, mutations

TABLE 1
Statistics on case study objects

Classes Mutants

Case Study Testable Total Testable Total

Commons CLI 13 20 652 1,276
Commons Codec 20 29 3,075 4,041
Commons Collections 193 273 13,188 21,705
Commons Logging 10 14 286 1,317
Commons Math 243 388 25,226 43,273
Commons Primitives 154 238 2,385 5,734
Google Collections 83 131 4,054 11,339
JGraphT 112 167 2,341 5,139
Joda Time 123 154 11,163 23,145
NanoXML 1 2 614 954

Σ 952 1416 62,984 117,913

in static class constructors, as this would require un-
loading the class at each test run). Finally, a mutant
might simply not have been executed because the
tool failed to find a suitable sequence that reaches the
mutated statement.

6 EVALUATION

To learn about the applicability and feasibility of the
presented approach, we applied µTEST to a set of 10
open source libraries. In our experiments, we focus
on evaluating how well µTEST performs at producing
test cases that detect mutants of a program; to demon-
strate that the approach could also lead to detection
of defects in the current version of the program we
would additionally need data about real faults.

6.1 Case Study Objects

In selecting case study objects for a thorough evalua-
tion of the approach we tried to not only use container
classes, which are often used in the literature [42].
There are, however, limitations to automated test case
generation, and we therefore had to select open source
projects that do not rely on networking, I/O, multi-
threading, or GUIs.

Table 1 summarizes statistics of the case study
objects. The number of classes listed in this table rep-
resents only top-level classes (i.e., no member classes).
Not all classes are suitable for test generation, as to
produce executable JUnit test cases the classes need to
be publicly accessible and Javalanche needs to be able
to create mutants; we also excluded exception classes.

Commons CLI (CLI)

The Apache Commons CLI1 library provides an API
for parsing command line options.

Commons Codec (CDC)

Commons Codec 2 provides implementations of com-
mon encoders and decoders such as Base64, Hex,
Phonetic and URLs.

1. http://commons.apache.org/cli/
2. http://commons.apache.org/codec/

10

Commons Collections (COL)

Commons Collections 3 is a collection of data struc-
tures that seek to improve over Java standard library
classes. Commons collections makes heavy use of
Java Generics, which make it possible to parametrize
classes and methods with types. Unfortunately, this
type information is removed from instances of generic
classes by the compiler and therefore not accessible
at runtime by reflection, and so in most cases a type
parameter is just as difficult to treat as a parameter
of type Object. For this case study object, we used
Integer objects whenever a method has an Object
in its signature, as integer numbers are easy to gen-
erate and have a defined ordering.

Commons Logging (LOG)

The Commons Logging4 package bridges between
different popular logging implementations, which can
also be changed at runtime.

Commons Math (MTH)

Commons Math5 is a library of lightweight, self-
contained mathematics and statistics components ad-
dressing the most common problems not available in
the Java programming language.

Commons Primitives (PRI)

The Commons Primitives6 library contains a set of
datastructures and utilities that are optimized for
primitive datatypes.

Google Collections (GCO)

The Google Collections7 library is a set of new collec-
tion types and implementations.

JGraphT (JGT)

GraphT is a graph library that provides mathematical
graph-theory objects and algorithms.8

Joda Time (JOT)

Joda Time9 provides replacements for the Java date
and time classes. Joda Time is known for its compre-
hensive set of developer tests, providing assurance
of the library’s quality, which makes it well suited
as a benchmark to compare automatically generated
tests with. To make sure that test cases and generated
assertions are deterministic, we configured the global
SystemMillisProvider to return a constant value.

NanoXML (XML)

NanoXML10 is a small XML parser for Java. As
the parser framework relies heavily on I/O to read,
transform, and write XML files we only tested the
NanoXML Lite version.

3. http://commons.apache.org/collections/
4. http://commons.apache.org/logging/
5. http://commons.apache.org/math/
6. http://commons.apache.org/primitives/
7. http://code.google.com/p/google-collections/
8. http://www.jgrapht.org/
9. http://joda-time.sourceforge.net/
10. http://devkix.com/nanoxml.php

6.2 Experimental Setup

Test case generation only requires Java bytecode, and
we used the µTEST prototype “out of the box” as far as
possible, i.e., without writing test helper functions or
modifying the software under test. Minor adaptations
were only necessary to avoid calling methods with
nondeterministic results like random number genera-
tors; these methods are easily detectable as generated
assertions will not always hold on the original pro-
gram either.

We configured µTEST to use a steady state genetic
algorithm with a population size of 100, and an
elitism size of 1 individual. The maximum test case
length was set to 60 statements, and evolution was
performed for a maximum of 1,000,000 executed state-
ments for each class. Before starting the evolution, we
ran 100 random test cases on each class to identify
trivial mutants, to focus the search on the difficult
objectives. For the remaining mutants, the budget of
statements was equally divided. For each mutant, the
search was ended as soon as an observable difference
was found, i.e., we did not optimize the impact fur-
ther. We used all types of assertions listed in Section 4
except for String assertions (i.e., checking the output
of the toString method) and exception assertions. We
used a timeout of 5 seconds for individual tests, and
if a mutant timed out where the same test case run
on the original program did not timeout we assume
that the mutant causes an infinite loop and end the
search for this particular mutant at this point.

Crossover probability was set to 75%, and for every
offspring of length n each statement had a mutation
probability of 1/n. Mutation was performed with
probability 1/3 as insertion, 1/3 as deletion, and 1/3
as change. As µTEST uses randomized algorithms,
each experiment was repeated 30 times with different
random seeds.

6.3 Effectiveness

One of our main objectives is to produce test suites
that are good at detecting mutants. Figure 6 sum-
marizes the achieved mutation scores for each of the
case study objects. For each object, the plot shows the
mutation score averaged over all classes of the object
as well as the 30 runs per class; each box depicts
median as well as upper and lower quartiles; the
whiskers show the minimum and maximum along
with outliers. The mutation score is the ratio of killed
mutants to mutants in total (including equivalent
mutants, as we do not know which mutants are
equivalent). NanoXML poses problems for µTEST, as it
requires XML input which is unlikely to be produced
automatically. Similarly, Commons Logging hit the
boundaries of what is possible with automated test
generation, and in particular caused problems for
µTEST with its external dependencies and the fact that
parts of the tested code are used within µTEST. For the

11

CLI CDC COL MTH LOG PRI GCO JGT JOT XML

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
ut

at
io

n
S

co
re

Fig. 6. Mutation score per class: For the majority of
case study objects and classes, µTEST achieves high
mutation scores.

other projects, µTEST was able to produce test suites
with high mutation scores.

In our experiments, µTEST generates test cases
that kill 75% of all mutants on average.

6.4 Test Case and Test Suite Sizes

Figure 7 illustrates that the number of test cases
resulting per class is small on average; this is not
surprising, as each test case not only kills the target
mutation for which it was created, but usually many
other mutants as well.

We define the length of a test case as the number
of statements it consists of, excluding assertions. The
test suite length is the sum of the lengths of its
constituent test cases. Figure 8 lists the test suite
lengths, confirming that the resulting test suites are
small and the minimization is effective at producing
smaller test suites.

In general, test suites are often minimized to reduce
the overall costs of test execution [23]. The size of indi-
viduals may also be of concern during the search with
a genetic algorithm, where bloat is a phenomenon
in evolutionary search where individuals grow dis-
proportionally large, thus inhibiting the search (cf.
Section 3). In addition to these considerations, our
motivation to produce small test suites is that in a
non-regression testing scenario the test cases need to
be presented to a developer, who needs to confirm
the generated oracles. We expect that the shorter a test
case, the easier it will be to understand. The results of
our experiments confirm that our approach is effective
at generating small test suites. However, whether our
intuition on the influence of the length of tests on their
understandability is true or not would require human
experiments, which we plan to do in the future.

CLI CDC COL MTH LOG PRI GCO JGT JOT XML

0
10

20
30

40
50

60

Te
st

 S
ui

te
 S

iz
e

Fig. 7. Number of test cases in a test suite for a single
class: Usually, few test cases are necessary to kill all
mutants of a class.

There is also a drawback to using short test cases,
as longer test cases make it easier to reach coverage
goals [6], and may have better chances at exposing
interaction faults. To exploit the fact that long test
cases are good at exploring the state space, we allow
the search to employ longer test sequences, and then
reduce their length after the search. Furthermore,
many short test cases can be disadvantageous com-
pared to fewer long test cases if the setup costs for
individual test cases are high. These considerations
are outside the scope of this paper, but analysis of
the effects of test case length is the focus of recent
research [3], [6], [18].

In general, the minimization of test cases in our sce-
nario does not affect the potential to detect mutants;
however, any minimization technique might affect
the residual fault detection ability [36]. This means
that faults that are not represented by the mutants
but detected by a long test case might no longer be
detected after minimization.

6.5 Assertion Minimization

µTEST minimizes the number of assertions with the
aim to cover as many as possible mutants with as
few as possible assertions. The intuition behind this
optimization is that the fewer assertions there are, the
fewer assertions need to be validated by the tester.
To see whether µTEST is successful in this respect,
Figure 9 summarizes the statistics on the total number
of possible assertions in the generated test cases vs.
the assertions selected by µTEST. The figure shows
that the number of possible assertions in a test case
can be very large (the maximum we observed were
122 assertions for a test case in Commons Primitives –
reduced to a single assertion by µTEST). The reduction
is largest for the Commons Primitives, Commons

12

CLI CDC COL MTH LOG PRI GCO JGT JOT XML

0
10

20
30

40
50

60
70

Te
st

 S
ui

te
 L

en
gt

h

Fig. 8. Total length of a test suite for a single class:
Short test cases are important to keep test cases
understandable.

CLI CDC COL MTH LOG PRI GCO JGT JOT XML

0
10

20
30

40

A
ss

er
tio

ns
 /

Te
st

0
10

20
30

40

All
Minimized

Fig. 9. Statistics on the number of possible assertions
per generated test, and assertions selected by µTEST.

Math, Joda Time, and NanoXML objects, but in all
cases there is a significant reduction.

In our experiments, µTEST selects only 32%
of all possible assertions on average.

This result proves that µTEST is effective at find-
ing small sets of assertions. However, to determine
whether it is actually easier for a tester to confirm a
suggested assertion as opposed to the tester coming
up with a new assertion by herself would again
require human experiments, which are out of the
scope of this paper. Furthermore, this evaluation does
not reveal how assertions compare to other types of
oracles, such as creating an oracle based on the output
of a test case. However, our choice of assertions as
oracles in the context of unit testing is based on
the observation that test cases written by developers
usually also use such assertions.

Minimizing the assertions with respect to mutations
by construction does not affect the set of mutants
that a test case can detect. However, as with the
test case minimization discussed above and any test
minimization technique in general, the residual fault
detection ability might be affected. This means that
in theory, removing assertions might lead to faults
no longer being detected, even though the mutation
score stays the same. An analysis of this effect would
require experiments with real faults and is outside the
scope of this paper.

6.6 Comparison to Manually Written Tests

In order to see how test cases generated with µTEST

compare to manually written test cases, Table 2 gives
more detailed statistics on the handcrafted test suites
written by the developers of the case study objects
and included in their distribution, as well as those
generated by µTEST. For the handcrafted tests, we de-
rived these numbers by counting the non-commented
source code statements using JavaNCSS11, and we
counted the number of assertions using the command
line tools grep and wc. The number of statements in
Table 2 is derived as the number of non-commenting
source code statements excluding assertions. As some
of the objects use parametrized tests, where one test
method results in several unit tests, we averaged these
numbers over the number of methods as reported
by JavaNCSS. NanoXML Lite only comes with two
test cases, but these tests parse and act upon complex
XML files.

Unlike our initial results [19] the automatically gen-
erated test cases are on average shorter than manually
written test cases. This demonstrates the effective-
ness of both the genetic algorithm in finding short
sequences and the minimization applied in removing
all unnecessary statements. The difference from the
initial results can be attributed to the fact that µTEST

has matured significantly, as witnessed by its applica-
bility to different open source libraries. In particular,
the original version of µTEST included the length in
the fitness function explicitly, while now µTEST ranks
individual with the same fitness according to their
length during selection, and it employs different bloat
reduction strategies (see Section 3).

In only three out of 10 cases µTEST produced more
test cases than in the manual test suites. To some
extent, this reduction in the number of test cases is
because we only considered the automatically testable
subset of classes, while the manually written test
cases address all classes. However, another expla-
nation is that the automatically generated test cases
simply are more effective at finding mutants than
manually written test cases. To verify this explanation,
we analyzed and compared the test suites for the
testable classes in detail. As randomized algorithms

11. http://www.kclee.de/clemens/java/javancss

13

TABLE 2
Total number of test cases and average statistics per test case: Manually handcrafted vs. generated

Manual Generated

Case Study Tests Statements/Test Assertions/Test Tests Statements/Test Assertions/Test

Commons CLI 187 7.45 2.80 137.39 4.91 2.57
Commons Codec 284 6.67 3.16 236.28 4.50 1.20
Commons Collections 12,954 6.28 2.10 1955.67 4.65 2.24
Commons Logging 26 6.90 1.03 77.86 6.08 2.00
Commons Math 14,693 6.93 3.41 1797.79 4.49 1.91
Commons Primitives 3,397 4.05 0.86 1145.67 5.88 1.54
Google Collections 33,485 4.52 1.25 781.79 3.88 1.81
JGraphT 118 9.10 1.65 484.96 4.56 1.52
Joda Time 3,493 4.89 4.55 1553.36 6.10 1.89
NanoXML 2 12.67 0.67 35.47 6.22 1.13

TABLE 3
Â12 measure values in the mutation score

comparisons: Â12 < 0.5 means µTEST achieved lower,
Â12 = 0.5 equal, and Â12 > 0.5 higher mutation scores

than the manually written test suites.

Case Study #Â12 < 0.5 #Â12 = 0.5 #Â12 > 0.5

Commons CLI 7 1 5
Commons Codec 9 2 9
Commons Collections 46 24 123
Commons Logging 1 2 1
Commons Math 74 10 159
Commons Primitives 7 96 51
Google Collections 36 9 38
JGraphT 30 16 66
Joda Time 42 3 78
NanoXML 1 0 0

Σ 253 163 530

can produce different results in different runs, we
follow the guidelines on statistical analysis described
by Arcuri and Briand [7].

Statistical difference has been measured with the
Mann-Whitney U test. To quantify the improvement
in a standardized way, we used the Vargha-Delaney
Â12 effect size [47]. In our context, the Â12 is an
estimation of the probability that, if we run µTEST,
we obtain a higher mutation score than the manually
crafted tests. When the two types of tests are equiv-
alent, then Â12 = 0.5. A high value Â12 = 1 would
mean that µTEST obtained a higher mutation score in
all cases.

Table 3 shows how many times we obtained Â12

values equal, lower and higher than 0.5. We obtained
p-values lower than 0.05 in 709 out of 946 compar-
isons. Figure 10 shows a box-plot of the results of
the Â12 6= 0.5 measure for the coverage grouped
by case study object. For NanoXML µTEST achieves
clearly worse results than the manually written test
cases, which has to be attributed to both difficulties
in generating test cases as well as finding suitable
assertions. The manually written test cases read XML
samples, and compare XML output as oracles, which
µTEST currently cannot do. Although µTEST has fewer

problems generating test cases for Commons Codec,
the API exposes only a few possibilities for generating
assertions, and so µTEST achieves higher mutation
scores only for five out of 13 classes. For Commons
Codec, Commons Logging, and Google Collections
µTEST achieves similar mutation scores as the man-
ually written test suites. The mutation scores for
Commons Codec are close to 100%, which means
there is little improvement possible. As mentioned
previously, Commons Logging posed difficulties for
µTEST, which led to a low mutation score. Google
Collections are very well tested (more than 33,000 test
cases!), so achieving the same mutation score in 9 and
higher mutation score in 38 out of 83 cases can be
seen as a success. Finally, for Commons Collections,
Commons Math, Commons Primitives, JGraphT, and
Joda Time µTEST achieves clearly higher mutation
scores than the manually written test suites. However,
as Figure 10 shows, there is significant variation in
these results. This is mainly because for each of these
libraries there are several cases of classes that are
difficult for automated test generation. For example,
Commons Math contains many classes where using
random numbers (as is the case with a genetic algo-
rithm) can lead to very long computation time and
thus timeouts. Joda Time has a few classes that heavily
depend on text input in specific date/time formats,
which µTEST cannot produce. Similarly, JGraphT has
a few classes that pose difficulties for test generation.
In summary, we conclude that µTEST achieves higher
mutation scores than manually written test cases;
improvements in the test generation algorithm would
lead to further increase, if the API were rich enough
to support assertion generation (i.e., not in the case of
NanoXML).

µTEST generates test suites and oracles
that find significantly more seeded defects

than manually written test suites.

6.7 Overfitting to Mutations

µTEST optimizes test suites to detect mutants; a basic
assumption of mutation testing is that mutants are

14

CLI CDC COL MTH LOG PRI GCO JGT JOT XML

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 10. Â12 for mutation scores: µTEST has a high
probability of achieving a higher mutation score than
manually written test cases.

based on actual fault models and are representative
of real faults, and experiments have confirmed that
generated mutants are indeed similar to real faults
for the purpose of evaluating testing techniques [2]. In
addition, the competent programmer hypothesis [30]
states that developers produce programs that are close
to being correct, and the coupling effect hypothe-
sis [30] states that test cases that are sufficient to
detect simple faults (i.e., mutants) are also capable of
detecting complex faults (i.e., higher order mutants or
real faults). Given these assumptions, µTEST produces
test suites that likely to cover most real faults.

Mutation testing does not require that all types
of mutations are considered, as it was extensively
determined experimentally [32], [43] that there are
sufficient sets of mutation operators: If a test suite
kills all mutants derived with such a sufficient set,
then it will detect all other mutants with very high
probability. Based on previous work [2], Javalanche
by default only uses the mutation operators state-
ment deletion, jump negation, arithmetic operator replace-
ment, and comparison operator replacement. According
to other experiments on sufficient sets of mutation
operators [32], variable replacement (VRO) should not
be subsumed by these operators. The Javalanche de-
velopers kindly added this operator to their set, such
that we can therefore reveal the effect of overfitting
to the given mutation operators by evaluating the
test suites produced by µTEST using the Javalanche
default operators with respect to their effectiveness
at finding variable replacement faults. Table 4 shows
that on the variable replacement operator (VRO) the
manually written test cases achieve very similar re-
sults as on the other operators. In contrast, µTEST’s
test cases show significantly lower mutation scores
for this operator, as expected (interestingly, with the
exception of NanoXML).

TABLE 4
Mutation scores on the variable replacement operator,
which is not in the default set of mutation operators of

Javalanche and was therefore not used by µTEST

when generating tests.

Case Study Manual Generated

Commons CLI 81.85% 32.45%
Commons Codec 90.80% 80.67%
Commons Collections 62.44% 47.50%
Commons Logging 85.71%12 10.00%
Commons Math 53.53% 16.24%
Commons Primitives 76.41% 54.27%
Google Collections 57.96% 45.04%
JGraphT 65.22% 23.52%
Joda Time 67.90% 48.94%
NanoXML 19.14% 45.62%

Average 66.10% 40.43%

µTEST’s choice of assertions is determined
by the choice of mutation operators.

In general, this shows that test generation based
on mutation testing cannot guarantee that all faults
are detected. However, by all means of mutation
testing research, using a sufficient set of operators
(e.g., including VRO in the Javalanche set) should
result in a good test suite; as usual, evaluation on real
faults would be required to confirm this.

6.8 Threats to Validity

The results of our experiments are subject to the
following threats to validity:

Our 952 classes investigated come from 10 projects;
while this is a large case study with respect to the state
of the art and the literature, we cannot claim that the
results of our experimental evaluation are generaliz-
able. The evaluation should be seen as investigating
the potential of the technique rather than providing a
statement of general effectiveness.

The unit tests against which we compared might
not be representative of all types of tests (in par-
ticular we did not compare against automatically
derived tests, as other tools do not provide oracles
or only regression oracles), but we chose projects
that come with test suites of non-trivial sizes. The
units investigated had to be testable automatically as
discussed in Sections 5.2 and 6.1. The generalization
to other programming languages than used in our
experiments (Java) depends on the testability—for
example, a search based approach as used by µTEST

would be quite hopeless on an untyped language such
as Python, unless putting in a major effort in type
analysis. The results should, however, generalize to
comparable languages such as C# or C++.

12. Not all tests of Commons Logging are executable within
Javalanche; the mutation score therefore only represents the score
of those mutants for which the test cases executed successfully.

15

Another possible threat is that the tools we have
used or implemented could be defective. To counter
this threat, we have run several manual assessments
and counter-checks.

We evaluated the quality of unit tests in terms of
their mutation score (Table 2), as well as size and abil-
ity to select small sets of assertions. In practice other
factors such as understandability or maintainability
have to be considered as well. To this extent, we try
to maximize impact and minimize the length of test
cases; however, longer test cases might be preferable
in terms of their fault detection ability [3], [6].

In our experiments we showed that µTEST can
generate test cases that detect mutants of a program;
however, µTEST is also conceived to identify faults
in the current version of the software, as assertions
influenced by faults are expected to be identified as
invalid by the developer. Evaluation of this aspect
would require experiments with real faults, as using
the same mutation tool to seed defects and to generate
tests would lead to experiments not different from
those we already performed.

7 CONCLUSIONS

Mutation analysis is known to be effective in eval-
uating existing test suites. In this paper, we have
shown that mutation analysis can also drive automated
test generation. The main difference between using
structural coverage and mutation analysis to guide
test generation is that a mutation does not only show
where to test, but also helps in identifying what should
be checked for. In our experiments, this results in test
suites that are significantly better in finding defects
than the (already high-quality) manually written ones.

The advent of automatic generation of effective test
suites has an impact on the entire unit testing process:
Instead of laboriously thinking of sequences that lead
to observable features and creating oracles to check
these observations, the tester lets a tool create unit
tests automatically, and receives two test sets: One
revealing general faults detectable by random testing,
the other one consisting of regular unit tests. In the
long run, finding bugs could thus be reduced to the
task of checking whether the generated assertions
match the intended behavior.

Although our µTEST experiences are already very
promising, there is ample opportunity to improve
the results further: For example, previously generated
test cases, manual unit tests, or test cases satisfying
a coverage criterion could serve as a better starting
point for the genetic algorithm [51]. The search based
algorithm can be much optimized, for example by
applying testability transformation [21], or improving
the fitness function. If a mutated method is executed
but the mutant is not executed, then a local opti-
mization on the parameters of that method call could
possibly lead to a result much quicker than the global

search [22] (for example, if the input parameters are
numeric). It is even conceivable to use a hybrid ap-
proach with dynamic symbolic execution [24].

To learn more about our work on mutation testing,
visit our Web site:

http://www.st.cs.uni-saarland.de/mutation/

ACKNOWLEDGMENTS

We thank David Schuler for his work on Javalanche,
and Andrea Arcuri, Valentin Dallmeier, Andrzej Wa-
sylkowski, Jeff Offutt, Eva May, and the anonymous
reviewers for comments on earlier versions of this
paper. This project has been funded by DFG grant
Ze509/5-1, and by a Google Focused Research Award
on “Test Amplification”.

REFERENCES

[1] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege.
A systematic review of the application and empirical investi-
gation of search-based test-case generation. IEEE Transactions
on Software Engineering, 99(PrePrints), 2009.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In ICSE ’05: Proceed-
ings of the 27th International Conference on Software Engineering,
pages 402–411, New York, NY, USA, 2005. ACM.

[3] J. H. Andrews, A. Groce, M. Weston, and R. G. Xu. Random
test run length and effectiveness. In ASE’08: Proceedings of
the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, pages 19–28, Washington, DC, USA, 2008.
IEEE Computer Society.

[4] J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li. Tool support
for randomized unit testing. In RT ’06: Proceedings of the 1st
International Workshop on Random Testing, pages 36–45, New
York, NY, USA, 2006. ACM.

[5] A. Arcuri. It does matter how you normalise the branch dis-
tance in search based software testing. In ICST’10: Proceedings
of the 3rd International Conference on Software Testing, Verification
and Validation, pages 205–214. IEEE Computer Society, 2010.

[6] A. Arcuri. Longer is better: On the role of test sequence
length in software testing. In ICST’10: Proceedings of the
3rd International Conference on Software Testing, Verification and
Validation, pages 469–478. IEEE Computer Society, 2010.

[7] A. Arcuri and L. Briand. A practical guide for using statistical
tests to assess randomized algorithms in software engineering.
In IEEE International Conference on Software Engineering (ICSE),
pages 1–10, New York, NY, USA, 2011. ACM.

[8] A. Arcuri and X. Yao. Search based software testing of object-
oriented containers. Information Sciences, 178(15):3075–3095,
2008.

[9] K. Ayari, S. Bouktif, and G. Antoniol. Automatic mutation
test input data generation via ant colony. In GECCO ’07: Pro-
ceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, pages 1074–1081, New York, USA, 2007. ACM.

[10] M. Boshernitsan, R. Doong, and A. Savoia. From Daikon to
Agitator: lessons and challenges in building a commercial tool
for developer testing. In ISSTA ’06: Proceedings of the 2006
International Symposium on Software Testing and Analysis, pages
169–180, New York, NY, USA, 2006. ACM.

[11] L. Bottaci. A genetic algorithm fitness function for mutation
testing. In SEMINAL 2001: International Workshop on Software
Engineering using Metaheuristic Inovative Algorithms, a workshop
at 23rd Int. Conference on Software Engineering, pages 3–7, 2001.

[12] V. Chvatal. A greedy heuristic for the set-covering problem.
Mathematics of Operations Research, 4(3), 1979.

[13] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Artoo: adap-
tive random testing for object-oriented software. In ICSE
’08: Proceedings of the 30th International Conference on Software
Engineering, pages 71–80, New York, NY, USA, 2008. ACM.

http://www.st.cs.uni-saarland.de/mutation/

16

[14] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Software Practice and Experience,
34(11):1025–1050, 2004.

[15] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. Computer,
11(4):34–41, April 1978.

[16] R. A. DeMillo and A. J. Offutt. Constraint-based automatic
test data generation. IEEE Transactions on Software Engineering,
17(9):900–910, September 1991.

[17] R. B. Evans and A. Savoia. Differential testing: a new approach
to change detection. In ESEC-FSE ’07: Proceedings of the 6th
Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, pages 549–552, New York, NY, USA, 2007. ACM.

[18] G. Fraser and A. Arcuri. It is not the length that matters, it is
how you control it. In ICST’11: Proceedings of the 4th Interna-
tional Conference on Software Testing, Verification and Validation.
IEEE Computer Society, 2011.

[19] G. Fraser and A. Zeller. Mutation-driven generation of unit
tests and oracles. In Proceedings of the 19th International
Symposium on Software Testing and Analysis, ISSTA ’10, pages
147–158, New York, NY, USA, 2010. ACM.

[20] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI ’05: Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 213–223, New York, USA, 2005. ACM.

[21] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer,
A. Baresel, and M. Roper. Testability transformation. IEEE
Transactions on Software Engineering, 30(1):3–16, 2004.

[22] M. Harman and P. McMinn. A theoretical and empirical study
of search-based testing: Local, global, and hybrid search. IEEE
Trans. Softw. Eng., 36:226–247, March 2010.

[23] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for
controlling the size of a test suite. ACM Trans. Softw. Eng.
Methodol., 2:270–285, July 1993.

[24] K. Inkumsah and T. Xie. Improving structural testing of
object-oriented programs via integrating evolutionary testing
and symbolic execution. In ASE 2008: Proceedings of the
23rd IEEE/ACM International Conference on Automated Software
Engineering, pages 297–306, 2008.

[25] Y. Jia and M. Harman. An Analysis and Survey of the
Development of Mutation Testing. IEEE Transactions of Software
Engineering, To appear, 2010.

[26] B. F. Jones, D. E. Eyres, and H.-H. Sthamer. A strategy for
using genetic algorithms to automate branch and fault-based
testing. The Computer Journal, 41(2):98–107, 1998.

[27] Y. Lei and J. H. Andrews. Minimization of randomized unit
test cases. In ISSRE ’05: Proceedings of the 16th IEEE International
Symposium on Software Reliability Engineering, pages 267–276,
Washington, DC, USA, 2005. IEEE Computer Society.

[28] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer. Efficient
unit test case minimization. In ASE ’07: Proceedings of the
22nd IEEE/ACM International Conference on Automated Software
Engineering, pages 417–420, New York, NY, USA, 2007. ACM.

[29] P. McMinn. Search-based software test data generation: a
survey: Research articles. Software Testing Verification Reliability,
14(2):105–156, 2004.

[30] A. J. Offutt. Investigations of the software testing coupling
effect. ACM Trans. Softw. Eng. Methodol., 1:5–20, January 1992.

[31] A. J. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction
procedure for test data generation. Softw. Pract. Exper., 29:167–
193, February 1999.

[32] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An experimental determination of sufficient mutant operators.
ACM Trans. Softw. Eng. Methodol., 5:99–118, April 1996.

[33] A. Orso and T. Xie. BERT: BEhavioral Regression Testing.
In WODA 2008: Proceedings of the International Workshop on
Dynamic Analysis, pages 36–42, July 2008.

[34] C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. In ECOOP 2005 — Object-
Oriented Programming, 19th European Conference, pages 504–527,
Glasgow, Scotland, July 27–29, 2005.

[35] C. Pacheco and M. D. Ernst. Randoop: feedback-directed
random testing for Java. In OOPSLA ’07: Companion to the
22nd ACM SIGPLAN conference on Object-oriented programming
systems and applications companion, pages 815–816, New York,
NY, USA, 2007. ACM.

[36] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An
empirical study of the effects of minimization on the fault
detection capabilities of test suites. In Proceedings of the In-
ternational Conference on Software Maintenance, ICSM ’98, pages
34–, Washington, DC, USA, 1998. IEEE Computer Society.

[37] A. Salcianu and M. C. Rinard. Purity and side effect analysis
for Java programs. In VMCAI 2005: Proceedings of the 6th Inter-
national Conference on Verification, Model Checking, and Abstract
Interpretation, volume 3385 of Lecture Notes in Computer Science,
pages 199–215. Springer, 2005.

[38] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation
testing by checking invariant violations. In ISSTA ’09: Pro-
ceedings of the 18th International Symposium on Software Testing
and Analysis, pages 69–80, New York, NY, USA, 2009. ACM.

[39] D. Schuler and A. Zeller. Javalanche: efficient mutation testing
for Java. In ESEC/FSE ’09: Proceedings of the 7th Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering,
pages 297–298, New York, NY, USA, 2009. ACM.

[40] D. Schuler and A. Zeller. (Un-)Covering equivalent mutants.
In ICST ’10: Proceedings of the 3rd International Conference on
Software Testing, Verification, and Validation, pages 45–54, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

[41] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing
engine for C. In ESEC/FSE-13: Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pages 263–272, New York, NY, USA, 2005. ACM.

[42] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov.
Testing container classes: Random or systematic? In D. Gian-
nakopoulou and F. Orejas, editors, Fundamental Approaches to
Software Engineering, volume 6603 of Lecture Notes in Computer
Science, pages 262–277. Springer Berlin / Heidelberg, 2011.

[43] A. Siami Namin, J. H. Andrews, and D. J. Murdoch. Sufficient
mutation operators for measuring test effectiveness. In Proceed-
ings of the 30th international conference on Software engineering,
ICSE ’08, pages 351–360, New York, NY, USA, 2008. ACM.

[44] K. Taneja and T. Xie. DiffGen: Automated regression unit-test
generation. In ASE 2008: Proceedings of the 23rd IEEE/ACM In-
ternational Conference on Automated Software Engineering, pages
407–410, 2008.

[45] N. Tillmann and J. N. de Halleux. Pex — white box test
generation for .NET. In TAP 2008: International Conference
on Tests And Proofs, volume 4966 of LNCS, pages 134 – 253.
Springer, 2008.

[46] P. Tonella. Evolutionary testing of classes. In ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 119–128, New York, NY,
USA, 2004. ACM.

[47] A. Vargha and H. D. Delaney. A critique and improvement of
the CL common language effect size statistics of McGraw and
Wong. Journal of Educational and Behavioral Statistics, 25(2):101–
132, 2000.

[48] S. Wappler and F. Lammermann. Using evolutionary algo-
rithms for the unit testing of object-oriented software. In
GECCO ’05: Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation, pages 1053–1060, New York, NY,
USA, 2005. ACM.

[49] N. Williams, B. Marre, P. Mouy, and M. Roger. PathCrawler:
automatic generation of path tests by combining static and dy-
namic analysis. In EDCC 2005: Proceedings ot the 5th European
Dependable Computing Conference, volume 3463 of LNCS, pages
281–292. Springer, 2005.

[50] T. Xie. Augmenting automatically generated unit-test suites
with regression oracle checking. In ECOOP 2006: Proceedings
of the 20th European Conference on Object-Oriented Programming,
pages 380–403, July 2006.

[51] Z. Xu, M. B. Cohen, and G. Rothermel. Factors affecting
the use of genetic algorithms in test suite augmentation. In
Proceedings of the 12th annual conference on Genetic and evolu-
tionary computation, GECCO ’10, pages 1365–1372, New York,
NY, USA, 2010. ACM.

[52] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, and
H. Mei. Test generation via dynamic symbolic execution for
mutation testing. In Proc. 26th IEEE International Conference on
Software Maintenance (ICSM 2010), September 2010.

17

Gordon Fraser Gordon Fraser is a post-
doc researcher at Saarland University, and
member of the Chair of Software Engineer-
ing led by Prof. Andreas Zeller. The central
theme of his research is improving software
quality, and his recent research concerns the
prevention, detection, and removal of defects
in software. More specifically, he develops
techniques to generate test cases automat-
ically, and to guide the tester in validating
the output of tests by producing test oracles

and specifications. Because of the necessity to involve humans in
the testing process he is investigating how to make these artifacts
readable and understandable. At the same time, he strives to develop
techniques that are both scalable to complex real-world software and
practically usable, yet preserve their strong formal foundation.

Andreas Zeller Andreas Zeller is a com-
puter science professor at Saarland Uni-
versity, Saarbrücken, Germany. Zeller’s re-
search increases programmer productivity.
He researches large programs and their his-
tory, and develops methods to predict, iso-
late, and prevent causes of program failures
– on open-source programs as well as in
industrial contexts at IBM, Microsoft, SAP,
and others. Zeller’s contributions to computer
science include the GNU DDD debugger, au-

tomated debugging, mining software archives, and scalable mutation
testing. In 2009, his work on delta debugging obtained the ACM
SIGSOFT 10-year impact paper award.

	1 Introduction
	2 Background
	2.1 Mutation Analysis
	2.2 Test Case Generation
	2.3 Test Case Generation for Mutation Testing
	2.4 Oracle Generation

	3 Unit Tests from Mutants
	4 Generating Assertions to Kill Mutants
	5 Generating Java Unit Test Suites
	5.1 Mutation Analysis
	5.2 Setup
	5.3 Test Case Generation
	5.4 Output

	6 Evaluation
	6.1 Case Study Objects
	6.2 Experimental Setup
	6.3 Effectiveness
	6.4 Test Case and Test Suite Sizes
	6.5 Assertion Minimization
	6.6 Comparison to Manually Written Tests
	6.7 Overfitting to Mutations
	6.8 Threats to Validity

	7 Conclusions
	References
	Biographies
	Gordon Fraser
	Andreas Zeller

